説明

Fターム[4M104GG11]の内容

半導体の電極 (138,591) | 適用素子 (17,168) | 接合型(JFET) (132)

Fターム[4M104GG11]に分類される特許

21 - 40 / 132


【課題】ノーマリオフ型の炭化珪素接合FETはゲートの特性が、使い勝手が悪いという問題がある。これは、ノーマリオフを実現するためにゲート電圧が0Vでオフしていなければならず、かつ、ゲート・ソース間のpn接合に電流が流れないようにオン状態としてはゲート電圧を2.5V程度に抑える必要があるため、実質的にゲート電圧を0Vから2.5Vの間で制御しなければならないためである。従って、閾値電圧からオン状態のゲート電圧までが1Vから2V程度しかなく、ドレイン電流がゲート電圧の変化に非常に敏感であるため、ゲートの制御が難しい。
【解決手段】本願発明は、ノーマリオフ型の炭化珪素接合FETのゲートに、接合FETのゲート容量と同等か少し小さな容量を持つ素子を接続したものである。 (もっと読む)


【課題】電流コラプスが抑制された窒化物半導体を用いた電界効果トランジスタを容易に実現できるようにする。
【解決手段】電界効果トランジスタは、基板100の上に形成され、第1の窒化物半導体層122及び第2の窒化物半導体層123を有する半導体層積層体102を備えている。半導体層積層体102の上には、互いに間隔をおいてソース電極131及びドレイン電極132が形成されている。ソース電極131とドレイン電極132との間には、ソース電極131及びドレイン電極132と間隔をおいてゲート電極133が形成されている。ドレイン電極132の近傍には正孔注入部141が形成されている。正孔注入部141は、p型の第3の窒化物半導体層142及び第3の窒化物半導体層142の上に形成された正孔注入電極143を有している。ドレイン電極132と正孔注入電極142とは、電位が実質的に等しい。 (もっと読む)


【課題】 窒化物半導体デバイスを提供する。
【解決手段】 一実施形態では、デバイスはIII族窒化物チャネル層(3)とIII族窒化物チャネル層(3)上のIII族窒化物障壁層(4)とを含み、III族窒化物障壁層(4)は第1部分(4−1)と第2部分(4−2)とを含み、第1部分(4−1)は第2部分(4−2)より薄い厚さを有する。pドープIII族窒化物ゲート層部(5)は、III族窒化物障壁層(4)の少なくとも第1部分(4−1)上に配置され、ゲートコンタクト(10)はpドープIII族窒化物ゲート層部(5)上に形成される。 (もっと読む)


【課題】ゲート−ソース間およびゲート−ドレイン間のキャパシタンスの低減と、JFETをオンさせる際に必要なゲート印加電圧が高電圧になることを抑制する。
【解決手段】n-型チャネル層2の表面に直接p+型ゲート領域4を形成し、p+型ゲート領域4のうちn-型チャネル層2と接する部分と比較して、n-型チャネル層2から離れた部分が幅広となるようにする。そして、p+型ゲート領域4のうち幅広とされた部分がn-型チャネル層2から所定距離離れるようにする。例えば、n-型チャネル層2に凹部2aを形成し、この凹部2a内にp+型ゲート領域4を形成する。 (もっと読む)


【課題】ゲート−ソース間およびゲート−ドレイン間のキャパシタンスの低減と、JFETをオンさせる際に必要なゲート印加電圧が高電圧になることを抑制する。
【解決手段】凹部4c内に形成されたi型(イントリンシック半導体)側壁層5を介してp+型ゲート領域6を形成する。このような構成とすれば、n+型層4とp+型ゲート領域6との間にさらにp+型ゲート領域6よりも低濃度のp-型層が必要とされない。このため、n-型チャネル層3に直接接触している高濃度のp+型ゲート領域6によって、n-型チャネル層3内に伸びる空乏層幅を制御できる。したがって、n+型層4とp+型ゲート領域6との間にさらにp-型層が備えられる場合と比較して、ゲート印加電圧が高電圧になることを抑制できる。また、p+型ゲート領域6の側面がi型側壁層5によってn+型層4と分離されるため、ゲート−ソース間およびゲート−ドレイン間のキャパシタンスを低減できる。 (もっと読む)


【課題】ゲート−ソース間およびゲート−ドレイン間のキャパシタンスの低減を図ると共に、JFETをオンさせる際に必要なゲート印加電圧が高電圧になることを抑制する。
【解決手段】p+型ゲート領域2をSiC基板1の内部に埋め込んだ構造とする。これにより、ゲート−ソース間およびゲート−ドレイン間のキャパシタンスの低減を図ることが可能となる。また、p+型ゲート領域2がn-型チャネル層3に直接接触させられる構造であるため、p+型ゲート領域2から広がる空乏層によって容易にn-型チャネル層3をピンチオフさせることができ、JFETをオンさせる際に必要なゲート印加電圧が高電圧になることを抑制できる。 (もっと読む)


【課題】DモードとEモードの素子を組み合わせた半導体装置およびその製造方法を提供する。
【解決手段】DモードとEモードのJFETにおけるチャネル領域を設定する場所にそれぞれ凹部2aと凸部2bを備えることで、同一基板上に厚みが異なるn型チャネル層3を形成する。そして、このような厚みが異なるn型チャネル層3によってDモードとEモードで作動するJFETを同一基板上に備えることができるため、SiCでもDモードとEモードのJFETを組み合わせたSiC半導体装置を実現することが可能となる。 (もっと読む)


【課題】電界緩和効果が大きいフィールドプレート構造を有する半導体装置を提供する。
【解決手段】半導体装置10は、基板11上に形成された窒化物半導体層と、窒化物半導体層と電気的接触をして形成されたソース電極15と、窒化物半導体層と電気的接触をして形成されたドレイン電極16と、ソース電極とドレイン電極との間の窒化物半導体層上に形成されたゲート電極17と、ゲート電極とドレイン電極との間の窒化物半導体層の表面に形成されたキャップ層18と、キャップ層を覆うパシベーション層19と、キャップ層18とパシベーション層19から成る層の上にゲート電極の一部として形成されたフィールドプレート20と、を備え、キャップ層は、窒化物半導体層の材料の組成の一部の組成を含む組成から成る材料から成り、2〜50nmの厚さを有し、キャップ層のゲート電極側の端部には、60°以下のテーパ角が設けられ、斜面が形成されている。 (もっと読む)


【課題】高電圧を印加しても壊れにくい電界効果トランジスタを提供する。
【解決手段】電界効果トランジスタは、基板1、チャネル層3及びバリア層4と、バリア層4上にこの順で離間して設けられたソース電極6、ゲート電極7およびドレイン電極8とを備え、ソース電極6の直下に第1のn型不純物拡散領域12が設けられ、ドレイン電極8の直下に第2のn型不純物拡散領域13が設けられ、第2のn型不純物拡散領域の下側の前記チャネル層3および第2のn型不純物拡散領域の前記ゲート電極側の前記チャネル層3および前記バリア層4に第3のn型不純物拡散領域15が設けられる。第3のn型不純物拡散領域15は第2のn型不純物拡散領域13よりも低いn型不純物濃度を有し、ゲート電極とドレイン電極との間に電圧が印加されたときバリア層4およびチャネル層3においてその絶縁破壊強度を超える電界集中が生じることを抑制する。 (もっと読む)


【課題】酸化ガリウム基板上の半導体層と酸化ガリウム基板の主面との界面におけるオフセット電圧を低減可能な窒化物系半導体素子を提供する。
【解決手段】III族窒化物結晶層15は、酸化ガリウム基板13の主面13aを覆う。III族窒化物結晶層15は、III族構成元素としてアルミニウムを含むと共にアルミニウム以外の少なくとも2種の構成元素を含むIII族窒化物からなる。半導体積層17は、窒化ガリウム半導体層25を含む。第1の電極19は、半導体積層17の主面17a上に設けられる。第2の電極21は、酸化ガリウム基板13の裏面13b上に設けられる。III族窒化物結晶層15のバンドギャップE(15)は窒化ガリウム半導体層のバンドギャップE(GaN)より大きい。III族窒化物結晶層15のバンドギャップE(15)は4.8エレクトロンボルトより小さい。 (もっと読む)


【課題】耐圧を向上できる半導体装置および半導体装置の製造方法を提供する。
【解決手段】半導体装置は、GaN層10と第1の絶縁層13と第2の絶縁層14と電極層とFP電極17とを備えている。GaN層10は、高欠陥領域10aと、高欠陥領域10aよりも欠陥密度の低い低欠陥領域10bとを含み、主表面10cを有する。第1の絶縁層13は、GaN層10の主表面10cにおける高欠陥領域10aを覆うように形成されている。第2の絶縁層14は、GaN層10の主表面10aにおける低欠陥領域10bの上に形成され、開口部が形成されている。電極層は、開口部の内部に、GaN層10の主表面10aに接触するように形成されている。FP電極17は、電極層に接続するとともに、第2の絶縁層14に重なるように形成されている。第1の絶縁層13の厚みH13は、第2の絶縁層14の厚みH14よりも大きい。 (もっと読む)


【課題】応答特性を向上できる半導体装置およびその製造方法を提供する。
【解決手段】半導体装置は、GaN層10と第1および第2の絶縁層13、14と電極層とFP電極17とを備える。GaN層10は、高欠陥領域10aと、高欠陥領域10aよりも欠陥密度の低い低欠陥領域10bとを含み、主表面10cを有する。第1の絶縁層13は、GaN層10の主表面10cにおける高欠陥領域10aを覆うように形成される。第2の絶縁層14は、GaN層10の主表面10aにおける低欠陥領域10bの上に形成され、開口部が形成される。電極層は、開口部の内部に、GaN層10の主表面10aに接触するように形成される。FP電極17は、電極層に接続するとともに、第2の絶縁層14に重なるように形成される。第1の絶縁層13は、第2の絶縁層14を構成する材料の誘電率よりも小さい誘電率を有する材料を含む。 (もっと読む)


【課題】終端構造の耐圧を向上させることにより、高耐圧なSiC半導体装置を提供する。
【解決手段】本発明の半導体装置は、炭化珪素を含む第1エピタキシャル成長層20と、第1エピタキシャル成長層20の表層部に設けられた終端構造30と、終端構造30の上に設けられ、炭化珪素を含む第2エピタキシャル成長層40と、第2エピタキシャル成長層40の上に設けられた絶縁層50とを備える。 (もっと読む)


【課題】機械的強度やチップ・クラックによる歩留の低下を抑制し、オン抵抗やパッケージ実装状態における熱抵抗が低い半導体装置およびその製造方法を提供する。
【解決手段】半導体基板1と、半導体基板1の主面上に形成された半導体層3と、半導体基板1の裏面上に形成されたオーミック電極12と、オーミック電極12を介して半導体基板1の裏面上に形成され、半導体基板1よりも熱伝導率の高い金属材料からなる裏面電極13とを備え、半導体基板1の裏面の一部には凹部1aが形成され、裏面電極13は、オーミック電極12を介して、半導体基板1の裏面における凹部1aの内部を埋め、半導体基板1の裏面において凹部1a以外の領域の少なくとも一部を覆っている。 (もっと読む)


【課題】製造が容易で、かつ高い耐圧を確保しながら低損失化を図ることができる半導体装置を提供すること、およびその半導体装置を製造するための製造方法を提供する。
【解決手段】半導体装置としてのSBD10は、半導体からなる基板11と、基板11上に形成されたn型層12と、n型層12上に配置されたアノード電極14と、アノード電極14に接続され、n型層12に突出するp型領域13とを備えている。p型領域13は、n型層12との境界領域において、境界領域に隣接するp型領域13内の領域である高不純物領域13Bよりも導電型がp型であるp型不純物の濃度の低い低不純物領域13Aを含んでいる。 (もっと読む)


【課題】本発明は、過電圧印加時に電圧クランプ機能を有する窒化物半導体素子を提供することを目的とする。
【解決手段】第1の窒化物半導体からなる第1の層と、第1の層の上に設けられ、第1の窒化物半導体よりもバンドギャップが大なる第2の窒化物半導体からなる第2の層と、第2の層に電気的に接続された第1の電極と、第2の層の上に設けられ、第1の方向において第1の電極と並設された第2の電極と、第2の層の上に設けられたフローティング電極と、を備え、フローティング電極は、第1の方向に直交する第2の方向において第2の電極に挟まれた部分と、第1の電極に向けて第2の電極よりも突出した部分と、を有することを特徴とする窒化物半導体素子。 (もっと読む)


【課題】高温環境下での絶縁膜の腐食を抑制して、絶縁不良を回避した半導体装置及びその製造方法を提供することことを課題とする。
【解決手段】半導体基板11上にエピタキシャル成長により第1絶縁膜12が積層形成され、この第1絶縁膜12上には、耐熱性の電極13が選択的に形成され、この電極13の上部には、シリカガラスを主成分とする層間絶縁膜14が形成され、この層間絶縁膜14の表面には絶縁バリア膜15が形成され、この絶縁バリア膜15の上には、Alの配線16が形成され、絶縁バリア膜15は、絶縁性の窒化物、炭化物、窒化炭化物の単層膜、多層膜、または混合膜で構成されている。 (もっと読む)


【課題】 炭化珪素の半導体装置において、電極材料と、内部配線の材料とが異なるとき、これら異種金属の接触界面における不具合のおそれを無くして、長期間使用後にも高い信頼性を得ることができる、半導体装置等を提供する。
【解決手段】 炭化珪素14,18に接触する接触電極16と、該接触電極と導通する配線19とを備え、接触電極16が、チタン、アルミニウム、および珪素を含有する合金で形成され、配線19は、アルミニウムまたはアルミニウム合金で形成され、該配線は接触電極と接触することで該接触電極と導通をとることを特徴とする。 (もっと読む)


【課題】電界効果トランジスタのオン抵抗の増大や電流コラプスの増加を改善することである。
【解決手段】本発明にかかる電界効果トランジスタは、第1の半導体層6と当該第1の半導体層6とヘテロ接合した第2の半導体層4とを含む半導体構造と、第1の半導体層6上に形成されたソース電極8、ドレイン電極10、及びゲート電極9と、第1の半導体層6上に形成された金属内包フラーレンを少なくとも含む保護膜11と、を有する。保護膜11の材料は、金属を内包したフラーレンと絶縁材料とが混合した材料でもよく、また、金属を内包したフラーレンと金属を内包しないフラーレンとが混合した材料でもよい。 (もっと読む)


【課題】、環流ダイオードの逆回復動作時に発生する電流及び電圧の振動現象の収束時間を短縮可能な半導体装置を提供する。
【解決手段】半導体装置10は、ユニポーラ型の還流ダイオード100と、還流ダイオード100に並列接続され、かつ、キャパシタ210および抵抗220を有する半導体スナバ200とを備えている。半導体スナバ200は、キャパシタ210または抵抗220と接続される第1電極13と、第1電極13と絶縁されつつ、第1電極13と同一主面上に形成されて、キャパシタ210または抵抗220と接続される第2電極14とを有する。 (もっと読む)


21 - 40 / 132