説明

半導体装置及びその製造方法

【課題】高誘電体ゲート絶縁膜/メタルゲート電極のMOSトランジスタ構造において、メタルゲート電極側壁の酸化層を抑制し、トランジスタ駆動能力を改善する。
【解決手段】基板101上に、金属含有膜110を形成する工程(a)と、反応室内において金属含有膜にアンモニアラジカルを曝露する工程(b)と、反応室内に不活性ガスを供給し、工程(b)において生じたガスを排気する工程(c)と、工程(b)及び工程(c)を所定の回数繰り返した後に、大気曝露することなく、反応室内において金属含有膜110を覆うシリコン窒化膜100aを形成する工程(d)とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体装置及びその製造方法に関し、詳細には、高誘電体ゲート絶縁膜及びメタルゲート電極構造を有する半導体装置について、メタルゲート電極側壁を改良することに関する。
【背景技術】
【0002】
半導体装置の高速化・高集積化に伴い、トランジスタ形状の微細化が進められている。
【0003】
半導体装置のうち、相補型MOS(CMOS、Complementary Metal Oxide Semiconductor )デバイスでは、NMOS(n-channel MOS)とPMOS(p-channel MOS)との二種類のトランジスタが用いられる。NMOSトランジスタは電子の移動によって、PMOSトランジスタは正孔の移動によって、それぞれ電流のオン・オフを制御する。
【0004】
従来、CMOSデバイスに用いられるゲート絶縁膜は一般的にシリコン酸化膜により形成され、誘電率は3.9程度を示す。しかし、トランジスタの微細化に伴ってゲート絶縁膜が薄膜化されると、リーク電流が増大し、消費電力及び待機電力の高いデバイスとなってしまう。そこで、4.0以上の誘電率を有するゲート絶縁膜を用いることにより、実際の膜厚はシリコン酸化膜より厚くても、実効的な膜厚(EOT)を薄くできるHigh-k(高誘電体)ゲート絶縁膜の開発が進んでいる。
【0005】
しかしながら、従来のポリシリコンゲート電極とHigh-kゲート電極とを組み合わせただけでは、ゲート電極の空乏化と呼ばれる現象が生じる。これは、High-kゲート絶縁膜とポリシリコンゲート電極との間に空乏層容量が形成され、EOTが薄いというHigh-kゲート絶縁膜の利点が失われる現象である。ゲート電極の空乏化を防ぐためには、ポリシリコンゲート電極に代えて金属ゲート電極を組み合わることが必須である。更に、High-kゲート絶縁膜/金属ゲート電極による適正な閾値電圧(Vt)の制御がCMOSデバイスを構築する上で重要になっている。
【0006】
従来のシリコン酸化膜ゲート絶縁膜/ポリシリコンゲート電極の場合、ポリシリコン中にホウ素、リン等の不純物をイオン注入し、熱処理によって活性化することで、ポリシリコンの仕事関数を向上することができる。例えば、ノンドープ状態の仕事関数は4.65eVであるのに対し、ホウ素をイオン注入することにより、5.15eVまで向上することができる。これを利用してNMOS及びPMOSのVtを制御することが可能であった。
【0007】
しかし、High-kゲート絶縁膜を用いる場合、High-kゲート絶縁膜中に存在する高密度のトラップにより、フェルミレベルが固定されてしまうフェルミレベルピニング現象が起きる。このため、イオン注入によるドーピングレベルでは仕事関数を変化させることができず、閾値電圧の制御は不可能であった。更に、金属ゲート電極とポリシリコンゲート電極とを組み合わせたMIPS(Metal-Inserted-Poly-Si Stack)と呼ばれる構造においても、イオン注入による仕事関数の調整は難しく、ゲート電極に用いられる金属の仕事関数がVt制御に対して支配的になる。
【0008】
このようなHigh-kゲート絶縁膜と金属ゲート電極との組み合わせにおける仕事関数の研究においては、チタン、タングステン、タンタル、モリブデンの窒化物が用いられている。特に、DRAM電極材料として、従来用いられてきたチタンやタングステンの窒化物が、ドライエッチング、ウェットエッチング等の加工特性を考える上で、金属ゲート電極材料としては扱いやすい。
【0009】
また、MIPSゲート構造を形成した後には、エクステンションイオン注入層を形成するために、ゲート電極側壁にオフセットスペーサを形成する。High-k・メタルゲート構造の場合、従来のようにシリコン酸化膜を用いてオフセットスペーサを形成しようとすると、原料ガスである酸化剤によってメタルゲート電極が酸化されてしまう。そこで、シリコン酸化膜に代えて、シリコン窒化膜を採用することが多い。
【0010】
非特許文献1では、このようなオフセットスペーサとなるシリコン窒化膜の成膜温度と、シリコンソースである原料ガスを変えることにより、トランジスタの駆動能力を改善できると述べられている。具体的には、400℃程度の低温にて塩素を含まないシリコンソースを用い、シリコン窒化膜を形成することが述べられている。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特開2004−186534号公報
【非特許文献】
【0012】
【非特許文献1】N.Mise , et al. Solid State Devices and Materials, 2007, pp. 724-725
【発明の概要】
【発明が解決しようとする課題】
【0013】
しかしながら、ゲートメタル膜と、その上のPoly−Si膜とを形成した後、レジストによりパターニングしてゲートエッチングを行なうと、レジストを除去するためのプラズマ酸化によるアッシング、空気中に曝露されるために起る自然酸化により、メタルゲート電極側壁が酸化される。
【0014】
メタルゲート電極側壁の酸化は、自然酸化膜であれば1nm〜2nm程度、アッシング酸化膜であれば2nm〜5nm程度の厚さに酸化されていると予想できる。このようなメタルの酸化、つまり絶縁膜化が生じると、メタルゲート電極の利点が損なわれる。特に、ゲート長が短くなるほど、同じ厚さの酸化膜であってもゲート長に対する割合が大きくなるため、影響は大きくなる。
【0015】
このようなメタル酸化膜を除去しようとして、例えばフッ酸系の洗浄を行なったとすると、High-kゲート絶縁膜も同時にエッチングされることが懸念される。このため、過度の洗浄は行えない。更に、洗浄を行なったとしても、オフセットスペーサとなるシリコン窒化膜を形成する前に大気曝露されるため、メタルゲート電極側壁には必ず酸化膜が形成されることになる。
【0016】
以上に鑑み、本発明の目的は、High-kゲート絶縁膜/メタルゲート電極構造において、メタルゲート電極の酸化層を抑制し、トランジスタの駆動能力を改善することである。
【課題を解決するための手段】
【0017】
前記の目的を達成するため、本開示に係る半導体装置の製造方法は、基板上に金属含有膜を形成する工程(a)と、反応室内において金属含有膜にアンモニアラジカルを曝露する工程(b)と、反応室内に不活性ガスを供給し、工程(b)において生じたガスを排気する工程(c)と、工程(b)及び工程(c)を所定の回数繰り返した後、大気曝露することなく、反応室内において金属含有膜を覆うシリコン窒化膜を形成する工程(d)とを備える。
【0018】
尚、工程(b)及び工程(c)は、金属含有膜の表面に形成された自然酸化膜が還元されるまで繰り返すことが好ましい。
【0019】
このような半導体装置の製造方法によると、工程(b)及び工程(c)において、金属含有膜表面に形成された自然酸化膜をアンモニアラジカルによって還元すると共に窒化することができる。つまり、金属含有膜表面に形成された自然酸化膜中の酸素とアンモニアラジカル中の水素とを反応させて水として脱離させると共に、アンモニアラジカル中の窒素と、酸素が脱離して残された金属とを結合させる。このような工程(b)と、該工程(b)において生じたガス(脱離した水等)を不活性ガスにより排気する(パージする)行程(c)とを交互に繰り返した後、工程(d)として、大気曝露することなく同じ反応室にて金属含有膜を覆うシリコン窒化膜を形成することにより、金属含有膜が再度自然酸化されるのを防ぐことができる。この結果、金属含有膜としてメタルゲート電極を形成した場合に、酸化膜に起因する駆動力の低下を抑制することができる。
【0020】
また、工程(b)は、400℃以上で且つ800℃以下の温度範囲において行なうことが好ましい。
【0021】
また、アンモニアラジカルは、高周波電圧が印加された一対の電極板の間にアンモニアを供給することにより発生させることが好ましい。
【0022】
また、アンモニアラジカルは、金属触媒にアンモニアを供給し且つ紫外線を照射することにより発生させることが好ましい。金属触媒は、白金族元素、Ti、Zr又はMnを含むことが好ましい。
【0023】
アンモニアラジカルは、このような方法により発生させることができる。
【0024】
また、金属含有膜は、基板上に高誘電体ゲート絶縁膜を介して形成されるメタルゲート電極であり、高誘電体ゲート絶縁膜は、4族元素の酸化物と、4族元素及びSiの酸化物と、4族元素及びAlの酸化物とのうちの少なくとも一つを含むことが好ましい。更に、4族元素は、Hf及びZrの少なくとも一つであることが好ましい。
【0025】
また、金属含有膜は、基板上に高誘電体ゲート絶縁膜を介して形成されるメタルゲート電極であり、メタルゲート電極は、金属元素を主成分とした合金、金属元素を主成分とした合金の窒化物、又は、金属元素を主成分としたSiを含む合金の窒化物により構成されることが好ましい。更に、金属元素は、Ti、W、Ta、Ru及びAlの少なくとも一つであることが好ましい。
【0026】
金属含有膜は、基板上に高誘電体ゲート絶縁膜を介して形成されるメタルゲート電極であり、高誘電体ゲート絶縁膜及びメタルゲート電極を含むpチャネルトランジスタが構成され、高誘電体ゲート絶縁膜は、AlO及びTaOの少なくとも一つを含む。
【0027】
また、金属含有膜は、基板上に高誘電体ゲート絶縁膜を介して形成されるメタルゲート電極であり、高誘電体ゲート絶縁膜及びメタルゲート電極を含むnチャネルトランジスタが構成され、高誘電体ゲート絶縁膜は、LaO及びMgOの少なくとも一つを含む。
【0028】
半導体装置のより具体的な構成として、このようになっていても良い。
【0029】
また、金属含有膜は、基板上に高誘電体ゲート絶縁膜を介して形成されるメタルゲート電極であり、工程(a)において、メタルゲート電極を形成する前に、高誘電体ゲート絶縁膜に対して700℃以上で且つ1100℃以下の熱処理を行なう工程を更に備えることが好ましい。特に、1000℃程度の熱処理であることが好ましい。
【0030】
このようにすると、高誘電体ゲート絶縁膜が還元されるのを防ぎながら、自然酸化膜を選択的に還元することができる。高誘電体ゲート絶縁膜が還元されると絶縁膜としての機能が損なわれてリーク電流増加等の原因となるため、これを防ぐことが望ましい。
【0031】
また、金属含有膜は、基板上に高誘電体ゲート絶縁膜を介して形成されるメタルゲート電極であり、シリコン窒化膜は、ALD(Atomic Layer Deposition )法により形成され、オフセットスペーサとなることが好ましい。
【0032】
次に、本開示に係る半導体装置は、基板上に、高誘電体ゲート絶縁膜を介してメタルゲート電極が形成されたトランジスタ構造を備え、メタルゲート電極側壁にシリコン窒化膜からなるオフセットスペーサが形成され、メタルゲート電極と、オフセットスペーサとの間に偏析している酸素の濃度が1×1020atoms/cm3 以下である。
【0033】
このような半導体装置は、メタルゲート電極とオフセットスペーサとの間の酸素の濃度が十分に低く、メタルゲート電極の酸化に起因する駆動力の低下を避けることができる。
【発明の効果】
【0034】
本発明によると、メタルゲート電極の側壁に形成された自然酸化膜について、オフセットスペーサを形成する反応室内にて還元・窒化することにより、メタルゲート電極の酸化膜に起因する駆動力低下を避けることができる。
【図面の簡単な説明】
【0035】
【図1】図1は、本発明の一実施形態に係る例示的半導体装置について、概略構成を示す断面図である。
【図2】図2は、ゲート長に対するゲートリーク電流の非線形性を示す図である。
【図3】図3は、シリコン窒化膜とTiN膜界面の酸化層について調べたSIMS分析の結果である。
【図4】図4(a)は、本発明の一実施形態におけるTiNの成膜シーケンスを例示した図であり、図4(b)は、アンモニアラジカルの発生機構を例示した図である。
【図5】図5(a)は、アンモニアラジカルとチタン酸化膜との反応機構を説明する図であり、図5(b)は、プラズマ窒化によるチタン酸化膜の反応機構を説明する図である。
【図6】図6は、HfSiON及びTiNに関し、TiNの選択還元性を示す図である。
【図7】図7(a)は、ゲート長に対するゲートリーク電流を実施例と比較例について示す図であり、図7(b)は、トランジスタ駆動電流を実施例と比較例とについて示す図す図である。
【図8】図8(a)〜(f)は、本発明の一実施形態における例示的半導体装置の製造方法を説明する模式的な断面図である。
【発明を実施するための形態】
【0036】
以下、本発明の一実施形態に係る半導体装置及びその製造方法について、図面を参照しながら説明する。図1は、本発明の第1の実施形態の例示的半導体装置150が有するCMOS構造の断面を概略として示す図である。
【0037】
図1に示す通り、半導体装置150は、シリコン基板101を用いて形成されている。シリコン基板101の表面部は、STI(Shallow Trench Isolation)形状のシリコン酸化膜からなる素子分離層104によって区画され、各区画にはイオン注入によって形成されたn型ウェル領域102及びp型ウェル領域103が配置されている。
【0038】
n型ウェル領域102には、pチャネルトランジスタ105が形成されている。pチャネルトランジスタ105は、n型ウェル領域102上に形成されたHigh-k(高誘電体)ゲート絶縁膜であるゲート絶縁膜109と、その上に形成されたPMOS用のメタルゲート電極110と、メタルゲート電極110上に形成され、ホウ素等の不純物がイオン注入されたポリシリコン電極111とを備える。メタルゲート電極110の両側部分のn型ウェル領域102には、イオン注入により形成されたp型エクステンション層108と、更にその外側に形成されたp型拡散層107とが位置している。メタルゲート電極110及びポリシリコン電極111の側壁を覆うように、シリコン窒化膜によって形成されたオフセットスペーサ100が形成され、更にその側面に、シリコン酸化膜及びシリコン窒化膜からなるサイドウォール112が形成されている。
【0039】
また、p型拡散層107及びp型エクステンション層108により形成されるソース・ドレイン領域上と、ポリシリコン電極111上とについては、ニッケルシリサイド(NiSi)又はニッケル白金シリサイド(NiPtSi)によりシリサイド化されている(図示は省略)。更に、前記p型のソース・ドレイン領域には、ゲルマニウム(Ge)を10%〜30%含んだSiGeエピタキシャル層(図示省略)が形成されていても良い。
【0040】
次に、p型ウェル領域103には、nチャネルトランジスタ106が形成されている。これは、High-kゲート絶縁膜であるゲート絶縁膜115と、その上のNMOS用のメタルゲート電極116と、メタルゲート電極116の両側部分のp型ウェル領域103に形成されたn型拡散層113及びn型エクステンション層114とを有する。更に、メタルゲート電極116上にリン等の不純物がイオン注入されたポリシリコン電極117が形成されている。メタルゲート電極116及びポリシリコン電極117の側壁を覆うように、シリコン窒化膜によって形成されたオフセットスペーサ100が形成され、更にその側面に、シリコン酸化膜及びシリコン窒化膜からなるサイドウォール118が形成されている。
【0041】
また、n型拡散層113及びn型エクステンション層114により形成されたソース・ドレイン領域上と、ポリシリコン電極117上とは、ニッケルシリサイド(NiSi)又はニッケル白金シリサイド(NiPtSi)によりシリサイド化されている(図示は省略)。更に、前記n型ソース・ドレイン領域には、炭素を1%〜3%含んだカーボンドープSiエピタキシャル層(図示省略)が形成されていても良い。
【0042】
尚、pチャネルトランジスタ105におけるゲート絶縁膜109は、Hf、Si及びZrを含む酸化膜により構成されたHigh-k膜中に、仕事関数を制御するためのAl、Ta等を含んでいる。また、nチャネルトランジスタのゲート絶縁膜115は、Hf、Si及びZrを含む酸化膜により構成されたHigh-k膜中に、仕事関数を制御するためのLa、Mg等を含んでいる。
【0043】
ここで、本実施形態の半導体装置150の特徴の一つとして、オフセットスペーサ100と、メタルゲート電極110、116との界面における酸素濃度は、主成分レベルを意味するSIMSによる体積原子濃度として示すとき、1.0×1020atoms/cm3 以下になっている。前述の通り、非特許文献1には、オフセットスペーサシリコン窒化膜の成膜温度、原料ガスに含まれる塩素量に関して記載がある。これに対し、本実施形態の場合、オフセットスペーサ100とメタルゲート電極110、116との間の酸素量に注目している。特に、シリコン窒化膜を成膜するのと同じ炉内にて、High-kゲート絶縁膜を還元することなく、メタルゲート電極の側壁に発生した酸化膜のみを選択的に還元し、更に再窒化を行なうことが特徴の一つとなっている。
【0044】
ここで、前記の界面における酸素濃度と、半導体装置の性能との関係について図2を参照して以下に説明する。次に、図2は、ゲート長に対するゲートリーク電流を示している。通常、次の式1(Ωの法則)に示すように、ゲートリーク電流(Ig)は、電圧(Vg)が一定の場合、ゲート長(Lg)に比例すると考えられる。
【0045】
Ig=Vg*Lg …… 式1
しかしながら、実際には、ゲート長Lgが短くなるにつれて、リーク電流がオームの法則には従わず、式1から予想されるよりも大きく低下する傾向を示す。これは、メタルゲート電極の側壁が酸化されて絶縁膜となっており、ゲート長が短くなるにつれてそのような絶縁膜のゲート長に占める割合が増えているためと考えられる。
【0046】
また、メタルゲート電極の側壁が酸化されると、負の固定電荷が生成されて駆動能力が低下することが知られている。これは、GEM(Gate Edge Metamorphoses )と総称される現象である。これを防いで駆動能力を改善するためには、メタルゲート電極の側壁の酸化層を取り除くことが有効と考えられる。
【0047】
尚、ここで想定しているメタルゲート電極は、High-kゲート絶縁膜・メタルゲート構造に用いられる金属材料からなるものである。具体的には、Al、Ti、Ta、W、Ru等の金属からなっていても良いし、これらの幾つかを含む合金からなっていても良い。また、前記金属又は合金の窒化膜、炭化窒化膜でも良い。更には、前記金属とシリコンとを含む窒化膜からなっていても良い。
【0048】
次に、メタルゲート電極上にシリコン酸化膜を形成する方法と、メタルゲート電極の表面に生じる酸化膜との関係について、図3を参照して説明する。図3は、パターンが形成されていないシリコンウェハ上に膜厚15nmのチタン窒化膜を形成した後、シリコン窒化膜を形成した場合について、ゲート電極側壁の酸化量を見積もるための測定を行なった結果である。具体的には、以下の3通りの工程を用いた場合について、シリコン窒化膜とチタン窒化膜(メタルゲート電極に相当する)との界面における酸素の分布を調べたSIMS(2次イオン質量分析法)の結果を示している。
【0049】
まず、レジストを塗布し、プラズマアッシングによりレジストを除去した後、シリコン窒化膜を形成した場合について、○印(白抜きの丸印)により示している。
【0050】
また、シリコン窒化膜を形成する前に、フッ酸系のポリマー洗浄液を用い、チタン窒化膜上に形成されたアッシング酸化膜及び自然酸化膜をエッチングして除去し、その後にシリコン窒化膜を形成した場合について、×印により示している。
【0051】
また、シリコン窒化膜を形成する前に、上記と同様のポリマー洗浄を行なうと共に、シリコン窒化膜を成膜する炉内にてアンモニアラジカル処理を行ない、その後にシリコン窒化膜を形成した場合について、実線により示している。アンモニアラジカル処理は、アンモニアラジカルを例えば40サイクル加え、チタン窒化膜上の酸化膜を還元すると共に再窒化する処理である。
【0052】
ここで、図3の横軸は、スパッタリングレートから換算した膜厚であり、横軸左側がSiN膜上部側、横軸右側がシリコン基板側である。また、縦軸は単位体積あたりの酸素原子の個数(atoms/cm3 )を示す。
【0053】
尚、SIMSの測定方法としては、Cs+ の一次イオン種を用い、酸素の検出には18酸素を用いた。加速エネルギーは500eVとした。
【0054】
図3の酸化層に示すように、シリコン窒化膜とチタン窒化膜との間に、アッシング酸化膜又は自然酸化膜に起因する酸素プロファイルが見られるが、酸素濃度はそれぞれ違っている。
【0055】
アッシング酸化した状態においてシリコン窒化膜を形成した場合(図3の○)には、シリコン窒化膜とチタン窒化膜とに形成された酸化層から、シリコン窒化膜側に酸素が拡散している。このため、シリコン窒化膜内における酸素濃度が4×1020atoms/cm3 程度存在する。
【0056】
これに対し、ポリマー洗浄のみを追加した場合(図3の×)には、シリコン窒化膜中の酸素濃度が2×1020atoms/cm3 程度にまで減少する。
【0057】
更に、ポリマー洗浄に加えてアンモニアラジカル処理も追加した場合(図3の実線)、シリコン窒化膜とチタン窒化膜との界面における酸素濃度が低下し、シリコン窒化膜中の酸素濃度についても1×1020atoms/cm3 程度にまで低減される。
【0058】
このように、アンモニアラジカルによる処理の後にオフセットスペーサとなるシリコン窒化膜を形成することにより、メタルゲート電極側壁に形成された酸化膜を効果的に除去することができる。メタルゲート電極がシリコン窒化膜によって覆われるので、この後に大気曝露したとしても、メタルゲート電極の側壁が再酸化されることはない。
【0059】
次に、メタルゲート電極とシリコン酸化膜との界面における酸素濃度を低下させることができる前記のアンモニアラジカル処理及びシリコン窒化膜の形成について、図4(a)及び(b)を参照して更に説明する。
【0060】
図4(a)は、シリコン窒化膜を形成する前に、同じ炉内においてアンモニアラジカルによる選択還元処理を行なうALDシーケンスを簡略に示している。
【0061】
初めに、シリコンウェハ上に形成されたメタルゲート電極側壁について、そこに付着している酸素を還元により除去すると共に、再窒化する。このためには、アンモニアラジカルと、不活性ガス(この例では窒素)とを交互に供給する。
【0062】
アンモニアラジカルによる処理について、炉内温度は400℃以上で且つ800℃以下であること、炉内圧力は133Pa(1Torr)であることが望ましい(炉内温度については、400℃以上で且つ600℃以下であることが更に望ましい)。アンモニアラジカルを流す時間は炉内の容積に関係する。例えば、400リットル程度の容積を有する縦型バッチ装置の場合、1秒〜100秒程度必要である。別の例として、炉内の容積が小さい枚葉式装置の場合には、数msec(ミリ秒)の曝露でも還元を行なうことが可能である。
【0063】
還元ガスは、アンモニアラジカルに代表される水素化合物である。ガス中の水素が、メタルゲート電極に付着している酸素と熱反応し、水として酸素原子を脱離させる。このようにして脱離した水を除去するために、不活性ガスを用いてパージを行なう。不活性ガスとしては、Arに代表される希ガス又はN2 が望ましい。アンモニアを流していたガスラインを不活性ガスに切り替え、炉内、ガスインジェクション部をパージすることが望ましく、例えば、2slm (1気圧、0℃の標準状態におけるリットル毎分)のN2 ガスを1秒〜10秒程度流すことが望ましい。
【0064】
以上のようなアンモニアラジカルによる曝露と不活性ガスによる曝露とを所定回数(図4(a)の場合は3回であるが、これには限らない)繰り返し、メタルゲート電極側壁における酸素量を所望量にする。
【0065】
この後、シリコンウェハを大気曝露することなく、同じ炉内にシリコンソースを導入し、シリコン窒化膜を形成する。シリコンソースとしては、ジクロルシラン(DCS)、モノシラン、ヘキサクロロシラン等が適している。図4(a)では、ジクロルシランを用い、炉内圧力を665Pa(5Torr)として1slm 流している。ジクロルシランを0.5秒曝露した後、不活性ガスにより1秒パージし、更にアンモニアラジカルを20秒流し、不活性ガスを5秒流す。これを一つのサイクルとして、所望の膜厚のシリコン窒化膜が形成されるまで必要な回数繰り返す。
【0066】
以上のようにして、メタルゲート電極の表面にシリコン酸化膜を形成すると共に、これらの界面における酸素濃度を低く抑えることができる。
【0067】
次に、アンモニアラジカルの発生方法について、一例を図4(b)に示す。図4(b)に示す方法では、アンモニアを供給する配管141内にニッケルからなる一対の平板電極142を配置し、これら2枚の平板電極142間に高周波(RF)を印加する。この際、例えば、アンモニアの流量を2slm とし、放電用電極である平板電極142には電力400Wの高周波電圧を印加する。これにより、平板電極142間を流れるアンモニアをラジカル化し、配管141に設けられた約1mm径の孔143からシリコンウェハ側に供給する。
【0068】
また、別の方法としては、触媒と紫外光とを用いてアンモニアラジカルを発生させることもできる。この方法を用いる場合、アンモニア供給配管に、金属触媒として白金族、第4族元素の酸化物、二酸化チタン等により構成された金属板を設置する。また、該金属板に紫外光を照射できるように、アンモニア供給配管の少なくとも一部について、光を透過できるようにガラス等によって構成する。このような構成において、アンモニア供給配管にアンモニアガスを供給しながら配管内又は配管外から金属板に紫外光を照射することにより、金属触媒反応によってアンモニアをラジカル化することができる。
【0069】
次に、図5(a)に、アンモニアラジカルがチタン酸化膜に吸着したときの反応過程を示している。尚、元素記号の書かれていない小円は水素を表している。は本実施形態におけるチタン酸化膜は、メタルゲート電極側壁に形成された膜厚1nm程度の薄い自然酸化膜又はアッシング酸化膜であり、チタンと酸素との結合力はそれほど強くない。特に、CVD法等により意図的に形成した結晶性のチタン酸化膜に比べて結合力は弱い。
【0070】
炉内を例えば550℃に保った状態にてアンモニアをラジカル化すると、不対電子を持ったアンモニアラジカル(NH2 ・又はNH3 ・)が生成され、Ti−O表面に吸着される。このとき、自然酸化等により形成された結合力の弱いTi−Oについては、酸素がアンモニアラジカルの水素と反応して水として脱離する。水素に酸素を奪われたアンモニアの窒素は、チタンの結合手と結合し、チタン酸化膜を形成する。
【0071】
脱離した水は、再吸着・再酸化する可能性があるため、排気することが好ましい。そこで、不活性ガスによる排気を行なっている。
【0072】
ここで、メタルゲート電極と同様に、その下に形成されているHigh-kゲート絶縁膜の側壁に対居ても、アンモニアラジカルによって曝露される。この際にアンモニアラジカルとHigh-kゲート絶縁膜とが反応するのを避けるため、High-kゲート絶縁膜がアンモニアラジカルよりも高いエネルギーを持った状態にしておくことが好ましい。つまり、High-kゲート絶縁膜を形成した後、アンモニアラジカルによる処理及びシリコン酸化膜の形成を行なう前に、プラズマ窒化及び700℃〜1100℃(例えば1000℃)程度の熱処理を行なっておくことが好ましい。
【0073】
尚、メタルゲート電極側壁の酸化層について、プラズマ窒化によって還元・再窒化することについても発明者らは検討を行なった。しかしながら、以下のように、アンモニアラジカルを用いた処理がより望ましいことを見出している。
【0074】
プラズマ窒化の場合、図5(b)に示すように、窒素をイオン状態(N- 、N2-、N3-)にすると共に電界を掛けてウェハに物理的に衝突させた後、熱処理等によって窒素と対象物を結合させる。この結果、High-kゲート絶縁膜にダメージを与えるおそれがある。また、シリコン基板が窒化され、後の工程にて洗浄等によりソース・ドレイン領域のSiが削れてしまうこともある。このようなことから、プラズマ窒化を用いるとトランジスタ特性の劣化に繋がるため、アンモニアラジカルによる処理を行なう方が好ましい。
【0075】
次に、図6は、前記アンモニアラジカルによる処理を行なった場合の膜中にける酸素濃度について、EPMA(Electron Probe Micro Analysis )を用いて測定した結果を示す。例として、シリコンウェハ上にALD−TiN膜(ALD法によるTiN膜)及びHfSiON膜を形成した後、アンモニアラジカルを4、40又は100サイクル曝露し、更にシリコン窒化膜を2nm形成した場合について示している。
【0076】
図6に示す通り、HfSiON膜中の酸素濃度(白抜きの三角△にて表示)は処理のサイクルを繰り返しても有意には変化しない。これに対し、TiN膜における酸素濃度(白抜きの四角◇にて表示)は、アンモニアラジカル処理のサイクル数を増やすに従って減少している。具体的に、アンモニアラジカル処理を行なわない場合には酸素濃度が1×1016atoms/cm2 程度であるのに対し、アンモニアラジカル処理を100サイクル行なった場合、4.5×1015atoms/cm2 程度まで低減(半減)することが可能である。
【0077】
このように、HfSiON中の酸素量を低下させることなく、TiN上の酸素量のみ低減させることができる。つまり、ゲート絶縁膜を還元することなく、メタルゲート電極のみを選択的に還元することができる。
【0078】
尚、少ないサイクル数で酸素量を減少させるためには、アンモニアの流量を増やすこと又は高周波のパワーを増大することによりチタン酸化膜との反応を促進させることが考えられる。更に、生成する水を効率良く排気するために、不活性ガスの流量を増やすこと又は排気時間を長くすることも有効と考えられる。
【0079】
次に、本実施形態の実施例と比較例とについて、ゲート長とゲートリーク電流との関係を図7(a)に示す。実施例は、メタルゲート電極に対してアンモニアラジカル処理を40サイクル行なった後に、既に説明したのと同様ようにin-situ にてシリコン窒化膜を形成した場合である。これに対し、比較例は、メタルゲート電極に対してシリコン窒化膜の形成だけを行なった場合である。
【0080】
比較例では、ゲート長が1μm以下になるとリーク電流がオームの法則から外れる。これに対し、実施例の場合、ゲート長が30nm程度になるまでは線形性を保っており、メタルゲート電極側壁におけるチタン酸化膜の影響を抑制していることが分かる。
【0081】
また、図7(b)は、前記実施例及び比較例の半導体装置について駆動電流を示す図であり、横軸にトランジスタのオン電流、縦軸にオフ電流を取っている。図7(b)に示す通り、比較例に比べて実施例のオン電流が向上している。例えば、オフ電流が10nA/μm(10000pA/μm)のとき、実施例のオン電流は比較例に比べて11%程度向上している。
【0082】
尚、図3に示すSIMS分析を行なうためには、2次イオン強度を向上させるために、最小でも1×1mm程度のスポットが必要になる。しかしながら、ゲート長50nm以下、メタルゲート電極の厚さが5〜20nm程度であるため、トランジスタのメタルゲート電極側壁の評価にSIMS分析を用いるのは難しい。
【0083】
これに対し、近年、3次元アトムプローブ解析法を用いて容易にトランジスタ構造中の偏析元素を観察することが可能になった。これは、FIB(Focus Ion Beam)等により針状に加工した資料の先端部の原子をレーザーによってイオン化し、TOF(Time of Flight)型の検出器にて検出することにより、原子の3次元の分布を可視化する解析手法である。
【0084】
3次元アトムプローブ解析法によると、原子レベルの3次元マッピングが可能であり、深さ分解能、空間分解能は共に原理的には数Å(数十nm)程度ある。このため、メタルゲート電極の側壁のような、微小な部分の解析も可能である。
【0085】
また、メタルゲート電極側壁における酸素については、EELS(Electron Energy Loss Spectroscopy)を利用してTEMによって観察することも可能である。この方法によると、酸素を含む部分が白く映る。前記比較例の場合、メタルゲート電極を構成するTiNが酸化されていること、ポリシリコン電極の側壁も酸化されてシリコン酸化膜が形成されていることが分かる。これに対し、本実施形態の前記実施例の場合、メタルゲート電極側壁及びポリシリコン電極側壁の酸素が除去できていることを観測できる。
【0086】
以上のように、本願発明者らは、メタルゲート電極側壁の酸化膜について物性を詳細に調べ、アンモニアラジカルによる選択還元・再窒化を発案且つ実現した。その結果、トランジスタの駆動能力を向上(GEMによるトランジスタの駆動能力低下を抑制)させた。
【0087】
次に、図1に示す半導体装置150の製造方法について、その各工程を模式的に示す断面図である図8(a)〜(f)を参照して説明する。
【0088】
まず、図8(a)に示すように、シリコン基板101上に、STI状のシリコン酸化膜からなる素子分離層104によって絶縁分離されたn型ウェル領域102及びp型ウェル領域103を形成する。更に、n型ウェル領域102及びp型ウェル領域103上にわたって、ゲート絶縁膜109と、メタルゲート電極110に加工するための金属含有膜110aを順次積層する。
【0089】
ここで、ゲート絶縁膜109は、例えば、水蒸気雰囲気、一酸化窒素雰囲気等によりシリコン基板101を酸化した厚さ1.0nm程度のシリコン酸化膜上に、High-k材料からなる膜が積層されたHigh-kゲート絶縁膜として形成する。High-k材料としては、例えば、Hf、Zr等の4族元素を主成分とした酸化物であってもよい。また、シリケートと称されるHf、Zr等とSiとの酸化物であってもよい。また、アルミネートと称されるHf、Zr等とAlの酸化物であっても良い。更には、以上の材料に、プラズマ窒化、アンモニア窒化等により窒素添加した酸窒化物であっても良い。
【0090】
High-kゲート絶縁膜の形成には、MOCVD(Metal Organic Chemical Vapor Deposition)法、ALD(Atomic Layer Deposition)法、PVD(Physical Vapor Deposition)法等を用いることができる。また、窒化処理を加えた場合には、1000℃以上の熱処理を加え、後工程での熱処理による窒素の外方拡散を防ぐのが良い。
【0091】
尚、nチャネル及びpチャネルのHigh-kゲート絶縁膜中には、閾値電圧を制御するために、それぞれ異なったHigh-k材料を混ぜることが好ましい。例えば、nチャネル側にLaO、MgO等を、pチャネル側にAlO、TaO等を混ぜることが好ましい。
【0092】
金属含有膜110aは、例えば、Ti、W、Ta、Ru、Al等の金属元素を主成分とした合金、前記合金の窒化物又はSiを更に含む前記合金の窒化物を材料として、MOCVD法、ALD法、PVD法等により形成する。
【0093】
次に、図8(b)の工程を行なう。まず、金属含有膜110aの表面について、過酸化水素水により洗浄する。これは、金属含有膜110a上に形成された自然酸化膜と、ゲート絶縁膜109上にメタルゲート電極110を配置しない構造の領域を得るために行なわれたレジスト塗布・除去により変質した金属層とを除去するためである。その後、金属含有膜110a上に、ポリシリコン電極111に加工するためのポリシリコン膜111aを膜厚100nmに形成する。金属含有膜110aとポリシリコン膜111aとの界面に酸化層が存在すると界面抵抗が上昇するため、前記の過酸化水素水による洗浄を行なった方が良い。
【0094】
ポリシリコン膜111aを得るためには、シラン(SiH4 )、ジシラン(Si26)を用いて500℃以上で且つ550℃以下の温度範囲にてアモルファスシリコン膜を形成した後、熱処理を加えてポリシリコン化する方法がある。また、600℃以上で且つ630℃以下の温度範囲にてポリシリコンを形成する方法もある。また、ポリシリコンに代えて、シリコンゲルマニウムからなる電極を形成しても良い。このためには、例えば、シランに加えてゲルマン(GeH4 )を材料に用いる。
【0095】
次に、図8(c)に示す工程を行なう。まず、フォトリソグラフィ技術及びエッチング技術を用い、ゲート電極レジストパターン(図示省略)を形成する。続いて、ハロゲン系のエッチングガスを用い、ポリシリコン膜111a及び金属含有膜110aについて異方性エッチングを行ない、ゲート電極を形成する。つまり、n型ウェル領域102上にはメタルゲート電極110及びその上のポリシリコン電極111を形成すると共に、p型ウェル領域103上にはメタルゲート電極116及びその上のポリシリコン電極117を形成する。この際、シリコン基板101まで過度にエッチングしてしまわないように、High-kゲート絶縁膜であるゲート絶縁膜109と、シリコン基板101とについてエッチング選択比を確保し、エッチングがゲート絶縁膜109において止まるようにする。尚、ゲート絶縁膜109については、窒化した後に1000℃以上の熱処理が行なわれていると、エッチング選択比を確保しやすくなる。
【0096】
次に、酸素プラズマによるアッシングを行なってレジストを除去した後、フッ素系洗浄剤によりメタルゲート電極110のエッチングの際に残ったポリマーと、メタルゲート電極110の下以外の不要な部分に残っているゲート絶縁膜109とを除去する。この際、メタルゲート電極110の側壁の酸化層についても多少エッチングされるので、過度にエッチングしてメタルゲート電極110の側壁がくびれないように注意する。
【0097】
続いて、図8(d)に示すように、オフセットスペーサ100に加工するためのシリコン窒化膜100aを形成する。シリコン窒化膜100aは必ず大気曝露されるため、メタルゲート電極110の側壁には必ず自然酸化膜が形成されることになる。該自然酸化膜がGEMを引き起こし、駆動力を低下させる原因となる。
【0098】
そこで、シリコン窒化膜100aを形成する前に、メタルゲート電極110表面の自然酸化膜に対してアンモニアラジカルによる還元と再窒化を行なう。具体的には、成膜に用いる炉にウェハを挿入し、炉内を真空状態に引いた後、アンモニアラジカルの曝露と不活性ガスの曝露とを交互に繰り返す。これにより、メタルゲート電極110の表面に付着しているアッシング酸化膜の残膜及び自然酸化膜を除去した後、大気曝露によって再酸化されるのを防ぐために同一の炉内においてin-situ にてシリコン窒化膜100aを膜厚5〜10nm程度に形成する。この工程について、より詳しくは、図4(a)及び(b)等を参照して既に説明した通りである。
【0099】
次に、図8(e)の工程を行なう。まず、ハロゲン系のガスを用いてシリコン窒化膜100aを異方性ドライエッチングすることにより、ゲート電極側壁にオフセットスペーサ100として残すと共に他の箇所については除去する。
【0100】
続いて、n型ウェル領域102をレジスト(図示省略)にて保護し、p型ウェル領域103にn型不純物であるリン、砒素、アンチモン等をイオン注入する。この後、n型ウェル領域102上のレジストを除去する。続いて、p型ウェル領域103をレジスト(図示省略)にて保護し、n型ウェル領域102にp型不純物であるボロン、インジウム等をイオン注入する。その後、p型ウェル領域103上のレジストの除去と、例えば1000℃以上の熱処理によるイオン種の活性化を行なう。これにより、p型エクステンション層108及びn型エクステンション層114が形成される。
【0101】
次に、図8(f)の工程を行なう。ここでは、シリコン酸化膜を膜厚5nm〜10nmに形成した後、連続してシリコン窒化膜を膜厚10nm〜30nmに積層形成し、異方性ドライエッチングを行なう。これにより、オフセットスペーサ100を介してゲート電極(メタルゲート電極110及びポリシリコン電極111と、メタルゲート電極116及びポリシリコン電極117)の側壁に、サイドウォール112及び118を形成する。尚、ここではシリコン窒化膜とシリコン窒化膜との2層からなるサイドウォールとしたが、この構造は必須ではなく、一層のシリコン窒化膜、一層のシリコン酸化膜等からなっていてもよい。
【0102】
続いて、n型ウェル領域102をレジスト(図示省略)にて保護し、p型ウェル領域103にn型不純物であるリン、砒素、アンチモン等をイオン注入してn型拡散層113を形成する。この後、n型ウェル領域102上のレジストを除去する。続いて、p型ウェル領域103をレジスト(図示省略)にて保護し、n型ウェル領域102にp型不純物であるボロン、インジウム等をイオン注入してp型拡散層107を形成する。その後、例えば900℃〜1050℃の熱処理を行ない、n型拡散層113及びp型拡散層107のイオン種の活性化してソース・ドレイン領域を形成する。
【0103】
この後、ソース・ドレイン領域上部とポリシリコン電極111及び117上部とについて、Ni、Ptによるシリサイド化を行なう。また、コンタクトホールエッチングストッパーとなるシリコン窒化膜(図示せず)と、層間絶縁膜(図示せず)となるシリコン酸化膜とを形成し、平坦化処理等の通常の工程を経て、半導体装置150が形成される。
【産業上の利用可能性】
【0104】
本発明の半導体装置及びその製造方法によると、メタルゲート電極側壁における酸素濃度を抑制することにより半導体装置の駆動能力を向上させることができ、半導体集積回路を用いる種々の電子機器にも有用である。
【符号の説明】
【0105】
100 オフセットスペーサ
100a シリコン窒化膜
101 シリコン基板
102 n型ウェル領域
103 p型ウェル領域
104 素子分離層
105 pチャネルトランジスタ
106 nチャネルトランジスタ
107 p型拡散層
108 p型エクステンション層
109 ゲート絶縁膜
110 メタルゲート電極
110a 金属含有膜
111 ポリシリコン電極
111a ポリシリコン膜
112 サイドウォール
113 n型拡散層
114 n型エクステンション層
115 ゲート絶縁膜
116 メタルゲート電極
117 ポリシリコン電極
118 サイドウォール
141 配管
142 平板電極
143 孔
150 半導体装置

【特許請求の範囲】
【請求項1】
基板上に金属含有膜を形成する工程(a)と、
反応室内において前記金属含有膜にアンモニアラジカルを曝露する工程(b)と、
前記反応室内に不活性ガスを供給し、前記工程(b)において生じたガスを排気する工程(c)と、
前記工程(b)及び前記工程(c)を所定の回数繰り返した後、大気曝露することなく、前記反応室内において前記金属含有膜を覆うシリコン窒化膜を形成する工程(d)とを備えることを特徴とする半導体装置の製造方法。
【請求項2】
請求項1において、
前記工程(b)及び前記工程(c)は、前記金属含有膜の表面に形成された自然酸化膜が還元されるまで繰り返すことを特徴とする半導体装置の製造方法。
【請求項3】
請求項1又は2において、
前記工程(b)は、400℃以上で且つ800℃以下の温度範囲において行なうことを特徴とする半導体装置の製造方法。
【請求項4】
請求項1〜3のいずれか一つにおいて、
前記アンモニアラジカルは、高周波電圧が印加された一対の電極板の間にアンモニアを供給することにより発生させることを特徴とする半導体装置の製造方法。
【請求項5】
請求項1〜3のいずれか一つにおいて、
前記アンモニアラジカルは、金属触媒にアンモニアを供給し且つ紫外線を照射することにより発生させることを特徴とする半導体装置の製造方法。
【請求項6】
請求項5において、
前記金属触媒は、白金族元素、Ti、Zr又はMnを含むことを特徴とする半導体装置の製造方法。
【請求項7】
請求項1〜5のいずれか一つにおいて、
前記金属含有膜は、前記基板上に高誘電体ゲート絶縁膜を介して形成されるメタルゲート電極であり、
前記高誘電体ゲート絶縁膜は、4族元素の酸化物と、4族元素及びSiの酸化物と、4族元素及びAlの酸化物とのうちの少なくとも一つを含むことを特徴とする半導体装置の製造方法。
【請求項8】
請求項7において、
前記4族元素は、Hf及びZrの少なくとも一つであることを特徴とする半導体装置の製造方法。
【請求項9】
請求項1〜8のいずれか一つにおいて、
前記金属含有膜は、前記基板上に高誘電体ゲート絶縁膜を介して形成されるメタルゲート電極であり、
前記メタルゲート電極は、金属元素を主成分とした合金、金属元素を主成分とした合金の窒化物、又は、金属元素を主成分としたSiを含む合金の窒化物により構成されることを特徴とする半導体装置の製造方法。
【請求項10】
請求項9において、
前記金属元素は、Ti、W、Ta、Ru及びAlの少なくとも一つであることを特徴とする半導体装置の製造方法。
【請求項11】
請求項1〜10のいずれか一つにおいて、
前記金属含有膜は、前記基板上に高誘電体ゲート絶縁膜を介して形成されるメタルゲート電極であり、
前記高誘電体ゲート絶縁膜及び前記メタルゲート電極を含むpチャネルトランジスタが構成され、
前記高誘電体ゲート絶縁膜は、AlO及びTaOの少なくとも一つを含むことを特徴とする半導体装置の製造方法。
【請求項12】
請求項1〜10のいずれか一つにおいて、
前記金属含有膜は、前記基板上に高誘電体ゲート絶縁膜を介して形成されるメタルゲート電極であり、
前記高誘電体ゲート絶縁膜及び前記メタルゲート電極を含むnチャネルトランジスタが構成され、
前記高誘電体ゲート絶縁膜は、LaO及びMgOの少なくとも一つを含むことを特徴とする半導体装置の製造方法。
【請求項13】
請求項1〜12のいずれか一つにおいて、
金属含有膜は、前記基板上に高誘電体ゲート絶縁膜を介して形成されるメタルゲート電極であり、
前記工程(a)において、前記メタルゲート電極を形成する前に、高誘電体ゲート絶縁膜に対して700℃以上で且つ1100℃以下の熱処理を行なう工程を更に備えることを特徴とする半導体装置の製造方法。
【請求項14】
請求項1〜13のいずれか一つにおいて、
前記金属含有膜は、前記基板上に高誘電体ゲート絶縁膜を介して形成されるメタルゲート電極であり、
前記シリコン窒化膜は、ALD法により形成され、オフセットスペーサとなることを特徴とする半導体装置の製造方法。
【請求項15】
基板上に、高誘電体ゲート絶縁膜を介してメタルゲート電極が形成されたトランジスタ構造を備え、
前記メタルゲート電極側壁にシリコン窒化膜からなるオフセットスペーサが形成され、
前記メタルゲート電極と、前記オフセットスペーサとの間に偏析している酸素の濃度が1×1020atoms/cm3 以下であることを特徴とする半導体装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2011−54878(P2011−54878A)
【公開日】平成23年3月17日(2011.3.17)
【国際特許分類】
【出願番号】特願2009−204581(P2009−204581)
【出願日】平成21年9月4日(2009.9.4)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】