説明

Fターム[5F140BF21]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ゲート電極 (19,255) | 3層 (490)

Fターム[5F140BF21]に分類される特許

101 - 120 / 490


【課題】蛇行した形状に形成されたリセス部を備えることにより、オン抵抗を低減することができる電界効果トランジスタを提供することを目的とする。
【解決手段】電界効果トランジスタ1は、チャネル層11と、チャネル層11とヘテロ接合を構成するキャリア供給層12と、キャリア供給層12の表面から掘り下げて形成されたリセス部13と、リセス部13に沿って形成された第1絶縁層31と、第1絶縁層31の上に形成された第1ゲート電極23と、リセス部13に対してチャネル長方向の一方側に形成されたソース電極21と、リセス部13に対してチャネル長方向の他方側に形成されたドレイン電極22とを備える。リセス部13は、ソース電極21とドレイン電極22とが平面視で平行に対向するチャネル長の範囲内において、蛇行しながらチャネル長方向と交差する方向に延長されている。 (もっと読む)


【課題】チャネル層の厚みのバラツキを抑制できるJFET、MOSFETもしくはMESFETを備えた半導体装置およびその製造方法を提供する。
【解決手段】n+型層3に対して異方性エッチングを行うことによって凹部4を形成したのち、この凹部4内にエピタキシャル成長させることによってn型チャネル層5を形成する。これにより、n型チャネル層5を一定の膜厚かつ一定の濃度で形成することが可能となる。このため、従来の構造と異なり、n型チャネル層5の膜厚が一定なバラツキのない構造とすることが可能となる。したがって、JFETの特性も一定とすることが可能となる。 (もっと読む)


幅広い電子デバイスのアレイ及びシステムにおける電力消費を低減する一式の新たな構造及び方法が提供される。これらの構造及び方法のうちの一部は、大部分が既存のバルクCMOSのプロセスフロー及び製造技術を再利用することで実現され、半導体産業及びより広いエレクトロニクス産業がコスト及びリスクを伴って代替技術へ切り替わることを回避可能にする。これらの構造及び方法のうちの一部は、深空乏化チャネル(DDC)設計に関係し、CMOSベースのデバイスが従来のバルクCMOSと比較して低減されたσVTを有することと、チャネル領域にドーパントを有するFETの閾値電圧VTがより一層正確に設定されることとを可能にする。DDC設計はまた、従来のバルクCMOSトランジスタと比較して強いボディ効果を有することができ、それにより、DDCトランジスタにおける電力消費の有意義な動的制御が可能になる。
(もっと読む)


【課題】MIPS構造等のゲート電極と同時形成が可能であり且つ抵抗が高い抵抗素子を有する半導体装置及びその製造方法を提供する。
【解決手段】基板上に金属含有膜108及びポリシリコン膜109を順次形成する工程と、前記金属含有膜及び前記ポリシリコン膜を抵抗素子形状にパターニングする工程と、前記金属含有膜の少なくとも一部分を除去することにより、前記ポリシリコン膜の下に中空領域119を形成する工程とを備えている。 (もっと読む)


【課題】ゲート電極とプラグとの接続信頼性を向上することができる技術を提供する。
【解決手段】本発明では、MISFETのゲート電極G1を金属膜MF2とポリシリコン膜PF1の積層膜から構成するMIPS電極を前提とする。そして、このMIPS電極から構成されるゲート電極G1のゲート長に比べて、ゲートコンタクトホールGCNT1の開口径を大きく形成する第1特徴点と、ゲート電極G1を構成する金属膜MF2の側面に凹部CP1を形成する第2特徴点により、さらなるゲート抵抗(寄生抵抗)の低減と、ゲート電極G1とゲートプラグGPLG1との接続信頼性を向上することができる。 (もっと読む)


【課題】RC型トランジスタのチャネル領域の高さを所望の範囲に調整するとともに、前記チャネル領域に近接して残存する薄皮状のバリ部を完全に除去して、半導体装置を製造するという課題があった。
【解決手段】半導体基板1の一面に、溝部と、溝部に囲まれ、側壁面の少なくとも一部が傾斜面である凸部39とを形成してから、溝部を埋める素子分離用絶縁膜を形成する第1工程と、素子分離用絶縁膜をマスクの一部にして半導体基板1の一面をドライエッチングして凸部39内に凹部27を設けるとともに、凹部27と素子分離用絶縁膜との間にチャネル領域4となる薄肉部41を形成する第2工程と、ウェットエッチングにより、薄肉部41の高さを調整する第3工程と、を有する半導体装置の製造方法を用いることにより、上記課題を解決できる。 (もっと読む)


【課題】 ウェット洗浄工程を増加させることなく、かつ、より低温でシリサイドを形成することが可能なシリサイドの形成方法を提供すること。
【解決手段】 表面にシリコンとシリコン酸化物とが露出している基板101上にシリサイドを形成するシリサイドの形成方法であって、基板101の温度を400℃以上として、シリコンとシリコン酸化物とが露出している基板101の表面上にマンガン有機化合物ガスを供給し、基板101の表面に露出したシリコンを選択的にマンガンシリサイド化する。 (もっと読む)


【課題】高誘電率ゲート絶縁膜およびメタルゲート電極を有するMISFETを備えた半導体装置の信頼性向上を図る。
【解決手段】nチャネル型MISFET用の高誘電率ゲート絶縁膜としてHfとLaとOとを主成分として含有するHf含有絶縁膜4aを形成し、pチャネル型MISFET用の高誘電率ゲート絶縁膜としてHfとAlとOとを主成分として含有するHf含有絶縁膜4bを形成する。それから、金属膜7とシリコン膜8を形成し、これらをドライエッチングでパターニングしてゲート電極GE1,GE2を形成する。その後、ゲート電極GE1,GE2で覆われない部分のHf含有絶縁膜4a,4bをウェットエッチングで除去するが、この際、フッ酸を含有しない酸性溶液でのウェット処理とアルカリ性溶液でのウェット処理とを行ってから、フッ酸を含有する酸性溶液でのウェット処理を行う。 (もっと読む)


【課題】MIPS構造を採るメタル膜とコンタクトプラグとの界面抵抗を低減できるようにする。
【解決手段】まず、半導体基板1の上に、ゲート絶縁膜3を形成し、形成したゲート絶縁膜3の上に、TiN膜4及びポリシリコン膜5を順次形成する。続いて、ポリシリコン膜5にTiN膜4を露出するコンタクトホール5aを形成する。続いて、ポリシリコン膜5における第1のコンタクトホール5aの少なくとも底面及び壁面上に金属膜7を形成する。 (もっと読む)


【課題】ナローチャネル特性の劣化を抑制する。
【解決手段】素子分離領域STIは、半導体基板100に形成されたトレンチ104内に設けられており、トレンチ104の側壁上に形成された下地絶縁膜105を有している。素子形成領域100a上にはゲート絶縁膜112が形成されており、ゲート絶縁膜112は高誘電率膜110を有している。高誘電率膜110の第1の部分110aは、素子形成領域100aにおける上面上に形成されており、高誘電率膜110の第2の部分110bは、素子形成領域における上部側面104a上に下地絶縁膜105を介して形成されている。第2の部分110bと下地絶縁膜105との間には、MISトランジスタの閾値電圧を変更する金属を含有する第1のキャップ膜106が設けられている。 (もっと読む)


【課題】SiGe層を用いてPチャネル型トランジスタのチャネル形成領域に圧縮応力を印加すると共に、リーク電流を低減する。
【解決手段】半導体装置120は、半導体基板100の表面部に形成されたソース領域及びドレイン領域122と、これらに挟まれたチャネル形成領域上にゲート絶縁膜101を介して形成されたゲート電極102とを含むPチャネル型トランジスタを備える。ゲート電極102の両側それぞれにおいて半導体基板100にリセスが形成され、リセスに、SiGeからなる第1エピタキシャル層111と、その上に形成され且つSiからなる第2エピタキシャル層112と、その上に形成され且つSiGeからなり、チャネル形成領域を挟む第3エピタキシャル層113とを備える。ソース領域及びドレイン領域122は、第3エピタキシャル層113中に形成され、且つ、それぞれの接合深さがいずれも第3エピタキシャル層133の深さよりも浅い。 (もっと読む)


【課題】 半導体装置に関し、ソース・ドレイン領域を実効的に埋込Si混晶層で構成する際の電気的特性を向上する
【解決手段】 一導電型シリコン基体と、一導電型シリコン基体上に設けたゲート絶縁膜と、ゲート絶縁膜の上に設けたゲート電極とゲート電極の両側の一導電型シリコン基体に設けた逆導電型エクステンション領域と、逆導電型エクステンション領域に接するとともに、一導電型シリコン基体に形成された凹部に埋め込まれた逆導電型Si混晶層とを備えた半導体装置であって、逆導電型Si混晶層が、第1不純物濃度Si混晶層/第2不純物濃度Si混晶層/第3不純物濃度Si混晶層を有し、第2不純物濃度を第1不純物濃度及び第3不純物濃度よりも高くする。 (もっと読む)


【課題】ゲート構造としてメタル電極/High−k膜構造を用いた半導体装置において、仕事関数の制御とEOTの薄膜化とを両立させる。
【解決手段】半導体基板101におけるnチャネルMISトランジスタ形成領域の上に、ゲート絶縁膜として、第1の高誘電率絶縁層202、アルミニウム含有層203、ランタン含有層204及び第2の高誘電率絶縁層205を順次形成する。その後、ゲート電極形成を行う。 (もっと読む)


【課題】トレンチゲート型FIN−FETにおいて、微細化に対してもFIN型トランジスタの利点を十分に発揮し、また、活性領域において十分なコンタクト面積を確保し、オン電流の低下を抑制したトレンチゲート型FIN−FETを提供する。
【解決手段】チャネル領域のFIN幅(162)を活性領域の幅(161)よりも狭くする。 (もっと読む)


【課題】高誘電体ゲート絶縁膜/メタルゲート電極のMOSトランジスタ構造において、メタルゲート電極側壁の酸化層を抑制し、トランジスタ駆動能力を改善する。
【解決手段】基板101上に、金属含有膜110を形成する工程(a)と、反応室内において金属含有膜にアンモニアラジカルを曝露する工程(b)と、反応室内に不活性ガスを供給し、工程(b)において生じたガスを排気する工程(c)と、工程(b)及び工程(c)を所定の回数繰り返した後に、大気曝露することなく、反応室内において金属含有膜110を覆うシリコン窒化膜100aを形成する工程(d)とを備える。 (もっと読む)


【課題】MOSFETの性能をより向上する。
【解決手段】半導体装置の製造方法は、半導体基板11上に、ゲート絶縁膜材料とメタルゲート電極材料とを含む積層膜を堆積する工程と、マスク層19を用いて積層膜を加工し、半導体基板11上にゲート絶縁膜15及びメタルゲート電極16を含むゲート構造を形成する工程と、ゲート構造の側面に、絶縁物からなる側壁20を形成する工程と、側壁20をマスクとして半導体基板11に不純物を導入し、エクステンション領域21及びハロー領域22を形成する工程と、側壁20をマスクとして半導体基板11を掘り下げ、半導体基板11にリセス領域26を形成する工程と、リセス領域26にSiGe層27を形成する工程と、側壁20の側面に、絶縁物からなる側壁28を形成する工程と、マスク層19をドライエッチングする工程とを含む。 (もっと読む)


【課題】p型MISトランジスタのゲート絶縁膜の酸化膜換算膜厚の厚膜化を抑制しつつ、p型MISトランジスタの実効仕事関数を増加させて、低閾値電圧を有するn型,p型MISトランジスタを実現する。
【解決手段】半導体装置は、第1,第2のMISトランジスタnTr,pTrを備えている。第1のMISトランジスタnTrは、第1の活性領域10a上に形成され、第1の高誘電率膜14Xaを有する第1のゲート絶縁膜14Aと、第1のゲート電極18Aとを備えている。第2のMISトランジスタpTrは、第2の活性領域10b上に形成され、第2の高誘電率膜14xを有する第2のゲート絶縁膜14Bと、第2のゲート電極18Bとを備えている。第2の高誘電率膜14xは、第1の調整用金属を含む。第1の高誘電率膜14Xaは、第2の高誘電率膜14xよりも窒素濃度が高く、且つ、第1の調整用金属を含まない。 (もっと読む)


【課題】ソース/ドレイン領域のPN接合部とコンタクト間のリーク電流を抑制する。
【解決手段】半導体基板(1)と、半導体基板(1)に形成されたSTI(Shallow Trench Isolation)構造(2)と、半導体基板(1)に形成され、STI構造(2)に隣接する拡散領域(12)と、層間絶縁膜(15)を貫通して拡散領域(12)とSTI構造(2)とに到達する接続コンタクト(20)と、拡散領域(12)の側面と拡散領域(12)の下の半導体基板(1)の側面に形成され、接続コンタクト(20)と拡散領域(12)の側面とを電気的に絶縁し、かつ、接続コンタクト(20)と半導体基板(1)の側面とを電気的に絶縁する酸化膜(19)とを具備する半導体装置を構成する。その半導体装置では、STI素子分離とソース/ドレイン領域のPN接合部分の間のみに選択的に絶縁膜(酸化膜)を形成している。 (もっと読む)


【課題】金属ゲート電極/高誘電体ゲート絶縁膜構造のMISトランジスタを有する半導体装置を高性能化する。
【解決手段】シリコン基板1上に、順に、ハフニウムおよび酸素を主体とする高誘電体膜hk1と、第1金属および酸素を主体とし、化学量論的組成よりも多くの第1金属を含むpMIS用キャップ膜Cp1を形成する。その後、シリコン基板1に、第1熱処理と第2熱処理とを順に施す。続いて、pMIS用キャップ膜Cp1上にゲート電極用金属膜EM1を形成し、これらを加工することでpMIS用金属ゲート電極pG1とpMIS用高誘電率ゲート絶縁膜pI1とを形成する。特に、第1熱処理では高誘電体膜hk1中の余剰酸素を除去し、第2熱処理では高誘電体膜hk1中にpMIS用キャップ膜Cp1中の第1金属を拡散させる。第1熱処理は、第2熱処理よりも低い温度で施す。 (もっと読む)


【課題】
微細化したMOSトランジスタを含む半導体装置において、リーク/ショートの可能性を抑制する。
【解決手段】
半導体装置の製造方法は、活性領域上に、ゲート絶縁膜とシリコン膜とを形成し、シリコン膜上方にゲート電極用レジストパターンを形成し、レジストパターンをマスクとして、シリコン膜を厚さの途中までエッチングしてレジストパターン下方に凸部を残し、レジストパターンを除去した後シリコン膜を覆うダミー膜を形成し、ダミー膜を異方性エッチングして、凸部の側壁にダミー膜を残存させつつ、平坦面上のダミー膜を除去し、ダミー膜をマスクとして、シリコン膜の残りの厚さをエッチングしてゲート電極を形成し、ゲート電極両側の半導体基板に、ソース/ドレイン領域を形成し、シリコン領域にシリサイドを形成する。 (もっと読む)


101 - 120 / 490