説明

Fターム[4M104DD08]の内容

Fターム[4M104DD08]に分類される特許

41 - 60 / 710


【課題】薬液の除去性能を高く維持することができる半導体装置の製造方法及び処理装置を提供する。
【解決手段】レジストパターン3をマスクとして絶縁膜2をドライエッチングすることにより開口部4を形成する。絶縁膜2のドライエッチングの際に開口部4の内面に付着した反応生成物5に波長が200nm以下の紫外線を照射して、反応生成物5に含まれる有機成分を分解する。薬液を用いて、有機成分の分解後に開口部4の内面に残存している付着物6を除去する。付着物6が除去された開口部4内に導電膜7を形成する。 (もっと読む)


【課題】窒化物半導体層上の層間絶縁膜の開口部が、電界の集中が緩和される形状に安定して精度良く形成された窒化物半導体装置及びその製造方法を提供する。
【解決手段】窒化物半導体層30と、窒化物半導体層30上に配置された第1の絶縁膜41と、第1の絶縁膜41上に配置された第2の絶縁膜42と、窒化物半導体層30上に互いに離間して配置された第1及び第2の主電極51,52と、第1及び第2の主電極51,52間で第2の絶縁膜42上に配置され、第1及び第2の絶縁膜に設けられた開口部を介して窒化物半導体層に接続するフィールドプレート60とを備える窒化物半導体装置であって、開口部において、窒化物半導体層30の表面と第1の絶縁膜41の側面とのなす第1の傾斜角が、窒化物半導体層30の表面と第2の絶縁膜42の側面を延長した線とのなす第2の傾斜角よりも小さく形成されている。 (もっと読む)


【課題】窒化物半導体を用いた電界効果トランジスタで、高いドレイン電流が実現できるようにする。
【解決手段】ドレイン電極107とゲート領域121との間のドレイン領域123の距離は、ソース電極106とゲート領域121との間のソース領域122の距離より長く形成され、加えて、ゲート電極104は、ゲート領域121からソース電極106の側に延在する延在部141を備えて形成されている。ゲート電極104のソース電極106の側への延在部141により、ゲート電極104に対する電圧印加でソース領域122のチャネル層101における電子濃度が増加可能とされている。 (もっと読む)


【課題】信頼性が高く、ソースとドレインの間にリーク電流が生じにくく、コンタクト抵抗が小さい半導体装置を提供する。
【解決手段】酸化物半導体膜により形成されるトランジスタの電極膜上に酸化物半導体膜に接して設けられた第1の絶縁膜、及び第2の絶縁膜を積層して形成し、第2の絶縁膜上にエッチングマスクを形成し、エッチングマスクの開口部と重畳する部分の第1の絶縁膜及び第2の絶縁膜をエッチングして電極膜を露出する開口部を形成し、第1の絶縁膜及び第2の絶縁膜の開口部をアルゴンプラズマに曝し、エッチングマスクを除去し、第1の絶縁膜及び第2の絶縁膜の開口部に導電膜を形成し、第1の絶縁膜は加熱により酸素の一部が脱離する絶縁膜であり、第2の絶縁膜は第1の絶縁膜よりもエッチングされにくく、第1の絶縁膜よりもガス透過性が低い。または逆スパッタリングを行ってもよい。 (もっと読む)


【課題】閾値電圧のバラつきを抑制する溝トランジスタを提供する。
【解決手段】図1に示すように、表面に少なくとも一つ以上の溝部250を有している半導体基板40と、溝部250の側壁を覆うように形成されたゲート絶縁膜20と、溝部250に埋めこまれているゲート電極10と、半導体基板40の表面に形成され、ゲート電極10を介して互いに対向しているソースおよびドレイン150と、を含み、溝部250の側壁には、複数の凸凹100が形成されている。 (もっと読む)


【課題】微細化に伴う短チャネル効果を抑制しつつ、トランジスタの電気特性のしきい値電圧(Vth)をプラスにすることができ、所謂ノーマリーオフを達成した半導体装置、及びその作製方法を提供する。また、ソース領域、及びドレイン領域と、チャネル形成領域との間のコンタクト抵抗を低くして良好なオーミックコンタクトがとれる半導体装置、及びその作製方法を提供する。
【解決手段】酸化物半導体層を有するトランジスタにおいて、少なくともチャネル形成領域となる、酸化物半導体層の一部をエッチングによって部分的に薄くし、そのエッチングによってチャネル形成領域の膜厚を調節する。また、酸化物半導体層の厚い領域に、リン(P)、またはホウ素(B)を含むドーパントを導入し、ソース領域、及びドレイン領域を酸化物半導体層中に形成することにより、ソース領域、及びドレイン領域と接続するチャネル形成領域とのコンタクト抵抗を低くする。 (もっと読む)


【課題】本発明は、ダミー材料の除去により形成される溝や孔に容易にトップラウンドを設けることができるドライエッチング方法を提供する。
【解決手段】本発明は、層間酸化膜に周囲を囲まれたダミー材料を除去することにより溝または孔を形成するドライエッチング方法において、前記ダミー材料を所定の深さまでエッチングし、前記エッチング後に等方性エッチングを行い、等方性エッチング後に前記ダミー材料の残りを除去することを特徴とするドライエッチング方法である。 (もっと読む)


【課題】新たな構造の半導体装置を提供することを目的の一とする。
【解決手段】直列に接続されたメモリセルと、メモリセルを選択して第2信号線及びワード線を駆動する駆動回路と、書き込み電位のいずれかを選択して第1信号線に出力する駆動回路と、ビット線の電位と参照電位とを比較する読み出し回路と、書き込み電位及び参照電位を生成して駆動回路および読み出し回路に供給する、電位生成回路と、を有し、メモリセルの一は、ビット線及びソース線に接続された第1のトランジスタと、第1、第2の信号線に接続された第2のトランジスタと、ワード線、ビット線及びソース線に接続された第3のトランジスタを有し、第2のトランジスタは酸化物半導体層を含み、第1のトランジスタのゲート電極と、第2のトランジスタのソース電極またはドレイン電極の一方が接続された、多値型の半導体装置。 (もっと読む)


【課題】Si−CMOSプロセス時術とコンパチブルなHEMT装置の製造法を提供する。
【解決手段】基板101を提供するステップと、III族窒化物層のスタックを基板上に形成するステップと、窒化シリコンからなり、スタックの上方層に対して上に位置すると共に当接する第1パッシベーション層301を形成し、第1パッシベーション層が、現場でスタックに堆積されるステップと、第1パッシベーション層に対して上に位置すると共に当接する誘電体層を形成するステップと、窒化シリコンからなり、誘電体層に対して上に位置すると共に当接する第2パッシベーション層303を形成し、第2パッシベーション層が、LPCVD、MOCVD又は同等の手法によって450℃より高い温度で堆積されるステップと、ソースドレイン・オーミック接触とゲート電極601を形成するステップとを備える。 (もっと読む)


【課題】メタルゲート電極とポリシリコン抵抗素子とを同じ半導体基板に混載するとともに、半導体装置の設計の自由度を向上し、また、半導体装置の小型化を図る。
【解決手段】半導体基板1の主面上にゲート絶縁膜を介してMISFET用のメタルゲート電極が形成され、また、半導体基板1の主面上に積層パターンLPを介してポリシリコン抵抗素子用のシリコン膜パターンSPが形成されている。メタルゲート電極は金属膜とその上のシリコン膜とを有し、積層パターンLPは絶縁膜3aとその上の金属膜4aとその上の絶縁膜5aとを有し、絶縁膜3aは、前記ゲート絶縁膜と同層の絶縁膜により形成され、金属膜4aはメタルゲート電極の金属膜と同層の金属膜により形成され、シリコン膜パターンSPは、メタルゲート電極のシリコン膜と同層のシリコン膜により形成されている。シリコン膜パターンSPは、平面視で絶縁膜5aに内包されている。 (もっと読む)


【課題】装置面積を増大させることなく、保護素子を有する半導体装置を提供する。
【解決手段】P型のIII族窒化物半導体からなる第1P型層200と、第1P型層200の一部上には、ゲート絶縁膜420およびゲート電極440とが設けられている。第1P型層200内のうち、ゲート電極440の両脇には、N型のソース領域340およびドレイン領域320が設けられている。また、第1P型層200の下には、N型のIII族窒化物半導体からなる第1N型層100が設けられている。基板内には、N型のIII族窒化物半導体とオーミック接続する材料からなるオーミック接続部(たとえばN型GaN層520)が、ソース領域340および第1N型層100と接するように設けられている。また、ドレイン電極600は、ドレイン領域320および第1P型層200と接するように設けられている。 (もっと読む)


【課題】窒化物半導体層とオーミック電極とのコンタクト抵抗を低減できる窒化物半導体装置を提供する。
【解決手段】Si基板10上に形成されたアンドープGaN層1,アンドープAlGaN層2と、アンドープGaN層1,アンドープAlGaN層2上に形成されたTi/Al/TiNからなるオーミック電極(ソース電極11,ドレイン電極12)とを備える。上記オーミック電極中の酸素濃度を1×1016cm−3以上かつ1×1020cm−3以下とする。 (もっと読む)


【課題】膜剥がれの要因となる有機材料を用いることなく、エレクトロマイグレーションの耐性と長期信頼性を向上できるパワーデバイスを提供する。
【解決手段】バリア層4(AlGaN)4上に形成された酸化シリコン(SiO2)からなる層間絶縁膜10と、層間絶縁膜10のソース電極5上に形成され、基板平面に対して略垂直な第1の側壁W1を有する第1コンタクトホール部10aと、第1コンタクトホール部10aの第1の側壁W1の上縁から上側に向かって徐々に広がるように層間絶縁膜10に形成され、基板平面に対して傾斜した第2の側壁W2を有する第2コンタクトホール部10bと、第1,第2コンタクトホール部10a,10b内および層間絶縁膜10上に形成された配線層12とを備える。上記配線層12は、第1コンタクトホール部10aにおいて第1の側壁W1の基板厚さ方向の寸法よりも膜厚が厚い。 (もっと読む)


【課題】ゲート電極とコンタクトとの間の短絡の発生を抑制する。
【解決手段】基板(2)に設けられた第1拡散領域(3)と、基板(2)に設けられた第2拡散領域(3)と、第1拡散領域(3)に接続された第1コンタクト(11)と、第2拡散領域(3)に接続された第2コンタクト(11)と、第1拡散領域(3)と第2拡散領域(3)の間に設けられたチャネル領域と、ゲート絶縁膜(6)を介してチャネル領域の上に設けられたゲート電極(5)とを具備する半導体装置を構成する。ゲート電極(5)は、第1コンタクト(11)と第2コンタクト(11)とに挟まれた第1領域(A−A’)と、第1領域と異なる第2領域(B−B’)とを備える。第1領域(A−A’)は、第1コンタクト側の第1側面と、第2コンタクト側の第2側面とを含む。第1側面は、第1コンタクトから離れる方向に傾斜する。第2側面は、第2コンタクトから離れる方向に傾斜する。 (もっと読む)


【課題】トレンチの対向する側面上に互いに離間されたゲート電極を有する半導体装置において、微細化に対応することができる半導体装置の製造方法を提供する。
【解決手段】トレンチ4を形成する工程およびゲート絶縁膜6を形成する工程では、トレンチ4のうち第2導電型層3と接する部分を中間部したとき、トレンチ4の対向する側面に形成されたゲート絶縁膜6の間隔において、トレンチ4の開口部に形成されている部分の間隔W1がトレンチ4の中間部に形成されている部分の間隔W2より狭くなるトレンチ4およびゲート絶縁膜6を形成する。そして、導電膜7aを形成する工程では、トレンチ4に導電膜7aで囲まれる空隙14を形成しつつ、導電膜7aを形成する。その後、ゲート電極7を形成する工程では、導電膜7aを異方性エッチングし、空隙14を介してトレンチ4の底面に形成された導電膜7aを除去してゲート電極7を形成する。 (もっと読む)


【課題】サイドエッチ発生の可能性を軽減させた半導体基板の製造方法を提供する。
【解決手段】絶縁膜の形成後、シード膜の形成の前に配線パターンの形成を行う。次いで、シード膜の形成後、配線パターン用レジストの剥離を行う。次いで、メッキマスクレジストの形成を行なったのち、半導体基板の表面からのメッキ電流により、ウエットエッチング工法を行うこと無く、配線パターンの形成を行う。 (もっと読む)


【課題】コンタクトホール内に良好にAl膜が埋設されたコンタクトプラグを有する半導体装置を提供する。
【解決手段】半導体装置の製造方法は、基板の層間絶縁膜内にコンタクトホールを形成する工程と、基板を加熱した状態でコンタクトプラグを形成する工程を有する。コンタクトプラグを形成する工程では、スパッタ装置のチャンバー内のステージ上に、チャックを介して基板を保持し、チャックに印加するESC電圧を第一の電圧、第二の電圧、第三の電圧と、この順に3段階のステップ状に増加させる。チャンバー内のターゲットに対して第一のターゲット電力を印加してコンタクトホール内に第一のAl膜を成膜する。次に、チャンバー内のターゲットに対して第一のターゲット電力よりも高い第二のターゲット電力を印加して第一のAl膜上に第二のAl膜を成膜する。 (もっと読む)


【課題】チャネル領域に歪みを導入して半導体装置の特性を向上するとともに、応力印加膜に覆われたゲート配線の断線を防止する。
【解決手段】半導体装置は、第1の素子形成領域101に形成された第1の活性領域104と、第2の素子形成領域102に形成された第2の活性領域105と、第1の活性領域104上から第2の活性領域105上に亘って延伸するゲート配線103と、第1の活性領域104のうちゲート配線103の直下領域に形成された第1のチャネル領域80と、第2の活性領域のうちゲート配線の直下領域に形成された第2のチャネル領域90とを備える。ゲート配線103は、第1の活性領域104上に形成され、引張り応力又は圧縮応力である第1の応力を有する第1の領域164と、第1の領域164よりも緩和された第1の応力を有する第2の領域162とを有している。 (もっと読む)


【課題】コンタクトホールの一部が素子分離領域上に配置された構造の半導体装置において、短絡及び接合漏れ電流の増大を抑制する。
【解決手段】半導体装置50は、半導体基板10における活性領域10aを取り囲むように形成された溝15bに素子分離絶縁膜15aが埋め込まれた素子分離領域15と、活性領域10aに形成された不純物領域26と、半導体基板10上を覆う層間絶縁膜28と、層間絶縁膜28を貫通し、活性領域10a上及び素子分離領域15上に跨って形成されたコンタクトプラグ34と、少なくともコンタクトプラグ34下方において、不純物領域26上に形成された金属シリサイド膜33とを備える。素子分離領域15は、コンタクトプラグ34の下方において、素子分離絶縁膜15と活性領域10aとの間に設けられた保護絶縁膜35を更に有する。 (もっと読む)


【課題】本発明は、トレンチの設計自由度が損なわれることなく、プロセス条件に制約されることなく、電気的特性を向上することができる半導体装置を提供する。
【解決手段】半導体装置10は、第1の半導体領域1内のトレンチ15の底部に第4の半導体領域4を介して配設され、隣り合う同士において相互に離間され、第1の半導体領域1よりも高い不純物密度を有する第1の導電型の第5の半導体領域5を備える。 (もっと読む)


41 - 60 / 710