説明

Fターム[5F140BF21]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ゲート電極 (19,255) | 3層 (490)

Fターム[5F140BF21]に分類される特許

81 - 100 / 490


【課題】所望の実効仕事関数(例えば、高い実効仕事関数)を実現し、かつ、EOTが変化しない、またはEOTの変化を低減した金属窒化膜、金属窒化膜を用いた半導体装置、および半導体装置の製造方法を提供すること。
【解決手段】本発明の一実施形態に係る金属窒化膜は、TiとAlとNを含有し、該金属窒化膜のTiとAlとNのモル比率(N/(Ti+Al+N))が0.53以上であり、かつ、上記金属窒化物層のTiとAlとNのモル比率(Ti/(Ti+Al+N))が0.32以下であり、かつ上記金属窒化物層のTiとAlとNのモル比率(Al/(Ti+Al+N))が0.15以下である。 (もっと読む)


本願は、半導体デバイス及びその製造方法に関するものである。本発明の半導体デバイスの製造方法は、半導体基板を提供する工程と、半導体基板に、該半導体基板に形成されたゲート絶縁層及び該ゲート絶縁層に形成された犠牲ゲートを含むゲート領域と、ソース/ドレイン領域とを含むトランジスタ構造を形成する工程と、第1の層間絶縁層を堆積し、犠牲ゲートを露出させるように該第1の層間絶縁層に対して平坦化を行う工程と、犠牲ゲートを除去して、リプレースメントゲートホールを形成する工程と、第1の層間絶縁層におけるソース/ドレイン領域に対応する位置に、第1のコンタクトホールを形成する工程と、第1のコンタクトホール及びリプレースメントゲートホールに第1の導電材料を充填して、ソース/ドレイン領域に接触する第1のコンタクト部と、リプレースメントゲートとを形成する工程とを含む。本発明によれば、リプレースメントゲートと第1のコンタクト部は、同一の工程で同じ材料を堆積して形成することができるため、製造プロセスを簡単化できた。
(もっと読む)


【課題】接合リーク電流が低減されるとともに、セル容量への書き込み・読み出しに十分な電流駆動能力を確保することが可能な半導体装置及びその製造方法を提供する。
【解決手段】半導体基板1に形成された複数の埋め込みゲート型MOSトランジスタ2を有し、半導体基板1には素子分離領域と活性領域とが形成されており、ゲートトレンチの内部に形成され、少なくとも一部がワード線として設けられるとともに、その他の残部が、活性領域を複数の素子領域に分離する素子分離として設けられる埋め込みゲート電極31A、31Bと、ソース・ドレイン拡散層15、45とが備えられ、埋め込みゲート電極31A、31Bは、上部電極31aと下部電極31bとの積層構造とされ、且つ、半導体基板1の上面側のソース・ドレイン拡散層15、45側に配置される上部電極31aが、下部電極31bに比べて、仕事関数の低いゲート材料からなる。 (もっと読む)


【課題】ポリシリコンゲート電極の意図しないフルシリサイド化を防止する。
【解決手段】基板17上に、ゲート絶縁膜12およびシリコン層10をこの順に積層した積層体(10、12)を形成する工程と、積層体(10、12)の側壁沿いにSiN膜を有するオフセットスペーサ13を形成する工程と、その後、シリコン層10の上面を、薬液を用いて洗浄する工程と、その後、少なくともシリコン層10の上面を覆う金属膜19を形成する工程と、その後、加熱する工程と、を有し、オフセットスペーサ13が有するSiN膜は、ALD法を用いて450℃以上で成膜されたSiN膜、または、1Gpa以上の引張/圧縮応力を有するSiN膜であり、前記薬液は、重量比率で、HF/HO=1/100以上であるDHF、または、バッファードフッ酸である半導体装置の製造方法を提供する。 (もっと読む)


【課題】耐電圧、耐熱性、耐放射線性、及び高速性が優れ、かつ、チャネル領域を短くでき、素子の応答性が高いダイヤモンド半導体素子を高精度で製造できる半導体素子の製造方法を提供する。
【解決手段】第1のダイヤモンド半導体領域1の表面上に、絶縁膜2と多層金属電極層3と犠牲層4とを積層し、犠牲層4上に、局所的にレジスト5をパターン形成する。多層金属電極層3の最上層は、Pt又はPt合金により形成する。そして、レジスト5をマスクとして第1の犠牲層、多層金属電極層及び絶縁膜をエッチングした後、レジスト5を除去して、第1のダイヤモンド半導体領域1上に絶縁膜2と金属電極層3と第1の犠牲層4との積層体をパターン形成する。その後、第1のダイヤモンド半導体領域1上に、不純物の高濃度ドープ層7を形成する。その後、犠牲層4をエッチング除去し、高濃度ドープ層7上に金属電極8を形成する。 (もっと読む)


【課題】 フィン型MISトランジスタ、プレーナ型MISトランジスタ及び抵抗素子を集積化した半導体装置において、的確な製造方法を提供する。
【解決手段】 フィン部10aを形成する工程と、フィン部の側面に第1のゲート絶縁膜14及び第1のゲート電極膜15を形成する工程と、フィン部並びにフィン部の側面に形成された第1のゲート絶縁膜及び第1のゲート電極膜を囲み、第1のゲート電極膜に接する半導体導電部16aを形成する工程と、半導体導電部上並びにプレーナ型MISトランジスタ形成領域及び抵抗素子形成領域に、第2のゲート絶縁膜20及び第2のゲート電極膜21を形成する工程と、半導体導電部上及び抵抗素子形成領域に形成された第2のゲート絶縁膜及び第2のゲート電極膜を除去する工程と、半導体導電部上並びにプレーナ型MISトランジスタ形成領域及び抵抗素子形成領域に、抵抗素子用の半導体膜を形成する工程とを備える。 (もっと読む)


【課題】エンハンメント型GaN系HFETの閾値電圧のバラツキを低減する。
【解決手段】窒化物半導体装置80では、第2のリセスエッチングによりアンドープGaN層3の上部に突起部51が設けられる。突起部51上には、上部が第1のリセスエッチングにより形成されたアンドープAlGaN層4aが設けられる。積層部7は、アンドープGaN層3の突起部51、アンドープAlGaN層4a、及び絶縁膜5から構成される。トレンチ部8は、絶縁膜5、アンドープAlGaN層4a、及びアンドープGaN層3表面がリセスエッチングされたものである。積層部7及びトレンチ部8上にはゲート絶縁膜6が設けられる。ゲート絶縁膜6上には、トレンチ部8を覆うようにゲート電極33が設けられる。絶縁膜5はゲート絶縁膜6よりも膜厚が厚く設定されている。 (もっと読む)


【課題】メタルゲート電極内に基板面に対して平行な金属とシリコンなどとの境界又はシリサイドとシリコンなどとの境界を含むメタルゲート電極において、トランジスタの接続抵抗が小さく、高速動作時のトランジスタの遅延又はトランジスタ特性のばらつきなどの特性劣化の懸念がなく、且つ、低コストな構造を有する半導体装置を提供する。
【解決手段】半導体装置は、半導体基板101上に、ゲート絶縁膜105と、pMIS用金属材料109又はnMIS用金属材料111と、ゲート電極材料112と、ゲート側壁メタル層122とを備えている。 (もっと読む)


【課題】適切な仕事関数を有する金属ゲート電極を備え、トランジスタ特性のばらつきが抑えられた半導体装置およびその製造方法を提供する。
【解決手段】半導体装置は、半導体基板1001と、半導体基板1001内に形成された第1導電型の第1の活性領域1003と、第1の活性領域1003上に形成された第1のゲート絶縁膜1030aと第1のゲート電極1032aとを有し、第1の活性領域1003上に形成された第1チャネル型の第1のMISFET1050とを備える。第1のゲート電極1032aは、第1のゲート絶縁膜1030a上に形成され、金属原子を含む第1の下部ゲート電極1011aと、炭素の単体を含む材料、または分子中に炭素を含む材料からなる第1の酸化防止膜1012aと、第1の上部ゲート電極1013aとを有している。 (もっと読む)


【課題】DRAM素子のような半導体装置において、半導体基板の溝部におけるゲート電極の埋設状態が良好となり、配線抵抗が低減され、素子特性に優れた半導体装置の製造方法を提供する。
【解決手段】シリコン基板1の表面にゲート電極溝13を形成する工程と、ゲート電極溝13の内面に第1のバリア膜16aを形成する工程と、第1のバリア膜16aをエッチバックして、ゲート電極溝13の底面に第1のバリア膜16aの一部を残存させながら除去する工程と、ゲート電極溝13の内面と残存した第1のバリア膜16aの表面に第2のバリア膜16bを形成する工程と、第2のバリア膜16aの表面にタングステン膜を形成する工程と、このタングステン膜及び第2のバリア膜16bをエッチバックしてゲート電極溝13内にそれぞれ一部を残存させながら各膜を一括除去する工程と、を具備する。 (もっと読む)


【課題】 各膜の組成が異なる積層膜を、極めて効率よく、しかも酸化等の不都合が生じることなく形成することができる積層膜の形成方法を提供すること。
【解決手段】 処理室内に基板1を配置し、処理室に、少なくとも、金属カルボニルを含有する原料を含む成膜原料を導入し、CVDにより基板1上に金属カルボニル中の金属を含む複数の膜6a、6bを含む積層膜を形成する積層膜の形成方法であって、上記積層膜に含まれる膜は、同一処理室内で、原料種および/または成膜条件を異ならせて連続成膜され、上記膜の組成が異なる積層膜を形成する。 (もっと読む)


【課題】第1のMISトランジスタの閾値電圧が高くなることを防止する。
【解決手段】半導体装置は、第1,第2のMISトランジスタTr1,Tr2を備えている。第1,第2のMISトランジスタは、第1,第2の活性領域10a,10b上に形成され、第1,第2の高誘電率膜13a,13bを有する第1,第2のゲート絶縁膜13A,14Bと、第1,第2のゲート絶縁膜上に形成された第1,第2のゲート電極18A,18Bとを備えている。第1のゲート絶縁膜13Aと第2のゲート絶縁膜14Bとは、第1の素子分離領域11L上において分離されている。第1の素子分離領域11Lを挟んで対向する第1の活性領域10aの一端と第2の活性領域10bの一端との距離をsとし、第1の活性領域10aの一端から第1の素子分離領域11L上に位置する第1のゲート絶縁膜13Aの一端までの突き出し量をd1としたとき、d1<0.5sの関係式が成り立っている。 (もっと読む)


【課題】MISトランジスタに適当なしきい値電圧が与えられる一方、抵抗素子はシリコン膜からなる抵抗体層の異常成長を抑制して、シリコン膜の膜厚を安定化する。
【解決手段】半導体装置は、半導体基板10の上部に形成された素子分離領域12によって囲まれた第1の活性領域10a、第1の活性領域の上に形成された第1の高誘電体膜14aを有する第1のゲート絶縁膜27a、及び第1のゲート絶縁膜の上に形成された第1のゲート電極28aとを有する第1導電型の第1のMISトランジスタ1aと、素子分離領域の上に形成された第2の高誘電体膜14x、及び該第2の高誘電体膜の上に形成されたシリコンからなる抵抗体層20xを有する抵抗素子1xとを備えている。第1の高誘電体膜と第2の高誘電体膜とは、互いに同一の高誘電体材料からなり、第1の高誘電体膜は第1の調整用金属を含み、第2の高誘電体膜は第1の調整用金属を含まない。 (もっと読む)


幅広い電子デバイスのアレイ及びシステムにおける電力消費を低減する一式の新たな構造及び方法が提供される。これらの構造及び方法の一部は、大部分が、既存のバルクCMOSのプロセスフロー及び製造技術を再利用することで実現され、半導体産業及びより広いエレクトロニクス産業がコスト及びリスクを伴って代替技術へ切り替わることを回避可能にする。これらの構造及び方法の一部は、深空乏化チャネル(DDC)設計に関係し、CMOSベースのデバイスが従来のバルクCMOSと比較して低減されたσVTを有することと、チャネル領域にドーパントを有するFETの閾値電圧VTがより正確に設定されることとを可能にする。DDC設計はまた、従来のバルクCMOSトランジスタと比較して強いボディ効果を有することができ、それにより、DDCトランジスタにおける電力消費の有意義な動的制御が可能になる。様々な効果を達成するようDDCを構成する手法が数多く存在し得るとともに、ここに提示される更なる構造及び方法は、更なる利益を生み出すように単独あるいはDDCとともに使用され得る。
(もっと読む)


【課題】 金属膜の酸化に起因する特性劣化を最小限に抑えることができる半導体装置の製造方法及び基板処理装置を提供する。
【解決手段】 処理容器内に基板を搬入する工程と、処理容器内に処理ガスを供給し排気して化学的蒸着法により基板上に金属膜を形成する工程と、処理容器内にアルミニウム原子を含む原料ガスと窒素原子を含むガスとを供給し排気して化学的蒸着法により金属膜上に窒化アルミニウム膜を形成する工程と、金属膜および窒化アルミニウム膜形成後の基板を処理容器内から搬出する工程と、を有し、金属膜を形成する工程と窒化アルミニウム膜を形成する工程は、処理容器内を非酸素雰囲気に保った状態で連続的に行われる。 (もっと読む)


【課題】ゲート電極構造の垂直方向の抵抗を低減する。
【解決手段】半導体基板1と、半導体基板1の上に形成されたゲート絶縁膜2と、ゲート絶縁膜2の上に形成された仕事関数制御層3と、仕事関数制御層3の上に形成された第1のシリサイド層4と、第1のシリサイド層4の上に形成されたポリシリコンゲート電極5と、ポリシリコンゲート電極5の下の半導体基板1中の領域を挟んで半導体基板1中に形成されるソース領域6およびドレイン領域7と、を有する半導体装置を提供する。 (もっと読む)


【課題】ゲート電極抵抗の増大や工程数の増加を招くことなく、シリコン混晶層を用いた歪技術により、半導体装置の高性能化を実現する。
【解決手段】半導体基板100における第1のゲート電極106Aから見て第1の絶縁性サイドウォールスペーサ111Aの外側に第1のソースドレイン領域114Aを形成する。その後、半導体基板100における第2のゲート電極106Bから見て第2の絶縁性サイドウォールスペーサ111Bの外側にリセス部119を形成すると共に、第2のゲート電極106Bを部分的に除去する。その後、リセス部109内に、第2のソースドレイン領域114Bとなるシリコン混晶層120を形成する。 (もっと読む)


量子井戸トランジスタは、ゲルマニウムの量子井戸チャネル領域を有する。シリコンを含有したエッチング停止領域が、チャネル近くへのゲート誘電体の配置を容易にする。III−V族材料のバリア層がチャネルに歪みを付与する。チャネル領域の上及び下の傾斜シリコンゲルマニウム層によって性能が向上される。複数のゲート誘電体材料によって、high−k値のゲート誘電体の使用が可能になる。
(もっと読む)


【課題】低コストで必要な仕事関数及び耐酸化性を有する金属膜を備えた半導体装置を提供する。
【解決手段】基板上に形成された絶縁膜と、絶縁膜に隣接して設けられた金属膜と、を有し、金属膜は、第1の金属膜と第2の金属膜との積層構造を有しており、第1の金属膜は第2の金属膜よりも耐酸化性が高い物質で構成され、第2の金属膜は4.8eVよりも高い仕事関数を有する第1の金属膜とは異なる物質で構成され、第1の金属膜は第2の金属膜と絶縁膜との間に設けられている。 (もっと読む)


【課題】耐放射線性を有する絶縁ゲート型半導体素子、絶縁ゲート型半導体集積回路を提供する。
【解決手段】一部がチャネル領域をなすp型の半導体層11と、半導体層11の上部に活性領域21Bを定義する素子分離絶縁膜21と、チャネル領域にキャリア注入口を介してキャリアを注入するn型の第1主電極領域12と、チャネル領域から、キャリアを排出するキャリア排出口を有するn型の第2主電極領域13と、活性領域21Bの上に設けられたゲート絶縁膜22と、ゲート絶縁膜22の上に設けられ、第1主電極領域12と第2主電極領域13との間を流れるキャリアの流路に直交する主制御部、主制御部に交わる2本のガード部241,242を有してπ字型をなすゲート電極24と、第2主電極領域13のゲート幅方向の両端側に設けられたp型のリーク阻止領域61,62とを備える。 (もっと読む)


81 - 100 / 490