説明

Fターム[5F092AA02]の内容

ホール/MR素子 (37,442) | 目的、効果 (2,233) | 高出力化 (372)

Fターム[5F092AA02]に分類される特許

81 - 100 / 372


【課題】磁化固定層または磁化自由層の膜厚を薄くすることによるMR比の劣化を抑制することができる磁気抵抗効果ヘッドを提供する。
【解決手段】磁化方向が固定されている磁化固定層230と、磁化方向が変化する磁化自由層250と、磁化固定層と磁化自由層との間に配置された絶縁体を用いて形成されているバリア層240と、を備え、磁化固定層または磁化自由層の少なくとも一方は、バリア層側から順に、結晶層233a,233cとアモルファス磁性層233bとの積層構造として、バリア層の反対側にアモルファス磁性層を有する磁気抵抗効果ヘッドとする。 (もっと読む)


【課題】高いMR比のTMRリード・ヘッドを実現する。
【解決手段】本発明の一実施形態において、TMRリード・ヘッドにおいて、固定層の第1強磁性層は反平行結合層と絶縁障壁層との間に形成されている。第1強磁性における反平行結合層との界面を形成する層を、CoxFe(0≦x≦15)で形成する。これにより、薄い反平行結合層を使用しても高温でのアニール処理における固定層の不安定化を抑えることができ、第1強磁性層と第2強磁性層との強い結合を維持することができる。第1強磁性層において、主強磁性層とCoxFe(0≦x≦15)界面層との間に、Co系アモルファス金属層を形成する。これにより、高温アニール処理における第1強磁性層の適切な結晶化を促進することができ、高いMR比を実現する。 (もっと読む)


【課題】 TMR比を大きくすることができるTMR素子およびそれを用いたセンサを実現する。
【解決手段】 TMR素子50を構成するセグメントSG1は、少なくともピンド層43、絶縁層44およびフリー層21を積層して成る第1の積層体20と、少なくともピンド層43、絶縁層44およびフリー層31を積層して成る第2の積層体30とを備える。第1および第2の積層体20,30はピニング層42上に配列されており、かつ、ピンド層43およびピニング層42によって電気的に直列接続されている。 (もっと読む)


【課題】磁気抵抗型積層構造体に対し少なくとも部分的に内部磁界を加える集積された磁性層によって、磁気抵抗型積層構造体のΔR/R−B特性における動作点をシフトさせる。
【解決手段】強磁性材料から成る軟磁性層である磁性層12,12′を有する積層列16が設けられており、磁性層12,12′の磁化方向は積層構造体5外部からの外部磁界により可変である。磁性層12,12′の間に非磁性かつ導電性の中間層13が配置されている。硬磁性層15が磁気抵抗型積層構造体5に少なくとも部分的に組み込まれており、この硬磁性層は2つの磁性層と非磁性かつ導電性の中間層13との界面の領域に磁界を印加し、硬磁性層15の磁界により、磁気抵抗型積層構造体5の特性曲線における動作点がシフトされ、磁気抵抗型積層構造体5の電気抵抗は外部磁界に依存して可変である。 (もっと読む)


【課題】大きな出力信号強度を得られるEMRデバイスに、既存のスライダ形成技術を利用して磁気ヘッドスライダが形成できるような、デバイス構造とデバイス製造方法を提供すること
【解決手段】磁気抵抗デバイスは、基板(4;64)と、第一方向(14)に伸びた細長半導体チャネル(11)素子と、チャネルへの接点の組(27)を提供する少なくとも2つの導電性リード(26)とを含んでいる。デバイスは、チャネルと接続したオプションの半導体シャント(8)を含んでいる。オプションのシャント、チャネル及び接点の組は、第一方向及び基板の表面に対して垂直な第二方向(15)に向かって、基板に対して積重ねられる。デバイスは、チャネルに沿って伸びる側面(30)を有している。デバイスは、側面に対して一般的に垂直な方向の磁場(31)に対して反応する。 (もっと読む)


【課題】磁気メモリ素子を提供する。
【解決手段】本発明の磁気メモリ素子は、基板上のトンネルバリア、トンネルバリアの一面と接する第1接合磁性層、第1接合磁性層によってトンネルバリアと離隔される第1垂直磁性層、トンネルバリアの他の面と接する第2接合磁性層、第2接合磁性層によってトンネルバリアと離隔される第2垂直磁性層、及び第1接合磁性層と第1垂直磁性層との間の非磁性層を含む。 (もっと読む)


【課題】TMRセンサの面積抵抗RAが1.0Ωμm2以下の領域で、MR比の劣化の少ないTMRヘッドを得る。
【解決手段】第2の強磁性層中のCo-Fe-Bを成膜する工程から絶縁障壁層MgOを成膜する工程にかけて、基板の温度を氷点下100℃に保つことにより、B濃度10at%以下でもアモルファス状態のCo-Fe-B合金膜を得ることができる。アモルファスCo-Fe-B合金層上に結晶性の良いMgOを形成することができる。また、MgO上の第3の強磁性層中のCo-Fe-Bを成膜する際にも基板を氷点下100℃に保持しながら形成することにより、B濃度6at%のアモルファス状のCo-Fe-Bを得ることができる。得られたTMRセンサ膜は低濃度のBを含むアモルファス状のCo-Fe-B合金膜を含むために、比較的低温(200℃)の熱処理でも大きなMR比が得られる。 (もっと読む)


【課題】本発明は、磁気トンネル接合デバイスおよびその製造方法に関する。
【解決手段】磁気トンネル接合デバイスは、i)(A100−x100−yの化学式を有する化合物を含む第1磁性層と、ii)第1磁性層の上に位置する絶縁層と、iii)絶縁層の上に位置し、(A100−x100−yの化学式を有する化合物を含む第2磁性層とを含む。第1磁性層および第2磁性層は垂直磁気異方性を有し、Aおよび前記Bはそれぞれ金属元素であり、CはB(ホウ素)、C(炭素)、Ta(タンタル)、およびHf(ハフニウム)からなる群より選択された一つ以上の非晶質化元素である。 (もっと読む)


【課題】高精度の磁気記録用読み取りヘッドに最適な電流垂直型巨大磁気抵抗(CPP−GMR)素子を提供する。
【解決手段】CPP−GMR素子は、ホイスラー合金薄膜4,6間にスペーサ層5を配した構造を持つCPP−GMR素子であって、前記ホイスラー合金薄膜4,6が、B2規則構造を持つホイスラー強磁性合金からなり、スペーサ層5がB2規則構造を持つ金属間化合物からなることを特徴とし、また、前記CPP−GMR素子において、前記ホイスラー強磁性合金が、CoFeAlSiホイスラー強磁性合金であり、前記金属間化合物が、NiAl金属間化合物である。 (もっと読む)


【課題】本発明は、出力を十分に高めることができかつ微小領域からの磁束を感度よく検出可能な磁気センサを提供する。
【解決手段】磁気センサ200は、グラフェン層7と、グラフェン層7上に配置された磁化固定層12Bと、グラフェン層7上に配置された磁化自由層12Cと、グラフェン層7に電気的に接続された第一電極20A及び第二電極20Dと、グラフェン層7、磁化固定層12B、及び、磁化自由層12Cを積層方向の両側から挟む下部磁気シールド層22及び上部磁気シールド層11,12と、を備える。 (もっと読む)


磁気積層体は、磁化の向きを切換えることができる自由層と、磁化の向きが固定された基準層と、これらの間にあるバリア層とを有する。この積層体は、自由層から電気的に分離されるとともに基準層と物理的に接触する環状反強磁性ピニング層を含む。ある実施の形態では、基準層は自由層よりも大きい。
(もっと読む)


【課題】室温で1000%以上のTMR効果が得られる低抵抗の二重障壁強磁性トンネル接合と、この二重障壁強磁性トンネル接合を用いた磁気デバイスを提供する。
【解決手段】下地層/強磁性層1/絶縁層1/強磁性層2/絶縁層2/強磁性層3/上部層の構造が基板材料上に積層され、下地層により強磁性層1の磁化が、上部層により強磁性層3の磁化が固定され、強磁性層2が磁化自由層として機能する構造の二重障壁強磁性トンネル接合において、強磁性層2をCoFeB合金とし、かつ、その厚さを0.5〜1.4nmに薄膜化し、絶縁層1および2をMgOとし、250〜400℃程度の熱処理プロセスを経ることで低抵抗、かつ、1000%を超える巨大なTMR比が得られる。 (もっと読む)


スピン偏極電流を使用してメモリセルの磁気デバイスにおける磁気領域の磁化方向及び/又はヘリシティを制御してスイッチングする高速かつ低電力の方法。磁気デバイスは、固定の磁気ヘリシティ及び/又は磁化方向を有する基準磁化層と、可変の磁気ヘリシティ及び/又は磁化方向を有する自由磁化層とを含む。固定磁化層及び自由磁化層は、非磁化層により分離されることが好ましい。固定及び自由磁化層は、層法線に対して実質的に非ゼロ角度の磁化方向を有することができる。デバイスに電流を印加してトルクを誘起することができ、これは、デバイスの磁気状態を変更し、そのためにそれは情報を書き込むための磁気メモリとして作用することができる。デバイスの磁気状態に依存する抵抗が測定されてデバイスに格納された情報を読み出す。 (もっと読む)


【課題】大きな磁気抵抗変化率を確保しつつ、スピン注入時の電流を抑制し、かつ、絶縁破壊電圧を向上させることが可能な記憶素子を提供する。
【解決手段】記憶層17と、この記憶層17を挟むように設けられた、絶縁層(第1の中間層)16及び絶縁層(第2の中間層)19と、第1の中間層16の記憶層17とは反対側に配置された第1の磁化固定層31と、第2の中間層19の記憶層17とは反対側に配置された第2の磁化固定層32と、第2の中間層19と記憶層17との間に設けられた非磁性導体層18とを含み、積層方向にスピン偏極した電子を注入することにより、記憶層17の磁化M1の向きが変化して、記憶層17に対して情報の記録が行われる記憶素子3を構成する。 (もっと読む)


【課題】従来、外付け抵抗の電圧降下から検出していたパワーN型MOSFETに流れる電流を、ホール素子に発生するホール電圧Vにより検出する。
【解決手段】アースラインに向かって配線されたソース配線層8の直下の絶縁膜7aを数10nm程度の厚さとする。これにより、ソース電流Iにより、ソース配線層8の直下領域または該ソース配線層8の両側面部のN型層1に発生する磁束密度Bを高くする。この高い磁束密度Bの発生領域にホール素子Hを配置することにより、パワーN型MOSFETのソース電流Iが数A程度でも大きなホール電圧Vを発生する。 (もっと読む)


【課題】出力電圧を増加可能な半導体スピンデバイスを提供する。
【解決手段】半導体層10の第1領域上に設けられた第1ピンド層1Bと、半導体層の第2領域上に設けられた第2ピンド層2Bと、半導体層の第3領域上に設けられたフリー層3Bと、半導体層の第4領域上に設けられた電極層4とを備えたスピンデバイスあって、第1ピンド層1Bと第2ピンド層2Bの磁化の向きは互いに逆向きであり、半導体層10と第1及び第2ピンド層1B,2Bとの間には、それぞれ第1及び第2トンネル障壁1A,2Aが介在し、第1ピンド層1Bは、前記第2ピンド層2Bよりもフリー層3Bから遠く、第1ピンド層1Bから半導体層10に向けて電子を注入し、第1ピンド層1Bと第2ピンド層2Bとの間の半導体層内に電子を流すための電極を第1ピンド層1Bと第2ピンド層2Bにそれぞれ電気的に接続し、電極層4とフリー層3Bとの間の電圧を測定する。 (もっと読む)


【課題】スピン素子を使用した弛緩発振器を提供する。
【解決手段】弛緩発振器は、電源を印加する電源部と、該電源部から印加される電源によって駆動されるスピン素子と、該スピン素子に並列に連結されるキャパシタとを含む。スピン素子は、磁場の強さによって可変な可変電圧値を有する。キャパシタは、前記スピン素子が臨界電圧範囲の最小電圧値を有すると放電し、スピン素子が前記臨界電圧範囲の最大電圧値を有すると充電する。従って弛緩発振器は、製作に必要な部品の個数が少なくて回路が単純化され、製造費用と消費電力が少ない。よって弛緩発振器は、広範囲な周波数帯域の調節が可能で活動範囲が広く、磁化反転を使用することによって高出力が可能であるという効果がある。 (もっと読む)


【課題】比較的に低い温度で結晶格子の規則化を実現することができるホイスラー金属の製造方法を提供する。
【解決手段】ホイスラー金属の製造方法の一具体例は、ホイスラー金属の全ての構成元素を含有する積層体68を形成する工程と、積層体68に加熱処理を施す工程とを備える。積層体68の各層は、ホイスラー金属の構成元素から選択される少なくとも1以上の構成元素で形成される。 (もっと読む)


【課題】垂直磁気異方性を有し、かつより大きな磁気抵抗効果を発現する。
【解決手段】磁気抵抗素子10は、安定化層11と、非磁性層13と、安定化層11と非磁性層13との間に設けられ膜面に垂直な方向の磁気異方性を有するスピン分極層12と、非磁性層13に対してスピン分極層12とは反対側に設けられた磁性層14とを含む。安定化層11は、スピン分極層12より膜面内方向の格子定数が小さい。スピン分極層12は、コバルト(Co)及び鉄(Fe)からなるグループから選ばれる1つ以上の元素を含み、かつBCT(body-centered tetragonal)構造を有し、かつ膜面に垂直な方向をc軸、膜面内方向をa軸とした場合の格子定数の比c/aが1.10以上1.35以下である。 (もっと読む)


【課題】熱的に安定であると同時に低電流の磁化反転を可能とするスピン注入書き込み方式用の磁気抵抗素子およびそれを用いた磁気メモリを提供する。
【解決手段】下地層12と、下地層上に設けられ膜面に垂直方向に磁化容易軸を有する磁化方向が可変の第1の磁性層13と、第1の磁性層上に設けられた第1の非磁性層15と、第1の非磁性層上に設けられ膜面に垂直方向に磁化容易軸を有する磁化方向が固定された第2の磁性層17と、を備え、第1の磁性層は、DO22構造またはL1構造を有しc軸が膜面に垂直方向を向くフェリ磁性体層を含み、第1の磁性層と第1の非磁性層と第2の磁性層とを貫く双方向電流によって、第1の磁性層の磁化方向が可変となる。 (もっと読む)


81 - 100 / 372