説明

Fターム[5F110FF12]の内容

薄膜トランジスタ (412,022) | ゲート絶縁膜 (42,913) | 形状 (453) | 断面形状 (413)

Fターム[5F110FF12]に分類される特許

141 - 160 / 413


【課題】オン耐圧および電流能力を維持し、オフ耐圧を向上させる半導体装置を提供する。
【解決手段】高耐圧横型MOSFET20では、n++ドレイン領域7は、n-ドリフト領域3に直線状に延びている。n+バッファ領域6は、n++ドレイン領域7を囲んでいる。ゲート電極11、n++ソース領域5およびpベース領域4は、n+バッファ領域6側からこの順に、n+バッファ領域6を挟むように、ストライプ形状に形成されている。n半導体領域8は、n+バッファ領域6の終端コーナー部を覆うように形成されている。また、n半導体領域8は、n-ドリフト領域3の深さ方向に、n+バッファ領域6の下の領域を占めるように形成されている。高耐圧横型MOSFET20は、分離トレンチ14および分離シリコン領域により、高耐圧横型MOSFET20に隣接するデバイスと電気的に分離されている。 (もっと読む)


【課題】大電流を安定して継続的に流すことができる電界効果トランジスタを提供する。
【解決手段】電界効果トランジスタ10は、III族窒化物半導体から成る半導体活性層13の表面領域に形成されたソース18s及びドレイン18dと、半導体活性層13上にゲート酸化膜14を介して形成されたゲート電極15と、ゲート電極15とドレイン18dの間の半導体活性層13上に形成されたパッシべーション膜20とを備える。電界効果トランジスタ10では、パッシベーション膜20を構成する二酸化シリコンの膜質が、ゲート酸化膜14を構成する二酸化シリコンの膜質よりも密度が粗である。 (もっと読む)


【課題】生産性に優れたフレキシブル半導体装置を提供する。
【解決手段】可撓性を有するフレキシブル半導体装置100であり、樹脂フィルム30と、樹脂フィルム30の上に形成された金属層10とを備え、金属層10は、絶縁壁51によって分断され、且つ、絶縁壁51の一端53は樹脂フィルム30に接しており、絶縁壁51によって金属層10から、ゲート電極10g、ソース電極10sおよびドレイン電極10dが形成されている。ゲート電極10gの上には、絶縁壁51に接するゲート絶縁膜22が形成されており、ゲート絶縁膜22の上には半導体層20が形成されている。 (もっと読む)


【課題】薄膜トランジスタ及びその製造方法、並びにそれを含む有機電界発光表示装置を提供する。
【解決手段】基板と、前記基板上に位置し、チャンネル領域、イオンを含むソース/ドレイン領域及びオフセット領域を含む半導体層と、前記半導体層上に位置するゲート絶縁膜と、前記ゲート絶縁膜上に位置するゲート電極と、前記ゲート電極上に位置する第1絶縁膜と、前記第1絶縁膜上に位置する第2絶縁膜と、前記第2絶縁膜上に位置し、前記半導体層のソース/ドレイン領域とそれぞれ電気的に接続されるソース/ドレイン電極とを含み、前記ソース/ドレイン領域上の前記ゲート絶縁膜及び前記第1絶縁膜の厚さの合計は、0を超え前記ソース/ドレイン領域に含まれたイオンの垂直浸透深さより小さいことを特徴とする。 (もっと読む)


【課題】GIDL電流が発生することを抑制する。
【解決手段】第2導電型高濃度不純物層170は、素子形成領域110に形成されており、ソース及びドレインとして機能する。第2導電型低濃度不純物層160は、第2導電型高濃度不純物層170それぞれの周囲に設けられている。第2導電型低濃度不純物層160は、第2導電型高濃度不純物層170を深さ方向及びチャネル長方向に拡張し、第2導電型高濃度不純物層170より不純物濃度が低濃度である。第2導電型低濃度不純物層160は、少なくとも一部がゲート電極140及びゲート絶縁膜180の下に位置している。そしてゲート絶縁膜180は、第2導電型低濃度不純物層160上に位置する部分に傾斜部182を有している。傾斜部182は、ゲート電極140の中央部側から側面に向かうにつれて、変局点がないように膜厚が連続的に厚くなっている。 (もっと読む)


【課題】high-kゲート誘電体のパターニングが不要な半導体装置の製造方法を提供する。
【解決手段】第1の領域が第1の厚さに、第2の領域が第1の膜さよりも薄い第2の厚さになるようにゲート誘電体層204を半導体基板202上に形成し、ゲート誘電体層204上にhigh-kの原子の層212を形成し、熱処理を行って、第1の領域に第1の厚さ及び第1の組成のうち少なくとも一方を有するhigh-kゲート誘電体層216を形成し、第2の領域に第1の厚さよりも薄い第2の厚さ及び第2の組成のうち少なくとも一方を有するhigh-kゲート誘電体層218を形成する。 (もっと読む)


【課題】低オン抵抗・高耐圧で動作可能なGaN系化合物半導体デバイスを提供する。
【解決手段】基板上に形成されたバッファ層、チャネル層と、前記チャネル層上に形成され、ドリフト層と、前記ドリフト層上に配置されたソース電極およびドレイン電極と、ドリフト層に形成されたリセス部の内表面および前記ドリフト層の表面に形成された絶縁膜と、前記絶縁膜上に形成されたフィールドプレート部を有するゲート電極とを備えたGaN系電界効果トランジスタにおいて、前記ドリフト層は、前記リセス部と前記ドレイン電極との間に、シートキャリア密度が5×1013cm−2以上、1×1014cm−2以下のn型GaN系化合物半導体からなる電界緩和領域を有し、前記ドリフト層の前記電界緩和領域上に形成された前記絶縁膜の厚さが300nm以上であることを特徴とする。 (もっと読む)


【課題】フローティングゲート電極を備えた不揮発性メモリ素子の駆動電圧を高くすることなく、不揮発性メモリ素子、および厚いゲート絶縁膜を備えた高耐圧型トランジスタを同一基板上に形成する。
【解決手段】不揮発性メモリ素子の島状半導体領域とフローティングゲート電極間、および、トランジスタの島状半導体領域とゲート電極間には、第1の絶縁膜と第2の絶縁膜の積層膜が形成されている。第1の絶縁膜はフローティングゲート電極と重なる部分が除去されており、島状半導体領域とフローティングゲート電極間の絶縁膜が、トランジスタのゲート絶縁膜よりも薄くされている。トランジスタはフローティングゲート電極と同じ層に形成されている導電膜と、コントロールゲート電極と同じ層に形成されている導電膜とを有し、これら2つの導電膜は電気的に接続され、トランジスタのゲート電極として機能する。 (もっと読む)


【課題】保護回路において、所望の遅延時間を実現する。また、遅延回路の小型化を図り、消費電力を低減させる。
【解決手段】遅延回路100は、第1のインバータ101〜第3のインバータ103、第4のpチャネルMOSFET7、第4のnチャネルMOSFET8、遅延抵抗121およびキャパシタ122で構成されている。遅延抵抗121は、第1のインバータ101の出力端子と第2のインバータ102の入力端子の間に接続されている。第4のnチャネルMOSFET8のゲート端子は、遅延抵抗121と第2のインバータ102の入力端子の間のノード113に接続されている。第4のnチャネルMOSFET8のゲート端子とドレイン端子の間には、キャパシタ122が接続されている。第4のnチャネルMOSFET8の帰還容量を用いることで、キャパシタ122の容量を、キャパシタ122の物理的な静電容量よりも擬似的に大きくする。 (もっと読む)


【課題】ESD保護素子が集積された回路全体の製造コストを低減する。
【解決手段】ESD保護素子100は、nチャネルGGFET構造を有している。ESD保護素子100において、第1p+低抵抗領域41は、第1pウエル領域4の一部に、第1p++コンタクト領域5とその下の領域、n++ソース領域8とその下の領域、第1LDD領域6とその下の領域、第1ゲート絶縁膜12の下の領域、第2LDD領域7とその下の領域、およびn++ドレイン領域9の一部とその下の領域に設けられている。第1p+低抵抗領域41のn++ドレイン領域9側の端部から、第1ゲート電極13のn++ドレイン領域9側の端部までの第1エクステンション距離(LBP1)は、0〜0.3μmの範囲内にある。ESD保護素子100の第1p+低抵抗領域41は、高耐圧デバイスの低抵抗領域と同時に形成される。 (もっと読む)


【課題】ESDサージ耐量を向上できるようにする。
【解決手段】LDMOSにおいて、n+型ドレイン領域5を囲むように、n型基板1よりも高濃度に形成され、n+型ドレイン領域5に近づくほど高濃度となるn型領域6を配置する。さらに、n+型ソース領域8に隣接配置されるp+型コンタクト領域9がn+型ソース領域8の下部まで入り込むようにし、n+型ソース領域8、p型ベース領域7及びn型基板1によって形成される寄生トランジスタがオンし難くなるようにする。 (もっと読む)


【課題】オフ電流の低減とともにオフリーク電流の低減が図れ、製造工数の増大をもたらすことなく回路の集積化が図れる薄膜トランジスタを備えた表示装置の提供。
【解決手段】表示部が形成された基板上に複数の薄膜トランジスタが形成されている表示装置であって、
前記薄膜トランジスタは、
ゲート電極と、
前記ゲート電極を跨って形成されたゲート絶縁膜と、
このゲート絶縁膜の上面に形成され、平面的に観て前記ゲート電極の形成領域内に開口が形成された層間絶縁膜と、
前記層間絶縁膜の表面に前記開口を間にして配置された一対の高濃度半導体膜と、
前記層間絶縁膜の前記開口を跨いで形成され、平面的に観て、前記ゲート電極の形成領域内に形成されるとともに前記一対の高濃度半導体膜に電気的に接続された多結晶半導体層と、
前記一対の高濃度半導体膜のそれぞれに重ねられ前記多結晶半導体膜に重ねられることなく形成された一対の電極と、
を備えたものを含む。 (もっと読む)


【課題】 横型の半導体装置において、ゲート領域が過熱されることを抑制する。
【解決手段】 半導体装置100は、プレーナー型のゲート電極26を備える横型の半導体装置である。ドリフト領域22は、ボディ領域38の側面に接しているとともに平面視したときにゲート電極26の側方にまで存在している第1部分20と、第1部分20によってボディ領域38から隔てられている第2部分19を有している。第1部分20は、一対の主電極間2,32を結ぶ方向において、不純物濃度が一定である。第2部分19は、一対の主電極間2,32を結ぶ方向において、第1部分20から離れる向きに不純物濃度が増加している不純物濃度増加領域10を含む。 (もっと読む)


【課題】酸化物半導体層を含む薄膜トランジスタにおいて、信頼性を向上させることが可能な薄膜トランジスタを提供する。
【解決手段】シリコン酸化膜またはシリコン酸窒化膜からなるゲート絶縁膜222を、酸化物半導体層23に対応する領域において、この酸化物半導体層23と接するように選択的に形成する。ゲート絶縁膜222と酸化物半導体層23との間で良好なデバイス界面が形成され、酸化物半導体層23での格子欠陥の形成を抑制することができる。また、シリコン窒化膜からなるゲート絶縁膜221上において、酸化物半導体層23の上面および側面とゲート絶縁膜222の側面とが、ソース・ドレイン電極25およびチャネル保護膜24によって覆われているようにする。酸化物半導体層23への水分等の混入が抑えられ、酸化物半導体層23での水分の吸着を抑制することができる。 (もっと読む)


【課題】大量生産可能の電気化学トランジスタを提供する。
【解決手段】電気化学トランジスタ装置は、ソース接点1と、ドレイン接点2と、少なくとも1つのゲート電極4と、ソース、ドレイン接点間に配置されており、それらと直接的に電気接触している電気化学的にアクティブな要素であるトランジスタ・チャネル3を含み、そのレドックス状態の変化を通じてその導電率を電気化学的に変える能力を有する有機材料からなる材料で作られている電気化学的にアクティブな要素と、電気化学的にアクティブな要素および前記少なくとも1つのゲート電極の間に介在し、それらと直接的に電気接触している凝固電解液5とを含み、電気化学的にアクティブな要素、前記ゲート電極間の電子流が阻止されるようになっている。この装置において、ソース接点およびドレイン接点間の電子の流れは、前記ゲート電極に印加された電圧によって制御可能である。 (もっと読む)


【課題】電界効果移動度が高い半導体装置及びその作製方法を提供することを課題とすることを課題とする。
【解決手段】側面領域及び底面領域を有する凹部と、凹部以外の上面領域を有するゲート電極と、ゲート電極を覆って形成される、ゲート絶縁膜と、ゲート絶縁膜上に、チャネル形成領域を有する第1の半導体膜と、第1の半導体膜上に、ソース領域及びドレイン領域と、ソース領域及びドレイン領域上に、ソース電極及びドレイン電極とを有し、凹部の側面領域上に積層されたゲート絶縁膜及び第1の半導体膜の膜厚が、ゲート電極の上面領域上に積層されたゲート絶縁膜及び第1の半導体膜の膜厚よりも薄い半導体装置及びその作製方法に関する。 (もっと読む)


【課題】生産性及びトランジスタ特性を向上することができるバックチャネルエッチ型の薄膜トランジスタ、半導体装置、及びこれらの製造方法を提供することを目的とする。
【解決手段】本発明にかかるバックチャネルエッチ型のTFT108は、ゲート電極11と、ゲート電極11上に形成されたSiN膜12と、SiN膜12上にパターニング形成されたSiO膜13とを有する。さらに、TFT108は、SiO膜13上においてSiO膜13に接し、全てのパターン端がSiO膜13のパターン端近傍に配置されるようにパターニング形成された多結晶半導体膜14を有する。 (もっと読む)


【課題】従来とは異なる構造を有し、かつ複雑ではなく安価な製造方法で実現され得る電界効果トランジスタを提供する。
【解決手段】少なくともゲート(1)と、絶縁体層(2)と、ドレイン(3)と、ソース(4)と、ソース(4)をドレイン(3)に接続する半導体材料(50)とを含み、ゲート(1)及び絶縁体層(2)は各々ソース(4)、ドレイン(3)、及び半導体材料によって構成されるアセンブリを囲み、絶縁体層(2)がゲート(1)と前記アセンブリとの間に配置される電界効果トランジスタ
ドレイン(3)及びソース(4)は各々第1及び第2の導電体によって構成され、平行に配置され、かつ互いに非接続であり、第1及び第2の導電体はそれらの外周全体にわたって、及び少なくともそれらの長さの一部にわたって半導体材料(50)の層によって囲まれる。 (もっと読む)


【課題】面方位が(110)面あるいはこれと等価な面であるシリコン層上に形成する酸化膜厚の制御を行うことのできる半導体装置の製造方法を提供すること。
【解決手段】面方位が(110)面あるいはこれと等価な面であるシリコン基板1表面の一部に、リンのイオン注入を行って、端部の不純物濃度が連続的に変化した第1の不純物領域2Aを形成する工程と、熱酸化を行って、シリコン基板1上に端部の厚さが連続的に変化したシリコン酸化膜3を形成する工程と、を含むこと、を特徴とする。 (もっと読む)


【課題】生産性が向上し、かつ、半導体膜の導電膜からのはみ出し量が低減できる積層構造体及びその製造方法を提供すること。
【解決手段】本発明にかかる積層構造体は、半導体膜15、ゲート絶縁膜12、ソース電極17、及びドレイン電極18を有するものである。ゲート絶縁膜12は、半導体膜15下において、半導体膜15の端から徐々に膜厚が薄くなるテーパー部を有する。ソース電極17及びドレイン電極18は、半導体膜15上において、半導体膜15のパターンからはみ出さないように形成され、半導体膜15端からの距離が0以上0.3um以下である。 (もっと読む)


141 - 160 / 413