説明

Fターム[4M113BA23]の内容

超電導デバイスとその製造方法 (1,906) | 基板及び薄膜の製造方法 (344) | 薄膜の形成 (326) | 液相法 (56) | 溶液法 (46)

Fターム[4M113BA23]に分類される特許

1 - 20 / 46


【課題】中間層が高度に配向しており、さらに表面が平滑な中間層の上に超電導層を設けても、中間層と酸化物超電導層とが強く密着し磁場応用においても剥離が発生せず、酸化物超電導層の高配向性を維持した超電導特性に優れた酸化物超電導薄膜線材を提供することができる酸化物超電導薄膜線材を提供する。
【解決手段】金属基板とその上に設けられた中間層とを備える結晶配向基材上に酸化物超電導層が設けられている酸化物超電導薄膜線材であって、酸化物超電導層と中間層のキャップ層との間に、酸化物超電導層とキャップ層との反応、もしくは酸化物超電導層とキャップ層との間における金属元素の拡散、による界面層が形成されていることを特徴とする酸化物超電導薄膜線材。また、界面層の厚みが、100nm以下である酸化物超電導薄膜線材。さらに、キャップ層の表面粗さRaが、10nm以下である酸化物超電導薄膜線材。 (もっと読む)


【課題】本発明の技術的課題は、異種結晶(超伝導特性を示さない結晶)の析出量が少なく、短時間の処理でBi系超伝導結晶を析出させ得る超伝導材料の製造方法を創案することである。
【解決手段】本発明の超伝導材料の製造方法は、組成として、モル%表記で、Bi 10〜40%、CaO 10〜40%、CuO 25〜65%を含有する非晶質材料を、Sr含有化合物を含む融液に接触させる工程を有することを特徴とする。 (もっと読む)


【課題】本発明の技術的課題は、異種結晶(超伝導特性を示さない結晶)の析出量が少なく、短時間の処理でBi系超伝導結晶を析出させ得る超伝導材料の製造方法を創案することである。
【解決手段】本発明の超伝導材料の製造方法は、組成として、モル%表記で、Bi 7〜35%、SrO 25〜65%、CuO 25〜65%を含有する非晶質材料を、Ca含有化合物を含む融液に接触させる工程を有することを特徴とする。 (もっと読む)


【課題】超伝導結晶の臨界温度を高め得る材料及びその製造方法を提供する。
【解決手段】組成として、モル%表記で、Bi2310〜30%、SrO20〜50%、CaO10〜30%、CuO20〜45%、アルカリ金属酸化物0.1〜10%を含有する超伝導性を有するBi系非晶質材料であることを特徴とする。また、超伝導材料とするための製造方法は、上記のBi系非晶質材料を熱処理することにより、超伝導結晶を析出させることを特徴とする。 (もっと読む)


【課題】従来よりも超電導転移温度Tcが上昇した酸化物超電導膜を提供する。
【解決手段】金属基板上に、有機金属化合物溶液を用いて、塗布熱分解法により、酸化物超電導膜を製造する酸化物超電導膜の製造方法であって、有機金属化合物溶液を、金属基板上に塗布して塗膜を作製する塗膜作製工程と、塗膜を加熱して、有機金属化合物を熱分解し、有機成分を除去することにより、酸化物超電導膜の前駆体膜を形成する仮焼熱処理工程と、前駆体膜を加熱して、結晶化させることにより、酸化物超電導膜を形成する本焼熱処理工程とを備えており、仮焼熱処理工程における塗膜の加熱が、酸素の含有比率が80〜100vol%の雰囲気下で行われる酸化物超電導膜の製造方法。 (もっと読む)


【課題】厚膜の酸化物超電導薄膜であっても、Jcが低下せず、膜厚に応じた高いIcの酸化物超電導薄膜とその製造方法を提供する。
【解決手段】有機金属化合物溶液の塗布、仮焼熱処理、本焼熱処理を行い、所定厚みの酸化物超電導層を作製する酸化物超電導層作製工程と、ナノ微粒子の溶液を用いて酸化物超電導層の上にナノ微粒子を付着させるナノ微粒子付着工程とを、交互に行い、ナノ微粒子が所定間隔で層状に設けられた酸化物超電導薄膜を製造する酸化物超電導薄膜の製造方法。有機金属化合物溶液の塗布、仮焼熱処理を行い、所定厚みの仮焼膜を作製する仮焼膜作製工程と、ナノ微粒子の溶液を用いて仮焼膜の上にナノ微粒子を付着させるナノ微粒子付着工程とを、交互に行い、その後、本焼熱処理を施し、ナノ微粒子が所定間隔で層状に設けられた酸化物超電導薄膜を製造する酸化物超電導薄膜の製造方法。 (もっと読む)


【課題】酸化物超電導薄膜線材の製造において、結晶配向性の低下やバラツキの発生が抑制された高い結晶配向性を有する酸化物超電導層を形成して、高い超電導特性を有する酸化物超電導薄膜線材を安定して提供する。
【解決手段】配向金属基材上に酸化物超電導薄膜層を設ける際に、配向金属基材と酸化物超電導薄膜層の中間に形成される酸化物超電導薄膜層形成用の中間層であって、表層の結晶ドメインサイズが25nm以下である酸化物超電導薄膜層形成用の中間層。前記酸化物超電導薄膜層形成用の中間層の上に形成されている酸化物超電導薄膜層。配向金属基材上に、前記酸化物超電導薄膜層形成用の中間層が形成され、さらに、前記中間層の上に、酸化物超電導薄膜層が形成されている酸化物超電導薄膜線材。前記酸化物超電導薄膜層が塗布熱分解法を用いて作製されている酸化物超電導薄膜線材。 (もっと読む)


【課題】MOD法を用いて、異相であるRE211の形成がない酸化物超電導薄膜を得て、所望する高い超電導特性を有する酸化物超電導薄膜線材を提供する。
【解決手段】塗布熱分解法を用いて、配向金属基材上に形成された中間層の上に、酸化物超電導薄膜層を形成するに際して使用される酸化物超電導薄膜層形成用の原料溶液であって、RE(希土類元素)およびBa(バリウム)、Cu(銅)の各有機金属化合物が、RE:Ba:Cu=X:2:3(0.8≦X<1.0)の比率で、溶媒に溶解されている酸化物超電導薄膜層形成用の原料溶液。塗布熱分解法を用いて、配向金属基材上に形成された中間層の上に形成された酸化物超電導薄膜層であって、膜内にREBaCu相が形成されていない酸化物超電導薄膜層。配向金属基材上に形成された中間層の上に、前記酸化物超電導薄膜層が形成されている酸化物超電導薄膜線材。 (もっと読む)


【課題】本発明は、酸化物超電導層への水分の浸入を抑えることができる酸化物超電導線材、及びその製造方法を提供することを目的とする。
【解決手段】本発明の酸化物超電導線材10の製造方法は、基材1と中間層2と酸化物超電導層3と銀層4と金属安定化層6とがこの順に積層されてなる超電導積層体S0を準備する第1工程と、超電導積層体S0の幅方向端部にレーザLを照射して超電導積層体S0の端部を溶融・凝固させて、少なくとも酸化物超電導層3の側面を覆う溶融凝固層7を形成する第2工程と、を備えることを特徴とする。 (もっと読む)


【課題】厚膜化してもJcの低下を招くことがなく、厚膜化に比例して、充分に高いIcを有する酸化物超電導層が基板上に形成された酸化物超電導線材とその製造方法を提供する。
【解決手段】配向金属基板上に、有機金属化合物を原料とし、塗布熱分解法により酸化物超電導層を形成する酸化物超電導線材の製造方法であって、有機金属化合物の塗膜を形成する塗膜形成工程と、塗膜に含有される有機成分を熱分解、除去して、仮焼膜を形成する仮焼熱処理工程と、仮焼膜を結晶化させて、本焼膜を形成する本焼熱処理工程とを備え、塗膜形成工程、仮焼熱処理工程および本焼熱処理工程を繰り返して、本焼膜を複数層積層させることにより、積層界面に欠陥層が設けられた酸化物超電導層を形成する酸化物超電導線材の製造方法。塗布熱分解法により本焼膜が欠陥層を介して複数層積層されている酸化物超電導線材。 (もっと読む)


【課題】充分に高いIcを得ることができる酸化物超電導薄膜とその製造方法を提供する。
【解決手段】膜中に、磁束ピンとして機能するナノ微粒子3が分散されている酸化物超電導薄膜2。酸化物超電導薄膜中におけるナノ微粒子の分散密度が、1020〜1024個/mである酸化物超電導薄膜。ナノ微粒子の粒径が、5〜100nmである酸化物超電導薄膜。有機金属化合物を溶媒に溶解した溶液に、磁束ピンとして機能するナノ微粒子を溶媒に溶解した溶液を所定量添加して、酸化物超電導薄膜用の原料溶液を調製し、前記原料溶液を用いて、塗布熱分解法により、酸化物超電導薄膜を製造する酸化物超電導薄膜の製造方法。ナノ微粒子を溶媒に溶解した溶液に分散剤を添加する酸化物超電導薄膜の製造方法。 (もっと読む)


【課題】基板上に厚膜化されながら、全体に亘ってc軸配向した酸化物超電導層が形成されて、充分に高いIcを有する酸化物超電導線材とその製造方法を提供する。
【解決手段】 基板上に、有機金属化合物を原料とし、塗布熱分解法により酸化物超電導層を形成する酸化物超電導線材の製造方法であって、本焼成最適温度がそれぞれ異なる複数の仮焼膜を、本焼成最適温度の低い仮焼膜から、順次、基板上に積層して仮焼膜積層体を形成した後、仮焼膜積層体を本焼成する酸化物超電導線材の製造方法。基板上に形成される仮焼膜は、3層以上である。各仮焼膜から形成される酸化物超電導層の厚みは、0.05〜1.0μmである。 (もっと読む)


【課題】厚膜化してもJcの低下を招くことがなく、充分に高いIcを有する酸化物超電導層が基材上に形成された酸化物超電導線材とその製造方法を提供する。
【解決手段】基板上に、有機金属化合物を原料とし、塗布熱分解法により酸化物超電導層を形成する酸化物超電導線材の製造方法であって、本焼成最適温度がそれぞれ異なる複数の酸化物超電導層を、本焼成最適温度の高い酸化物超電導層から、順次、基板上に積層する酸化物超電導線材の製造方法。基板上に形成される酸化物超電導層は3層以上であり、各酸化物超電導層の厚みは0.05〜1.0μmである酸化物超電導線材の製造方法。 (もっと読む)


【課題】 金属有機化合物の熱分解による超電導膜の熱処理形成において、低コストで大きい膜厚と高い配向性及び高い臨界電流を得るための製造方法を提供する。
【解決手段】 0.6〜数μm程度の膜厚の超電導膜材料の製造において、複数のRE123に対応する組成の仮焼成膜の間に、少なくとも1つのRE’123に対応する組成の仮焼成膜が介在した多層構造からなる仮焼成膜を経由することにより、大きい膜厚、高い配向性及び1cm幅あたり200Aを超える高い臨界電流をもつ、多数の積層欠陥を含む超電導膜が製造され、さらに、塗布熱分解法における仮焼成工程の一部を特定の波長と強度を持った紫外エキシマランプ光の照射処理で置き換えることにより、全工程を熱エネルギーで行った場合より大きい膜厚で高い配向性および高い臨界電流が得られる。 (もっと読む)


【課題】MOD法による酸化物超電導薄膜線材の製造において、配向金属基板上に異相が形成されることを抑制して、所望する超電導特性の酸化物超電導薄膜線材を製造する酸化物超電導薄膜線材の製造方法を提供する。
【解決手段】金属有機化合物を原料とし、雰囲気炉を用いて塗布熱分解法により、酸化物超電導薄膜を形成して、酸化物超電導薄膜線材を製造する酸化物超電導薄膜線材の製造方法であって、中間層が形成された配向金属基板上に金属有機化合物の溶液を塗布して塗布膜を作製する塗布膜作製工程と、塗布膜の金属有機化合物に含有される有機成分を熱分解、除去して、仮焼膜を作製する仮焼熱処理工程と、仮焼膜を結晶化させて、酸化物超電導薄膜を作製する本焼熱処理工程とを有しており、本焼熱処理工程が、低酸素分圧、高温雰囲気下で本焼成を行い、その後、酸化物超電導体の分解領域外において、酸素分圧を下げる操作を行いながら降温して冷却を行う熱処理工程である。 (もっと読む)


【課題】MOD法を用いて酸化物超電導薄膜線材を製造するに際して、安定して優れた超電導特性を有する酸化物超電導薄膜線材を得ることができる技術を提供する。
【解決手段】塗布熱分解法を用いて、基板上に酸化物超電導薄膜が形成されている酸化物超電導薄膜線材であって、酸化物超電導薄膜の空隙率が10%以下である酸化物超電導薄膜線材。酸化物超電導薄膜が、フッ素を含まない金属有機化合物を用いた塗布熱分解法により形成されている酸化物超電導薄膜線材。基板上に金属有機化合物の溶液を塗布して塗布膜を作製する塗布膜作製工程と、塗布膜の金属有機化合物に含有される有機成分を熱分解、除去して、仮焼膜を作製する仮焼熱処理工程と、仮焼膜を結晶化させて、酸化物超電導薄膜を作製する本焼熱処理工程とを備えており、仮焼熱処理工程における昇温速度が、2℃/分以下である酸化物超電導薄膜線材の製造方法。 (もっと読む)


【課題】仮焼熱処理工程において、発泡の発生を抑制すると共に、組成の偏析の発生を抑制して、c軸配向した結晶が十分に成長した、優れた超電導特性を有する酸化物超電導薄膜を作製することができる酸化物超電導薄膜の製造方法を提供する。
【解決手段】超電導線材の製造に用いる酸化物超電導薄膜を、金属有機化合物を原料とし、塗布熱分解法により製造する酸化物超電導薄膜の製造方法であって、基板上に金属有機化合物の溶液を塗布して塗膜を作製する塗膜作製工程と、塗膜の金属有機化合物に含有される有機成分を熱分解、除去して、仮焼膜とする仮焼熱処理工程と、仮焼膜を結晶化させて、酸化物超電導薄膜とする焼熱処理工程とを備えており、仮焼熱処理工程が、昇温速度を速くすると共に、酸素濃度が低い雰囲気下で行う熱処理工程である。 (もっと読む)


【課題】コスト的に有利なFF−MOD法を用いて、結晶の配向に乱れが生じることが抑制されて、高Ic値を有する厚膜の酸化物超電導薄膜を再現性良く得ることが可能な酸化物超電導薄膜の製造方法を提供する。
【解決手段】超電導線材の製造に用いる酸化物超電導薄膜を、フッ素を含まない金属有機化合物を原料とし、塗布熱分解法により製造する酸化物超電導薄膜の製造方法であって、
基板上に金属有機化合物の溶液を塗布する塗布工程と、塗布工程後に、400〜600℃の温度で、金属有機化合物に含有される有機成分を熱分解、除去して、仮焼膜を得る仮焼熱処理工程と、仮焼熱処理工程に引き続いて、室温に戻すことなく連続して、600〜850℃の温度で、仮焼膜を結晶化させて、酸化物超電導薄膜を得る本焼熱処理工程と
を備えている酸化物超電導薄膜の製造方法。 (もっと読む)


【課題】FF−MOD法を用いた酸化物超電導薄膜の製造において、Icが高い酸化物超電導薄膜を安定して得ることが可能となる技術を提供する。
【解決手段】塗布熱分解法により酸化物超電導薄膜を製造する際に使用される酸化物超電導薄膜製造用の原料溶液であって、フッ素を含まない金属有機化合物を溶質とする溶液に、塩素が含有されている酸化物超電導薄膜製造用の原料溶液。純金属イオン濃度に対する前記塩素の含有率が、0.05%〜5%である酸化物超電導薄膜製造用の原料溶液。金属有機化合物が、希土類元素、バリウムおよび銅のそれぞれのアセチルアセトン金属錯体である酸化物超電導薄膜製造用の原料溶液。酸化物超電導薄膜が、REBaCu7−Xの薄膜である酸化物超電導薄膜製造用の原料溶液。 (もっと読む)


【課題】高Icの厚膜化ができ、再現良く高Ic値を得ることができる酸化物超電導薄膜の製造方法を提供する。
【解決手段】フッ素を含まない金属有機化合物を用いて塗布熱分解法により超電導線材用の酸化物超電導薄膜を製造する酸化物超電導薄膜の製造方法であって、金属有機化合物の有機成分を熱分解するための仮焼成を水蒸気を含む雰囲気中で行い、さらに、結晶化熱処理のための本焼成熱処理の前に、前記本焼成熱処理を施す薄膜に含まれる炭酸塩を熱分解するための中間熱処理を行う。前記の中間熱処理は、650〜720℃の温度範囲で、10〜180分行う熱処理であり、酸化物超電導薄膜の厚さは0.3〜5μmである。 (もっと読む)


1 - 20 / 46