説明

Fターム[4K070AB11]の内容

炭素鋼又は鋳鋼の製造 (7,058) | 処理目的 (1,383) | スラグ処理・スラグの有効利用 (194)

Fターム[4K070AB11]に分類される特許

81 - 100 / 194


【課題】液圧シリンダの伸長によりチャック装置のフックをラムの係止部に係止させる際に、液圧シリンダに過大な反力が作用して損傷することが防止される落錘式破砕用アタッチメントを提供する。
【解決手段】自走式作業機の作業用アームに取付けられるケーシング10内にラム16を上下動可能に収容する。ケーシング10の上部にラム16を引き上げる液圧シリンダ20を取付ける。ケーシング10の上部にチャック装置21のフック34によるチャックを解除するチャック解除用ロッド44を設ける。液圧シリンダ20のピストンロッド20bの下端にチャック装置21を上下動可能に取付ける。ピストンロッド20bとチャック装置21との間に押圧スプリング53を備える。 (もっと読む)


【課題】製鋼スラグの溶融改質処理に反応容器として使用される製鋼スラグの溶融改質用容器の構造を工夫することにより、粒鉄中の炭素の反応によるCOガスの発生を抑制し、溶融改質処理後のスラグの強度を向上させ、溶融改質処理時の燃料原単位を低減し、かつ、地金の回収量を増加させる。
【解決手段】本発明に係る製鋼スラグの溶融改質用容器10の底部は、製鋼スラグS中に分散されている粒鉄Mを沈降させる少なくとも1つ以上の傾斜面11と、傾斜面11の低位置側の少なくとも1箇所以上に配置され、沈降した粒鉄Mが溜められる粒鉄溜部13と、を有する。 (もっと読む)


【課題】効率的にスラグ土木用材の固結を抑制できる製造方法を提供でき、特に、粒度調整鉄鋼スラグ、クラッシャラン鉄鋼スラグの道路用鉄鋼スラグに有効に使用することが可能となる方法を提供する。
【解決手段】高炉スラグおよび製鋼スラグから選ばれる1種または2種のスラグを、炭酸を含有した自由水に浸漬させてスラグ表面に不溶性鉱物相を形成する。具体的には、処理後のスラグについて所定の手法で得たサンプルスラグの遊離CaO含有率が0.45質量%以下(高炉除冷スラグ)、4.5質量%以下(転炉スラグ)になるように粒径25mm以下の高炉徐冷スラグをエージング処理し、その後、処理後のスラグについて所定の手法で得たサンプルスラグの炭酸化率が15%以上になるように炭酸含有自由水(pHが3.5〜5.4)に浸漬する炭酸化処理を行う。 (もっと読む)


【課題】フォーミングする溶融スラグを少ない使用量で迅速に鎮静化し、溶融スラグの溢れ出しによる設備損傷を防止して、生産性の安定維持を実現するスラグのフォーミング鎮静材及びその鎮静方法を提供する。
【解決手段】粒度が0.2mm以上2mm以下の炭素粉を20質量%以上40質量%以下、水分を30質量%以上60質量%以下含有する混合物が、不透水性の可燃性物質で構成される容器に収納されているスラグのフォーミング鎮静材12を、塩基度が0.8以上1.5以下の泡立っている溶融スラグS2中に投入する。 (もっと読む)


【課題】製鋼スラグの種類に関係なく、短時間で水和反応が可能なようにする。
【解決手段】製鋼スラグ2を加圧蒸気によってエージングする方法である。スラグ収納容器3を挿入する圧力容器4に蒸気を供給すべく設けられた配管5を、前記スラグ収納容器3の内部に導く。この配管5を介して、前記スラグ収納容器3に装入された製鋼スラグ2に蒸気を供給することによって、前記製鋼スラグ2を直接水和反応させる。
【効果】どのような種類の製鋼スラグでも、短時間で蒸気がスラグ内に十分行き渡り、2時間以内の短時間で水和反応が可能になる。 (もっと読む)


【課題】フォーミングするスラグを少ない使用量で迅速かつ確実に鎮静化させ、スラグの溢れ出しによる設備損傷を防止して、生産性の安定維持を実現できるスラグのフォーミング鎮静材及びその鎮静方法を提供する。
【解決手段】水分を30質量%以上60質量%以下、燃料分を35質量%以上65質量%以下含有する混合物が、不透水性の有機物で構成される容器に収納されているスラグのフォーミング鎮静材12を、酸化鉄濃度が15質量%以上25質量%以下の泡立っている溶融スラグS2中に投入する。 (もっと読む)


【課題】 電気炉や取鍋精錬炉の鋼の精錬温度を制御して、スラグ中のf−CaOの滓化を促進し、f−CaOの晶出を抑制して、エージング処理を行わなくても十分に膨張特性の低いスラグの製造方法を提供する。
【解決手段】 鋼の精錬方法において、CaOを含む造滓材を取鍋精錬などの還元精錬中のスラグ中に最終投入した後、精錬温度を1600℃以上に昇温すると共に、スラグを該1600℃以上の温度域で一定時間以上、すなわち略15分間以上、保持することにより、製鋼スラグ組成を特定の範囲内に保持して、スラグの組成をCaOが晶出しない組成に限定することを特徴とする膨張安定性の高い低膨張性製鋼スラグの製造法で、エージング処理を行わなくとも膨張安定性の高い製鋼スラグを製造する。 (もっと読む)


【課題】 鋼の連続鋳造設備のタンディッシュから発生する使用済み耐火物を、製鋼精錬工程における副原料として再利用する。
【解決手段】 本発明の使用済みタンディッシュ耐火物の再使用方法は、Al23−SiO2系耐火物をワーク耐火物4とし、該ワーク耐火物の表面にMgOの被覆層5が施工された連続鋳造用タンディッシュ1から発生する使用済み耐火物を回収して30mm以下に破砕し、破砕した使用済み耐火物を、粒径が10mm以下の細粒、及び、10mm超え30mm以下の粗粒に篩い分けし、篩い分けにより得た前記細粒を転炉での溶銑の脱炭精錬における造滓剤として使用する。 (もっと読む)


【課題】 以降の使用が不可能な産業廃棄物を有益なフォーミング現象鎮静剤として再生することにより、環境負担の発生を抑制することを可能とする。
【解決手段】 本発明では、銑滓または鋼滓中に投入してフォーミング現象を鎮静するための鎮静剤であって、古紙が回収されて再生される過程で発生する短繊維の再生されない製紙スラッジと、衛生陶器の製造工程で発生する衛生陶器排水汚泥とを混合した後に圧縮成形することにより得られる固形体であることを特徴とすることにより、
以降の使用が不可能な産業廃棄物を有益なフォーミング現象鎮静剤として再生し、環境負担の発生を抑制することを可能とした。 (もっと読む)


【課題】本発明は、精錬容器の形状を問わず、製鋼工程でのスクラップ消費量を低下させることなく、また、脱りん剤にCaF2を用いない場合でも、効率良くCaO源の滓化を促進し、安価にかつ高効率に溶銑を脱りん処理する精錬方法を提供する。
【解決手段】Si含有量0.1質量%以上の溶銑にCaO源と酸素源を添加して脱りん精錬を行うに際し、溶鋼を製造する際に発生するスラグを再利用する目的で脱りん精錬容器に予め入れ置きするおよび/または溶銑装入後に添加するスラグ中のCaO分を除き、CaO源の添加量を全精錬期間中に添加するCaO源添加量の30質量%以下(ゼロを含む)とする精練前半と、CaO源の添加量を全精錬期間中に添加するCaO源添加量の70質量%以上とする精練後半に分け、後半の開始時点は、溶銑中のSi含有量が0.1質量%未満とする。 (もっと読む)


【課題】製鋼スラグ等を短時間で効率的に且つ低コストにエージング処理する。
【解決手段】製鋼スラグ等の高温スラグに散水する工程Aと、工程Aでの散水により発生した蒸気を、散水により冷却されたスラグと接触させることにより、スラグをエージング処理する工程Bとを有し、工程Aとこの工程で発生した蒸気を用いる工程Bを異なる場所で行う。高温スラグに散水し、スラグ顕熱を利用して発生させた蒸気により、当該スラグのエージングを行うので、スラグの冷却とエージングを効率的に且つ低コストに行うことができ、また、散水により蒸気を発生させる工程とこの蒸気を用いてエージング処理する工程を異なる場所で行うため、エージング処理の温度管理が容易であり、最適な温度条件で蒸気エージング処理を行うことができる。 (もっと読む)


【課題】 前回精錬時のスラグを排滓しながら前回精錬時の残留溶鋼が極力ノロ鍋側に移行しないようにして、転炉における製鋼歩留り、すなわち(1−(装入鉄源−出鋼量)/(装入鉄源))を向上させる出鋼後転炉内残留物の処理方法を提案する。
【解決手段】 出鋼後転炉内に残留した炉内残留物に対して固体鉄源を冷却材として投入して炉内残留物を冷却した後、残留スラグを溶融状態に維持しつつ、転炉炉体を揺動して前記炉内残留物のうち残留溶鋼を転炉炉底及び炉壁に付着・固化せしめ、しかる後、転炉を傾動して溶融スラグを排出する。 (もっと読む)


【課題】冷却後のスラグに二次的熱処理などのような特別な処理を施すことなく、製鋼スラグからセメント原料用スラグを低コストに製造する。
【解決手段】製鋼工程で発生したスラグ塩基度[質量比:%CaO/%SiO]が2以上の製鋼スラグの冷却過程において、1000℃から700℃までを10℃/分以上の平均冷却速度で冷却する。このように特定の高温域での冷却速度を制御し、最適化することにより、高温スラグ中に存在するCSをCSとCaOに分解させることなく冷却後まで維持することができ、このCSによりセメント原料として高いセメント活性が得られる。 (もっと読む)


【課題】溶融スラグを効率的に冷却処理でき、且つ優れた耐久性が得られる溶融スラグの冷却処理装置を提供する。
【解決手段】内部に冷媒が通される回転可能な横型冷却ドラムを備え、その外周のドラム面に溶融スラグが接触することにより冷却され、冷却されたスラグがドラム面から剥離して排出されるようにした溶融スラグの冷却処理装置であって、前記横型冷却ドラムがドラム周方向に沿ったスパイラル状の冷媒流路を有する。冷却ドラムがドラム周方向に沿ったスパイラル状の冷媒流路を有するため、比較的少ない量の冷媒でも溶融スラグを効率的に冷却処理することができ、また、冷却ドラム周方向の熱膨張が均一化されるため、優れた耐久性を有する。 (もっと読む)


【課題】精錬工程等で生じたスラグを、破砕機などによる破砕処理を行うことなく、比較的不規則な形状で且つ非晶質ないし結晶化度の低いスラグに粒状化する。
【解決手段】溶融状態、赤熱状態、高温凝固状態のいずれかのスラグに、粉粒体をキャリアガスとともに吹き付け、スラグを粒状化する。粉粒体の運動エネルギーを利用してスラグを粒状に粉砕するので、従来の風砕法に比べてスラグに吹き付けるガスの流速を小さくでき、比較的不規則な形状の異形スラグ粒子を得ることができる。一方において、粉粒体+キャリアガスの吹き付けにより大きな冷却作用が得られ、スラグは徐冷ではなく急冷されるため、非晶質ないし結晶化度の低いスラグ粒子とすることができる。 (もっと読む)


【課題】精錬工程等で生じたスラグを、風砕スラグのような球形状とすることなく、粉化や水和膨張を生じにくい性状に改質する。
【解決手段】溶融状態であって且つ板状、柱状、細片状または粒状のいずれかの形態にされたスラグに酸化性ガスを吹き付け、スラグを球状に風砕することなくスラグ成分の一部を酸化させる改質処理を施す。溶融状態であって且つ比表面積が大きい形態にされたスラグに酸化性ガスを吹き付けることで、スラグ中の鉄分やFeOが酸化されてフェライト相に改質され、これがスラグ中のカルシウムと結合してカルシウムフェライトが生成されることで、粉化原因となるダイカルシウムシリケート相の生成が抑制されるとともに、カルシウムフェライトなどの生成を通じて遊離CaOの量も少なくなるので、粉化や水和膨張が生じにくいスラグを得ることができる。 (もっと読む)


【課題】高温スラグの熱エネルギーを電気エネルギーとして工業的に回収する。
【解決手段】600℃以上の温度のスラグを冷却する際に、スラグをその体積の10倍以下の容積を有する閉鎖空間内に装入して、該閉鎖空間内でスラグに散水し、該散水により発生した水蒸気および/または熱水を回収し、該水蒸気および/または熱水を60℃以下の沸点を有する有機媒体と熱交換させることで該有機媒体を揮発させ、その揮発ガスによりタービンを駆動して発電する。高温スラグに散水することで生じた水蒸気を、熱損失を抑えて効率的に回収し、この水蒸気を低温揮発する有機媒体と熱交換させ、これにより生じる高圧の揮発ガスで発電を行うようにしたので、スラグの熱エネルギーを電気エネルギーとして効率的に回収することができる。 (もっと読む)


【課題】転炉型の精錬容器を用いた溶銑予備処理方法において、蛍石を使用することなく、少ないフラックス原単位で効率的な脱りんを行い、スラグ中のりん酸濃度を高めることが可能な溶銑予備方法を提供する。
【解決手段】転炉型の精錬容器を用いて溶銑の脱りん処理を行う方法において、溶銑中のP濃度[質量%P]と溶銑中のSi濃度[質量%Si]が、下記[1]式の範囲になるように、脱りん処理前のP濃度およびSi濃度のいずれかまたは両方を調整した溶銑に、CaOを主体とする脱りん材を添加するとともに酸素源を供給し、脱りん処理により生成するスラグ中の全鉄濃度(質量%T.Fe)を10質量%以上45質量%以下、脱りん処理後の溶銑中のP濃度を0.05質量%以上、脱りん処理後温度を1350〜1400℃に制御することを特徴とする。
0.1≦[質量%Si]≦1.87([質量%P]−0.05) [1] (もっと読む)


【課題】スラグ品質を確保するのに十分なスラグ冷却速度が得られるとともに、冷媒由来の廃水が生じない若しくは廃水量をきわめて少なくすることができるスラグの冷却処理方法を提供する。
【解決手段】冷媒噴射手段により、加圧気体と液体とからなる2流体混合冷媒を噴射し、噴射された液体粒子を高温スラグに衝突させることにより、スラグを冷却する。 (もっと読む)


【課題】精錬工程等で生じたスラグを、風砕スラグのような球形状とすることなく、粉化や水和膨張を生じにくい性状に改質する。
【解決手段】赤熱状態であって且つ板状、柱状、細片状または粒状のいずれかの形態にされたスラグに酸化性ガスを吹き付け、スラグ成分の一部を酸化させる改質処理を施す。赤熱状態であって且つ比表面積が大きい形態にされたスラグに酸化性ガスを吹き付けることで、スラグ中の鉄分やFeOが酸化されてフェライト相に改質され、これがスラグ中のカルシウムと結合してカルシウムフェライトが生成されることで、粉化原因となるダイカルシウムシリケート相の生成が抑制されるとともに、カルシウムフェライトなどの生成を通じて遊離CaOの量も少なくなるので、粉化や水和膨張が生じにくいスラグを得ることができる。 (もっと読む)


81 - 100 / 194