説明

Fターム[5F140AC32]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | 動作、用途、素子構造 (4,642) | 用途 (713) | メモリ (556)

Fターム[5F140AC32]に分類される特許

201 - 220 / 556


【解決手段】
共通の能動領域内に少なくとも1つの埋め込み半導体合金を設けることによって得られる異なる歪レベルに基いて、その能動領域内に形成されるプルダウントランジスタ及びパストランジスタの駆動電流能力を調節することができ、それにより能動領域の単純化された全体的な幾何学的構造を提供することができる。従って、能動領域の単純化された構造を伴う最小のチャネル長に基きスタティックRAMセルを形成することができ、プルダウン及びパストランジスタに対する駆動電流の比を調節するためにトランジスタ幅の明白な変化が従来的に用いられている洗練されたデバイスで観察され得るような顕著な歩留まり低下を回避することができる。 (もっと読む)


【課題】閾値電圧が制御されて、且つ特性のばらつきが抑制された半導体装置を提供する。
【解決手段】基板2と、STI素子分離領域3と、活性領域4と、活性領域4に形成された第1ゲートトレンチ5と、第1ゲートトレンチ5の底部に設けられた第2ゲートトレンチ6と、第1及び第2ゲートトレンチ5,6にゲート絶縁膜7を介して埋め込み形成されたゲート電極8と、第1ゲートトレンチ5の幅方向両側の活性領域4にイオンを注入することによって形成されたソース/ドレイン領域9とを備え、第2ゲートトレンチ6と第2ゲートトレンチ6の長手方向に位置するSTI素子分離領域3との間に、チャネルを構成するシリコン薄膜部10が設けられていることを特徴とする半導体装置1。 (もっと読む)


【課題】ゲート絶縁膜に高誘電率膜を用いたMISトランジスタのトランジスタ特性を向上する。
【解決手段】基板の主面上に形成した酸化シリコン(SiO)膜上に、ハフニウムおよび酸素を含むベース絶縁膜を形成する。次いで、ベース絶縁膜上に、ベース絶縁膜より薄く、かつ、金属元素のみからなる金属薄膜を形成し、その金属薄膜上に、耐湿性および耐酸化性を有する保護膜を形成する。その後、保護膜を有する状態で、ベース絶縁膜に金属薄膜の金属元素をすべて拡散することによって、酸化シリコン膜上に、酸化シリコン膜より厚く、かつ、酸化シリコンより誘電率が高く、ベース絶縁膜のハフニウムおよび酸素と、金属薄膜の金属元素とを含む混合膜(高誘電率膜)を形成する。 (もっと読む)


【課題】 (111)表面のシリコン(Si)基板に、原子レベルで超平坦な表面を実現する。
【解決手段】 シリコン基板(111)表面を、予め、フッ化アンモニウム(NHF)溶液で表面処理した後、濃度68%,沸点120.7℃の共沸硝酸溶液内に浸漬して、前記シリコン基板表面に二酸化シリコン(SiO)主体の被膜を形成し、ついで、濃度40重量%のフッ化アンモニウム(NHF)溶液で上記二酸化シリコン(SiO)主体の被膜をエッチング除去する。AFM像では、バイレイヤー ステップが観測され、表面粗さの指標(RMSラフネス値)が0.07nmと判定され、原子レベルでの超平坦な表面が形成できた。 (もっと読む)


【課題】種々の状況において低温で二酸化ケイ素の薄膜を形成するための原子層堆積(ALD)プロセスが提供される。
【解決手段】例えば、一部の実施形態において、二酸化ケイ素の薄膜は、高感度表面または柔軟性のある表面に堆積されて、太陽電池、磁気ヘッド、MEMSデバイス、インクジェット、または他の微小流体デバイスの一部を形成する。他の実施形態において、シャロートレンチ分離(STI)構造、側壁スペーサーおよびゲート不動態化層が堆積される。 (もっと読む)


【課題】本発明は、IC(integrated circuit)の集積度が向上し、しかもショートチャネル効果を防止することができるMOS半導体デバイスを形成する方法を提供する。
【解決手段】DRAMアクセストランジスタのようなメモリデバイスであって、窪み付きゲート構造を有するメモリデバイスを形成する方法が開示されている。まず、絶縁用のフィールド酸化物領域(21)が半導体基板上に形成され、ついで、窒化シリコン層(18)にパターン形成が行われ、エッチングによりトランジスタトレンチ(22)が得られる。その後にデポジットされたポリシリコンであって、ゲート構造形成のためのポリシリコンを、隣接し隆起した窒化シリコン構造に対して研磨できるようにするため、このトランジスタトレンチに隣接するフィールド酸化物領域に窪みが設けられる。 (もっと読む)


【課題】ソース/ドレイン領域における接合部の耐圧を向上でき、寄生バイポーラトランジスタ特性の影響を低減できる半導体装置を提供する。
【解決手段】(a)に示す低耐圧トランジスタは、ソース/ドレイン領域13,14間の基板11の第1領域上に形成されたゲート絶縁膜15及び第1ゲート電極16と、ソース/ドレイン領域13,14上のシリサイド層13A,14Aとを備える。(b)に示す高耐圧トランジスタは、ソース/ドレイン領域23,24間の基板11の表面が所定の深さ除去された第2領域上に形成された、ゲート絶縁膜15より膜厚が厚いゲート絶縁膜25、及び第2ゲート電極16と、ソース/ドレイン領域23,24上のシリサイド層23A,24Aとを備える。所定の深さはゲート絶縁膜25とゲート絶縁膜15との厚さの差に相当し、シリサイド層23A,24Aの上面は基板11の第2領域とゲート絶縁膜25との界面より高い構造を有する。 (もっと読む)


【課題】 動作マージンを確保しつつ、微細化を可能とするSRAMセルを提供する。
【解決手段】
SRAMセルが、それぞれ、NMOSドライバとPMOSロードとが接続された第1、第2のインバータを含み、それぞれのインバータの内部ノードが他方のインバータの入力に接続されたフリップフロップ回路と、第1、第2のビット線と、第1、第2のインバータの内部ノードと第1、第2のビット線との間に接続された第1、第2のNMOSトランスファトランジスタであって、それぞれ、絶縁ゲート電極構造の両側に形成された第1、第2のn型ソース/ドレイン領域と、を含み、2つの第1のn型ソース/ドレイン領域が第1、第2のインバータの内部ノードに接続され、2つの第2のn型ソース/ドレイン領域が第1、第2のビット線に接続された第1、第2のNMOSトランスファトランジスタと、第1のn型ソース/ドレイン領域を覆って形成された圧縮応力膜と、第2のn型ソース/ドレイン領域を覆って形成された引張応力膜と、を有する。 (もっと読む)


【課題】周辺トランジスタの駆動特性の劣化を抑制できる半導体装置を提供すること。
【解決手段】半導体基板と、前記半導体基板の素子形成領域を取り囲むよう形成された素子分離絶縁膜と、前記素子形成領域内に配置されたトランジスタと、を備え、前記トランジスタは、前記素子形成領域内に設けられた第1および第2の拡散層と、前記第1および第2の拡散層の間に設けられたチャネル領域と、前記チャネル領域の表面に設けられたゲート絶縁膜と、前記ゲート絶縁膜上に配置されたゲート電極と、を有し、前記素子形成領域と前記素子分離絶縁膜との境界部における前記ゲート電極のゲート長が前記素子形成領域の中央部における前記ゲート電極のゲート長よりも長い。 (もっと読む)


【課題】金属製のゲート電極(メタル電極)のダメージを熱酸化により修復する際の高誘電率ゲート絶縁膜の結晶化を抑制する。
【解決手段】エッチングにより側壁が露出した高誘電率ゲート絶縁膜とメタル電極とを有する基板を処理室内に搬入する工程と、処理室内で、基板を高誘電率ゲート絶縁膜が結晶化しない温度に加熱した状態で、基板に対してプラズマで励起した水素含有ガスと酸素含有ガスとを供給して酸化処理を施す工程と、処理後の基板を処理室内から搬出する工程と、を有する。 (もっと読む)


【課題】異なる特性を有するリセスチャネル型のトランジスタを同一工程で同時に形成する。
【解決手段】ハードマスク71〜73を用いて半導体基板2をエッチングし、ハードマスク71〜73の側面にサイドウォール絶縁膜38を形成し、ハードマスク71,72の側面に形成されたサイドウォール絶縁膜38を選択的に除去し、ハードマスク71〜73とサイドウォール絶縁膜38を用いて半導体基板2をさらにエッチングし、ハードマスク71〜73に覆われていた半導体基板2の一部にそれぞれゲートトレンチ12,22,32を同時に形成する工程と、ゲートトレンチ12,22,32の内部にゲート電極13,23,33を形成する工程と備える。これにより、フィン状領域21f,31fの高さが異なる複数のリセスチャネル型トランジスタを同時に形成することができる。 (もっと読む)


【課題】トランジスタ特性を劣化させずに形成される小型の半導体装置、及びその製造方法を提供する。
【解決手段】半導体基板と、前記半導体基板上に形成されるゲート絶縁膜と、前記半導体基板上に前記ゲート絶縁膜を介して形成されるゲート電極と、前記ゲート電極の上面に形成される第1窒化シリコン膜と、前記ゲート電極の側面に形成される保護絶縁膜と、前記保護絶縁膜の側面に形成される第2窒化シリコン膜と、前記保護絶縁膜の上面に形成され、その底面が前記第1窒化シリコン膜の底面よりも上部に形成される第3窒化シリコン膜とを備える。 (もっと読む)


【課題】非対称トランジスタの接合リークを抑制する。
【解決手段】半導体装置100は、シリコン基板101の上部に設けられたゲート電極115と、ゲート電極115の異なる側方においてシリコン基板101に設けられた第一不純物拡散領域103および第二不純物拡散領域105とを有するMOSFET110を含む。MOSFET110は、第一不純物拡散領域103の上部にエクステンション領域107を有するとともに第二不純物拡散領域105の上部にエクステンション領域107を有さず、第一不純物拡散領域103上に第一シリサイド層109を有するとともに、ゲート電極115側端部の近傍において第二不純物拡散領域105上にシリサイド層を有しない。 (もっと読む)


【課題】半導体装置の動作不良を防止し、半導体装置の製造工程を簡略化する。
【解決手段】本発明の例に関わる半導体装置は、半導体基板1と、半導体基板1内に設けられる一対の不純物拡散層2A,2Bと、不純物拡散層2A,2B間の半導体基板上に設けられるゲート絶縁膜3と、ゲート絶縁膜3上に設けられるゲート電極4と、一対の不純物拡散層2A,2B上にそれぞれ設けられる2つのコンタクト5A,5Bとを具備し、ゲート電極4とコンタクト5A,5Bは、同じ材料から構成され、ゲート電極4上端およびコンタクト5A,5B上端は、半導体基板1表面からの高さが一致する。 (もっと読む)


【課題】STIの圧縮応力を減少し、チャネル方向とチャネル幅方向の応力を印加することにより、駆動能力を増大したCMOS半導体装置とその製造方法を提供する。
【解決手段】半導体装置は、NMOSFET用活性領域AR1、PMOSFET用活性領域AR2を画定する素子分離溝STと、素子分離溝の下部のみを埋め、その上に凹部を画定する酸化シリコン膜OXと、NMOSFET領域AR1に形成されたNMOSFETと、PMOSFET領域AR2に形成されたPMOSFETと、NMOSFET構造を覆い、NMOSFET用活性領域AR1の周囲における凹部上及びPMOSFET用活性領域AR2のゲート幅方向外側における凹部上に延在して形成された引張応力膜TSFと、PMOSFET構造を覆い、PMOSFET用活性領域AR2のチャネル長方向外側における凹部上に延在して形成された圧縮応力膜CSFとを有する。 (もっと読む)


【課題】強力なプログラム/消去効率及び読み出し速度を示し低い動作電圧を許容する非常に小さいゲート形状及び全体サイズを有した高性能のトランジスタ及びメモリセルを製造して、チャネル長さを劇的にスケーリングできる半導体素子及びその製造方法を提供する。
【解決手段】本発明は、半導体トランジスタを形成する方法において、半導体基板領域上に該半導体基板領域から絶縁されるゲート電極を形成する工程と、前記ゲート電極の側壁(side-walls)に沿ってオフセットスペーサを形成する工程と、前記ゲート電極と各々のソース及びドレイン領域との間のオーバーラップの広さが前記オフセットスペーサの厚さに依存するように、前記オフセットスペーサを形成した後に、前記基板領域内にソース領域及びドレイン領域を形成する工程とを含む。 (もっと読む)


【課題】SOI構造を有するRC型トランジスタにおいて、しきい値電圧の低下を防止でき、さらに、しきい値電圧の制御や調整が容易にできる。
【解決手段】電界効果トランジスタを備えた半導体装置であって、電界効果トランジスタは、半導体基板1に形成された素子分離領域3によって仕切られた拡散層領域と、
その拡散層領域と交差するように設けられ、少なくとも一部が半導体基板1に形成されたゲート溝内に埋め込まれたゲート電極5と、拡散層領域内において、一方の側面がゲート電極5のうちゲート溝内に埋め込まれた部分と対向し、他方の側面が素子分離領域3の側面と接触するように形成されたSOI構造のチャネル層4とを有し、ソース・ドレイン領域として機能する不純物拡散層5がチャネル層4よりも上部に配置され、不純物拡散層5とチャネル層4とが離間して形成されている。 (もっと読む)


【課題】強力なプログラム/消去効率及び読み出し速度を示し低い動作電圧を許容する非常に小さいゲート形状及び全体サイズを有した高性能のトランジスタ及びメモリセルを製造して、チャネル長さを劇的にスケーリングできる半導体素子及びその製造方法を提供する。
【解決手段】本発明は、半導体トランジスタを形成する方法において、半導体基板領域上に該半導体基板領域から絶縁されるゲート電極を形成する工程と、前記ゲート電極の側壁(side-walls)に沿ってオフセットスペーサを形成する工程と、前記ゲート電極と各々のソース及びドレイン領域との間のオーバーラップの広さが前記オフセットスペーサの厚さに依存するように、前記オフセットスペーサを形成した後に、前記基板領域内にソース領域及びドレイン領域を形成する工程とを含む。 (もっと読む)


【課題】MISFETの移動度劣化を抑制する。
【解決手段】nMISFETQnは、基板1上にゲート絶縁膜3を介してゲート電極4を有している。ゲート絶縁膜3は、酸化シリコンよりも誘電率が高く、ハフニウムを含む酸化膜を有している。ゲート電極4は、ゲート絶縁膜3上に窒化チタン膜5と、窒化チタン膜5上にニッケルリッチのフルシリサイド膜6とを有している。pMISFETQpは、基板1上にゲート絶縁膜11を介してゲート電極12を有している。ゲート絶縁膜11は、酸化シリコンよりも誘電率が高く、ハフニウムを含む酸化膜を有している。ゲート電極12は、ゲート絶縁膜11上にニッケルリッチのフルシリサイド膜6を有している。 (もっと読む)


【課題】強力なプログラム/消去効率及び読み出し速度を示し低い動作電圧を許容する非常に小さいゲート形状及び全体サイズを有した高性能のトランジスタ及びメモリセルを製造して、チャネル長さを劇的にスケーリングできる半導体素子及びその製造方法を提供する。
【解決手段】本発明は、半導体トランジスタを形成する方法において、半導体基板領域上に該半導体基板領域から絶縁されるゲート電極を形成する工程と、前記ゲート電極の側壁(side-walls)に沿ってオフセットスペーサを形成する工程と、前記ゲート電極と各々のソース及びドレイン領域との間のオーバーラップの広さが前記オフセットスペーサの厚さに依存するように、前記オフセットスペーサを形成した後に、前記基板領域内にソース領域及びドレイン領域を形成する工程とを含む。 (もっと読む)


201 - 220 / 556