説明

Fターム[5F140AA06]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | 目的 (9,335) | しきい値電圧の安定化 (713)

Fターム[5F140AA06]に分類される特許

701 - 713 / 713


【課題】 ゲート絶縁膜としてhigh−k膜を適用し、ゲート電極としてポリシリコン膜を適用したトランジスタのしきい値電圧の上昇を抑制し、所望の駆動能力が得られる半導体装置と、その製造方法を提供する。
【解決手段】 トランジスタTのゲート電極5aは、シリコンを含有するポリシリコン膜から形成されている。トランジスタTのゲート絶縁膜4は、HfSiO膜2aとそのHfSiO膜上に形成されたシリコン酸化膜3aから形成されている。シリコン酸化膜3aは、ゲート電極5aが含有するシリコンと金属シリサイド化反応が起こらないように金属元素を含有していない。シリコン酸化膜3aは、HfSiO膜2aが含有するHfとゲート電極5aが含有するシリコンとの反応を阻止する保護膜としての機能を有している。 (もっと読む)


【課題】 遷移金属化合物膜を含むゲート絶縁膜を有する半導体装置のリーク電流及び閾値電圧のシフトを抑制する。
【解決手段】 半導体装置は、高誘電率材料である遷移金属化合物膜からなるゲート絶縁膜104と、n型又はp型のドーパントを含み且つ多結晶シリコン又はシリコン化合物からなるゲート電極105とを備え、ゲート絶縁膜104に含まれる炭素及びハロゲン元素の総量が0.1atomic%以下となっている。このような純度の膜は、遷移金属をターゲットとするスパッタ法によって成膜することによって実現でき、特に、純度が99.999atomic%以上の遷移金属をターゲットとして用いると確実に実現できる。 (もっと読む)


【課題】 閾値の変動を回避するとともに、電気的ストレスに対する信頼性の高いMOSトランジスタを備えた半導体装置を提供する。
【解決手段】 素子領域を画定する素子分離領域(12)が設けられた半導体基板(11)と、前記半導体基板の前記素子領域に離間して設けられたソース/ドレイン領域(25)と、前記半導体基板の前記素子領域上に設けられたゲート絶縁膜(13,14)と、前記ゲート絶縁膜上に設けられ、半導体を含むゲート電極(15)とを具備する半導体装置である。前記ゲート絶縁膜は、金属および酸素を含有する第1の絶縁膜(13)と、この第1の絶縁膜上に形成され、シリコンおよび酸素を含有する第2の絶縁膜(14)とを含み、前記第2の絶縁膜は、前記ゲート電極との界面における前記金属の含有量が6.6atomic.%未満であることを特徴とする。 (もっと読む)


【課題】 高誘電率ゲート絶縁膜を有する半導体装置の閾値電圧を高精度に制御する。
【解決手段】 シリコン基板1上層にp型ウェル3を形成する。p型ウェル3の極表層に砒素イオン4を注入し、熱処理を行うことによりp型低濃度層5を形成する。基板1上にHfAlOx膜7とポリシリコン膜8を積層する。ポリシリコン膜8をパターニングしてゲート電極8aを形成する。ゲート電極8aをマスクとして砒素イオン10を注入してn型エクステンション領域10aを形成した後、ゲート電極8a側壁にサイドウォール13を形成する。サイドウォール13及びゲート電極8aをマスクとして砒素イオン14を注入してn型ソース/ドレイン領域15aを形成する。 (もっと読む)


【課題】 半導体装置の性能や信頼性を向上させる。
【解決手段】 CMISFETを有する半導体装置において、nチャネル型MISFET30aのゲート電極31aは、P、AsまたはSbをドープしたシリコン膜をNi膜と反応させることで形成されたニッケルシリサイド膜からなり、pチャネル型MISFET30bのゲート電極31bは、ノンドープのシリコンゲルマニウム膜をNi膜と反応させることで形成されたニッケルシリコンゲルマニウム膜からなる。ゲート電極31aの仕事関数はP、AsまたはSbをドープすることによって制御され、ゲート電極31bの仕事関数はGe濃度を調節することによって制御される。 (もっと読む)


【課題】 改善されたしきい電圧およびフラットバンド電圧の安定性を有するCMOS構造を形成する方法およびそれにより生産されたデバイスを提供することにある。
【解決手段】 発明の方法は、nFET領域とpFET領域とを有する半導体基板を設けるステップと、高k誘電体の上に絶縁中間層を含む誘電体スタックを半導体基板の上に形成するステップと、pFET領域から絶縁中間層を除去せずに、nFET領域から絶縁中間層を除去するステップと、pFET領域内に少なくとも1つのゲート・スタックを設け、nFET領域内に少なくとも1つのゲート・スタックを設けるステップとを含む。絶縁中間層はAlNまたはAlOxNyにすることができる。高k誘電体は、HfO2、ハフニウム・シリケート、またはハフニウム酸窒化シリコンにすることができる。絶縁中間層は、HCl/H2O2過酸化水素溶液を含むウェット・エッチングによりnFET領域から除去することができる。 (もっと読む)


本発明は、実質的に真性な半導体の基板(158)の領域に注入された、計数された数のドーパントイオン(142)を有する汎用タイプの半導体装置に関する。基板(158)の一つ以上のドープされた表面領域は、金属化され、電極(150)が形成される。計数された数のドーパントイオン(142)が、実質的に真性な半導体の領域に注入される。

【その他】
原文には、請求項11及び請求項11Aが存在する。請求項11Aは、オンライン手続上、請求項11内に記載した。

(もっと読む)


シリコン基板101とポリシリコンゲート電極104とを電気的に絶縁する高誘電率ゲート絶縁膜102として、Hf、Zr又はAlの少なくとも一つの構成元素を含有する金属酸化物薄膜又は金属シリケート薄膜が設けられている。この半導体装置について、ポリシリコンゲート電極104を加工した後に、高誘電率ゲート絶縁膜102の側面又は表面が露出した状態で、分子中に酸素原子を含む酸化剤雰囲気中で熱処理を施す。この熱処理により、高誘電率ゲート絶縁膜102とポリシリコンゲート電極104との界面の電気的欠陥105が消失する。 (もっと読む)


本発明は、ヘテロ構造を有した電界効果トランジスタに関する。当該ヘテロ構造では、キャリア材料上に歪み単結晶半導体層(4)が形成されている。当該キャリア材料は、最上層として、第1の半導体材料(Si)からなる緩和単結晶半導体層(3)を備えている。上記緩和単結晶半導体層は半導体合金(GeSi1−x)を含んでいて、第2の半導体材料の比率xは自由に設定できる。さらに、上記歪み半導体層(4)上に、ゲート絶縁層(5)およびゲート層(6)が形成される。この場合、非ドープチャネル領域(K)を構成するために、少なくとも歪み半導体層(4)において、ドレイン/ソース領域(D、S)が上記ゲート層に対して横向きに形成される。Ge比率xを自由に設定できる可能性によって、閾値電圧を任意に設定でき、これによって最新の論理半導体部品を実現することができる。
(もっと読む)


本発明の例示的な一実施形態は、その上に位置するhigh-k誘電体層と、このhigh-k誘電体層上に位置するゲート電極層と、を含む基板(104)上に電界効果トランジスタを形成する方法である。この方法は、基板(104)上に位置するhigh-k誘電体部(106)と、high-k誘電体部(106)上に位置するゲート電極部とを含むゲートスタック(102)を形成するように、ゲート電極層およびhigh-k誘電体層をエッチングするステップ(202)を含む。この例示的な実施形態によれば、この方法は、ゲートスタック(102)上で窒化プロセスを実行するステップ(204)をさらに含む。この窒化プロセスは、ゲートスタック(102)のサイドウォール(110)を窒化するように、窒素を含むプラズマを利用するステップによって実行することができる。この窒化プロセスの結果、窒素がhigh-k誘電体部(106)に入り込み、窒素がhigh-k誘電体部(106)中に酸素拡散バリアを形成するようにされてよい。
(もっと読む)


【課題】電界効果デバイスのゲート材料を提供すること。
【解決手段】電界効果デバイスのゲート材料として用いられるTaおよびNの化合物であって、さらに別の元素を含む可能性があり、約20mΩcmより小さな比抵抗を有し、約0.9より大きなN対Taの元素比を有する化合物が開示される。そのような化合物の代表的な実施態様であるTaSiNは、誘電体層および高k誘電体層を含むSiO上の一般的なCMOSプロセス温度で安定であり、n型Siの仕事関数に近い仕事関数を有する。第3アミルイミドトリス(ジメチルアミド)Ta(TAIMATA)などのアルキルイミドトリス(ジアルキルアミド)Ta化学種をTa前駆体として用いる化学的気相堆積方法によって、金属性Ta−N化合物を堆積する。この堆積は共形であり、これらのTa−N金属化合物のCMOSプロセスフローへの融通の利く導入を可能にする。TaNまたはTaSiNを用いて加工されたデバイスは、ほぼ理想的な特性を示す。 (もっと読む)


高温で顕著に変化しないn型またはp型の仕事関数を有する遷移金属合金の実施例を示した。示された遷移金属合金は、トランジスタのゲート電極として使用しても良く、ゲート電極の一部を構成しても良い。これらの遷移金属合金を用いて、ゲート電極を形成する方法についても示した。
(もっと読む)


窒化ゲート誘電体層を形成するための方法及び装置。この方法は、電子温度スパイクを減少するために、滑らかに変化する変調のRF電源により処理チャンバー内に窒素含有プラズマを発生することを含む。電源が滑らかに変化する変調のものであるときには、方形波変調のものに比して、電界効果トランジスタのチャンネル移動度及びゲート漏洩電流の結果が改善される。 (もっと読む)


701 - 713 / 713