説明

Fターム[4M104AA07]の内容

半導体の電極 (138,591) | 基板材料 (12,576) | ヘテロ接合を含むもの (516)

Fターム[4M104AA07]に分類される特許

61 - 80 / 516


【課題】高品質のオーミックコンタクトをIII−V族半導体材料に形成して、消費電力が低くて長寿命の半導体デバイスを作製する。
【解決手段】半導体デバイス100は、第1の伝導帯および第1の価電子帯のエネルギレベルを有する第1のIII−V族半導体層110、第2の伝導帯および第2の価電子帯のエネルギレベルを有する第2のIII−V族半導体層120、およびフェルミエネルギレベルを有する金属層130を含む。このフェルミエネルギレベルは第1および第2の価電子帯のエネルギレベルより高く、第2の価電子帯のエネルギレベルは金属層130のフェルミエネルギレベルと第1の価電子帯のエネルギレベルとの間に存在する。 (もっと読む)


【課題】窒化物半導体を用いた電界効果トランジスタで、高いドレイン電流が実現できるようにする。
【解決手段】ドレイン電極107とゲート領域121との間のドレイン領域123の距離は、ソース電極106とゲート領域121との間のソース領域122の距離より長く形成され、加えて、ゲート電極104は、ゲート領域121からソース電極106の側に延在する延在部141を備えて形成されている。ゲート電極104のソース電極106の側への延在部141により、ゲート電極104に対する電圧印加でソース領域122のチャネル層101における電子濃度が増加可能とされている。 (もっと読む)


【課題】電流コラプスを十分に抑制することができる化合物半導体装置及びその製造方法を提供する。
【解決手段】基板1と、基板1上方に形成された化合物半導体積層構造2と、化合物半導体積層構造2上方に形成されたゲート電極3、及び平面視でゲート電極3を間に挟む2個のオーミック電極4a及び4bと、が設けられている。更に、ゲート電極3上方に形成され、ゲート電極3並びにオーミック電極4a及び4bから絶縁分離されたフィールドプレート6が設けられている。フィールドプレート6のオーミック電極4a及び4bを互いに結ぶ方向における少なくとも一方の端部は、平面視で、オーミック電極4a及び4bとゲート電極3との間に位置する。 (もっと読む)


【課題】窒化物半導体層上の層間絶縁膜の開口部が、電界の集中が緩和される形状に安定して精度良く形成された窒化物半導体装置及びその製造方法を提供する。
【解決手段】窒化物半導体層30と、窒化物半導体層30上に配置された第1の絶縁膜41と、第1の絶縁膜41上に配置された第2の絶縁膜42と、窒化物半導体層30上に互いに離間して配置された第1及び第2の主電極51,52と、第1及び第2の主電極51,52間で第2の絶縁膜42上に配置され、第1及び第2の絶縁膜に設けられた開口部を介して窒化物半導体層に接続するフィールドプレート60とを備える窒化物半導体装置であって、開口部において、窒化物半導体層30の表面と第1の絶縁膜41の側面とのなす第1の傾斜角が、窒化物半導体層30の表面と第2の絶縁膜42の側面を延長した線とのなす第2の傾斜角よりも小さく形成されている。 (もっと読む)


【課題】動的な耐圧であるダイナミック耐圧の低下を抑制できるGaN系のHFETを提供する。
【解決手段】このGaN系のHFETでは、各ソース電極12の長手方向の長さL2が各ドレイン電極11の長手方向の長さL1よりも短く、ソース電極12の長手方向の両端12A,12Bがドレイン電極11の長手方向の両端11A,11Bよりも長手方向外方へ突出していない構成により、ソース電極12の端12A,12Bからドレイン電極11の端11A,11Bへ向かって電子流が集中することを回避できる。 (もっと読む)


【課題】互いに隣接する2つの半導体層どうしの境界部分において、電界集中を緩和し、絶縁耐圧を改善することが可能な半導体装置およびその製造方法を提供する。
【解決手段】第1半導体層11の露出面11a、第2半導体層12の一面12a、および第3半導体層13A,13Bの表面13Aa,13Baの互いの境界で段差が実質的に無くなるように形成することで、露出面11a、一面12a、および表面13Aa,13Baからなる平面Q上に、段差無く平坦なゲート酸化膜16が形成できる。
これにより、ゲート酸化膜16の特定部分に電界が集中し、ゲート絶縁耐圧の低下などゲート酸化膜16の機能を大きく損なうことがない。 (もっと読む)


【課題】本実施形態は、窒化物半導体層のクラックがほとんどなく、表面の粗度が極めて優秀であるので、全体的な安定性の向上された窒化物系半導体素子を提供する。
【解決手段】本実施形態の窒化物系半導体素子は、基板と、前記基板上に形成されるアルミニウムシリコンカーバイド(AlSi1−x)前処理層と、前記前処理層上に形成されるAlがドーピングされたGaN層と、前記AlがドーピングされたGaN層上に形成されるAlGaN層とを含む。 (もっと読む)


【課題】Si−CMOSプロセス時術とコンパチブルなHEMT装置の製造法を提供する。
【解決手段】基板101を提供するステップと、III族窒化物層のスタックを基板上に形成するステップと、窒化シリコンからなり、スタックの上方層に対して上に位置すると共に当接する第1パッシベーション層301を形成し、第1パッシベーション層が、現場でスタックに堆積されるステップと、第1パッシベーション層に対して上に位置すると共に当接する誘電体層を形成するステップと、窒化シリコンからなり、誘電体層に対して上に位置すると共に当接する第2パッシベーション層303を形成し、第2パッシベーション層が、LPCVD、MOCVD又は同等の手法によって450℃より高い温度で堆積されるステップと、ソースドレイン・オーミック接触とゲート電極601を形成するステップとを備える。 (もっと読む)


【課題】 単純で容易な実装手段によりMOSFETの閾値電圧を制御することが可能な半導体装置とその製造方法を提供する。
【解決手段】 一実施形態によれば、電界効果トランジスタは、STI(浅いトレンチ分離)を含んでいる半導体基板402と、p−FET401及びn−FET403と、p−FET401が形成される基板の窪み内のシリコン・ゲルマニウム層800と、n−FET部上とシリコン・ゲルマニウム層上に設けられた、ハフニウム化合物とレアアース化合物を含むゲート誘電体414, 432と、ゲート誘電体414, 432上にそれぞれ配置された互いに同じ材料を含むゲート電極416, 434とを具備している。 (もっと読む)


【課題】高抵抗なダメージ層を形成しない窒化物半導体層のエッチング方法と、これを用いた低抵抗なオーミック電極を備える窒化物半導体装置の製造方法の提供を目的とする。
【解決手段】本発明の窒化物半導体層のエッチング方法は、(a)窒化物半導体層に不純物イオンを注入し、その表面から所定深さまで不純物領域を形成する工程と、(b)前記不純物領域を熱処理する工程と、(c)前記不純物領域の前記表面側の所定領域をウェットエッチングで除去する工程とを備える。 (もっと読む)


【課題】設計された形状およびサイズのゲート電極を形成することが可能な半導体装置の製造方法を提供すること。
【解決手段】本実施形態に係る半導体装置の製造方法は、半導体層12の表面上のうち、互いに離間した位置に、チタン層17a、18a、アルミニウム層17b、18b、ニッケル層17c、18c、金層17d、18dがこの順で積層した積層体17、18を形成し、これらを、アルミニウムの融点より高い温度で加熱して複数の金属体17´、18´を形成するするとともに、これらの複数の金属体17´、18´を半導体層12にオーミック接触させる。この後、複数の金属体17´、18´を薄膜化して複数の合金層13a、14aを形成し、合金層13a、14aを含むドレイン電極13およびソース電極14を形成する。次に、ドレイン電極13とソース電極14との間のレジスト層19に開口部20し、この開口部20内にゲート電極15を形成する。 (もっと読む)


【課題】窒化物半導体層とオーミック電極とのコンタクト抵抗を低減できる窒化物半導体装置を提供する。
【解決手段】Si基板10上に形成されたアンドープGaN層1,アンドープAlGaN層2と、アンドープGaN層1,アンドープAlGaN層2上に形成されたTi/Al/TiNからなるオーミック電極(ソース電極11,ドレイン電極12)とを備える。上記オーミック電極中の酸素濃度を1×1016cm−3以上かつ1×1020cm−3以下とする。 (もっと読む)


【課題】膜剥がれの要因となる有機材料を用いることなく、エレクトロマイグレーションの耐性と長期信頼性を向上できるパワーデバイスを提供する。
【解決手段】バリア層4(AlGaN)4上に形成された酸化シリコン(SiO2)からなる層間絶縁膜10と、層間絶縁膜10のソース電極5上に形成され、基板平面に対して略垂直な第1の側壁W1を有する第1コンタクトホール部10aと、第1コンタクトホール部10aの第1の側壁W1の上縁から上側に向かって徐々に広がるように層間絶縁膜10に形成され、基板平面に対して傾斜した第2の側壁W2を有する第2コンタクトホール部10bと、第1,第2コンタクトホール部10a,10b内および層間絶縁膜10上に形成された配線層12とを備える。上記配線層12は、第1コンタクトホール部10aにおいて第1の側壁W1の基板厚さ方向の寸法よりも膜厚が厚い。 (もっと読む)


【課題】 ノーマリーオフ型高電子移動度トランジスタを提供する。
【解決手段】 ノーマリーオフ型トランジスタは、III−V半導体材料の第1の領域、第1の領域上のIII−V半導体材料の第2の領域、第2の領域上のIII−V半導体材料の第3の領域、および第3の領域の少なくとも1つの側壁に隣接するゲート電極を含む。第1の領域はトランジスタのチャネルを提供する。第2の領域は第1の領域のバンドギャップより大きなバンドギャップを有し、チャネル内に2D電子ガス(2DEG)を引き起こす。第2の領域は第1の領域と第3の領域との間に挿入される。第3の領域は、トランジスタのゲートを提供し、トランジスタが正の閾値電圧を有するようにチャネル内の2DEGを空乏化するのに十分な厚さを有する。 (もっと読む)


【課題】 電流コラプスを抑制するとともに、高耐圧動作が可能な化合物半導体装置及びその製造方法を提供する。
【解決手段】 SiC基板10上に形成されたi−GaNバッファ層12と、i−GaNバッファ層12上に形成されたn−AlGaN電子供給層16と、n−AlGaN電子供給層16上に形成されたn−GaNキャップ層18と、n−GaNキャップ層18上に形成されたソース電極20及ドレイン電極22と、ソース電極20とドレイン電極22との間のn−GaNキャップ層18上に形成されたゲート電極26と、ソース電極20とドレイン電極22との間のn−GaNキャップ層18上に形成された第1の保護層24と、ゲート電極26とドレイン電極22との間の第1の保護層24に形成されたn−GaNキャップ層18に達する開口部28に埋め込まれ、第1の保護層24とは異なる絶縁層よりなる第2の保護層30とを有する。 (もっと読む)


【課題】ゲート電極のドレイン端の電界を緩和し、ゲート絶縁膜の破損を低減する。
【解決手段】窒化物半導体で形成されたチャネル層108と、チャネル層108の上方に、チャネル層よりバンドギャップエネルギーが大きい窒化物半導体で形成された電子供給層112と、チャネル層108の上方に形成されたソース電極116およびドレイン電極118と、チャネル層108の上方に形成されたゲート電極120と、チャネル層108の上方に形成され、チャネル層108からホールを引き抜くホール引抜部126と、ゲート電極120およびホール引抜部126を、電気的に接続する接続部124と、を備える電界効果型トランジスタ100。 (もっと読む)


【課題】動的な耐圧であるダイナミック耐圧の低下を抑制できるGaN系のHFETを提供する。
【解決手段】このGaN系のHFETでは、2次元電子ガス除去領域260Bが、ドレイン電極211の長手方向の一方の端211Aから短手方向に伸ばした仮想線M71よりも長手方向外方に位置すると共にソース電極212の一端部212Aに対して短手方向に隣接する領域の下のGaN系積層体205に形成されている。また、2次元電子ガス除去領域260Aは、2次元電子ガス除去領域260Bの長手方向外方に隣接すると共にソース電極212の一端部212Aからソース電極接続部214に沿って短手方向に延在している。2次元電子ガス除去領域260A,260Bの存在によって、スイッチング時の動的な電界変動によってソース電極212の端部212Aからドレイン電極211の端部211Aへ向かって電子流が集中することを回避できる。 (もっと読む)


【課題】動的な耐圧であるダイナミック耐圧の低下を抑制できるGaN系のHFETを提供する。
【解決手段】このGaN系のHFETでは、ドレイン電極12の長手方向の端12A,12Bから長手方向と直交する短手方向に伸ばした仮想線M1,M2よりも長手方向外方に位置すると共にソース電極11に隣接する領域の下のGaN系積層体5、およびドレイン電極12の長手方向の端12A,12Bに長手方向外側に隣接する領域の下のGaN系積層体5に2次元電子ガスが存在しない2次元電子ガス除去領域31が形成されている。2次元電子ガス除去領域31の存在によって、スイッチング時の動的な電界変動によってソース電極11の端部からドレイン電極12の端部へ向かって電子流が集中することを回避できる。 (もっと読む)


【課題】電気的特性が向上した、酸化物半導体を用いた半導体装置を提供することを目的
の一とする。
【解決手段】13族元素および酸素を含む第1の絶縁膜と、第1の絶縁膜と一部が接する
酸化物半導体膜と、酸化物半導体膜と電気的に接続するソース電極およびドレイン電極と
、酸化物半導体膜と重畳するゲート電極と、酸化物半導体膜とゲート電極の間の、酸化物
半導体膜と一部が接する第2の絶縁膜と、を有する半導体装置である。また、13族元素
および酸素を含む第1の絶縁膜には、化学量論的組成比より酸素が多い領域が含まれる構
成とする。 (もっと読む)


【課題】動的な耐圧であるダイナミック耐圧の低下を抑制できるGaN系のHFETを提供する。
【解決手段】このGaN系のHFETでは、各ソース電極12の長手方向の長さL2と各ドレイン電極11の長手方向の長さL1とが同じ長さである。また、ソース電極12の長手方向の端12A,12Bの長手方向の位置は、ドレイン電極11の長手方向の端11A,11Bの長手方向の位置と一致している。ソース電極12の長手方向の両端12A,12Bがドレイン電極11の長手方向の両端11A,11Bよりも長手方向外方へ突出していない構成により、ソース電極12の端12A,12Bからドレイン電極11の端11A,11Bへ向かって電子流が集中することを回避できる。 (もっと読む)


61 - 80 / 516