説明

Fターム[5F048BC05]の内容

MOSIC、バイポーラ・MOSIC (97,815) | ソース・ドレイン (8,322) | 追加領域の形成 (3,324)

Fターム[5F048BC05]の下位に属するFターム

LDD (2,469)
二重拡散 (380)

Fターム[5F048BC05]に分類される特許

1 - 20 / 475


【課題】低電流領域でのオン電圧を低減することができる、SiC−IGBTを備える半導体装置およびその製造方法を提供すること。
【解決手段】エミッタ電極26と、エミッタ電極26に接続されたエミッタ領域41と、エミッタ領域41に対してSiC半導体層23の裏面25側にエミッタ領域41に接して形成されたチャネル領域39と、チャネル領域39に対してSiC半導体層23の裏面25側にチャネル領域39に接して形成されたSiCベース層33と、SiCベース層33に対してSiC半導体層23の裏面25側にSiCベース層33に接して形成されたコレクタ領域37と、コレクタ領域37に接続されたコレクタ電極27とを含む、SiC−IGBT9に対してMOSFET11を並列に接続する。 (もっと読む)


【課題】微細な構造であっても高い電気的特性を有するトランジスタを歩留まりよく提供する。該トランジスタを含む半導体装置においても、高性能化、高信頼性化、及び高生産化を達成する。
【解決手段】チャネル形成領域、及びチャネル形成領域を挟む低抵抗領域を含む酸化物半導体膜、ゲート絶縁膜、及び上面及び側面を覆う酸化アルミニウム膜を含む絶縁膜が設けられたゲート電極層が順に積層されたトランジスタを有する半導体装置において、ソース電極層及びドレイン電極層は、酸化物半導体膜及び酸化アルミニウム膜を含む絶縁膜の上面及び側面の一部に接して設けられる。 (もっと読む)


【課題】結晶性の優れた炭化シリコン膜を形成することができる炭化シリコンからなる半導体装置の製造方法を提供する。
【解決手段】基板1上に、絶縁膜2を介してシリコン膜3が形成された半導体基板を用意し、炭化シリコン膜6形成予定領域を選択的に被覆するマスク膜5を形成する。このマスク膜5で被覆されない領域のシリコン膜3を酸化し、酸化シリコン膜4を形成する。マスク膜5を除去し、シリコン膜3を露出させ、露出したシリコン膜3を炭化し、炭化シリコン膜6を形成する。その後、炭化シリコン膜6上に炭化シリコンのエピタキシャル成長膜8を形成する。 (もっと読む)


【課題】トランジスタのオン特性を向上させて、半導体装置の高速応答、高速駆動を実現する構成を提供する。信頼性の高い半導体装置を提供する。
【解決手段】半導体層、ソース電極層又はドレイン電極層、ゲート絶縁膜、及びゲート電極層が順に積層されたトランジスタにおいて、該半導体層としてインジウム、第3族元素、亜鉛、及び酸素を少なくとも含む非単結晶の酸化物半導体層を用いる。第3族元素は安定剤として機能する。 (もっと読む)


【課題】ショットキー障壁の高さおよび幅を容易に制御すると共に寄生抵抗が低く、且つ短チャネル効果を効果的に抑制する。
【解決手段】金属ソース・ドレイン電極(ニッケルシリサイド)6とP型シリコン基板1との間に、セシウム含有領域5を形成している。こうして、金属ソース・ドレイン電極6近傍のセシウムをイオン化して正孔に対するエネルギー障壁高さを大きくし、金属ソース・ドレイン電極6とP型シリコン基板1との間のリーク電流を著しく低減する。また、チャネルと金属ソース・ドレイン電極6との間のショットキー障壁の高さおよび幅を実効的に小さくして寄生抵抗を著しく低減する。したがって、金属シリサイドの厚み(深さ)をイオン注入による制約なしに決定でき、極めて浅いソース・ドレインを形成して良好な短チャネル効果特性を得ることができる。 (もっと読む)


【課題】小型でコストが低い半導体装置を提供する。
【解決手段】実施形態に係る半導体装置は、導電形がp形のソース領域と、導電形がp形のドレイン領域と、前記ソース領域と前記ドレイン領域との間に設けられ、導電形がn形のチャネル領域と、前記チャネル領域上に設けられた下側ゲート絶縁膜と、前記下側ゲート絶縁膜上に設けられた下側ゲート電極と、前記下側ゲート電極上に設けられた上側ゲート絶縁膜と、前記上側ゲート絶縁膜上に設けられた上側ゲート電極と、前記下側ゲート電極と前記ソース領域との間に接続されたスイッチング素子と、を備える。 (もっと読む)


【課題】フィンがバルク半導体上に形成されている場合においても、電流駆動力増大を図りつつ、オフリーク電流を低減させる。
【解決手段】フィン型半導体層1の両側面には、チャネル領域7のポテンシャルを制御するゲート電極4が配置され、チャネル領域7には、フィン型半導体層1のソース層2側から根元BM側にかけてポテンシャルバリアPB1、PB2が形成されている。 (もっと読む)


【課題】高速動作、低消費電力である半導体装置の提供。
【解決手段】結晶性のシリコンをチャネル形成領域に有する第1のトランジスタを用いた記憶素子と、当該記憶素子のデータを記憶する容量素子と、当該容量素子における電荷の供給、保持、放出を制御するためのスイッチング素子である第2のトランジスタとを有する。第2のトランジスタは第1のトランジスタを覆う絶縁膜上に位置する。第1及び第2のトランジスタは、ソース電極又はドレイン電極を共有している。上記絶縁膜は、加熱により一部の酸素が脱離する第1の酸化絶縁膜と、酸素の拡散を防ぎ、なおかつ当該第1の酸化絶縁膜の周囲に設けられた第2の酸化絶縁膜とを有し、第2のトランジスタが有する酸化物半導体膜は、上記第1の酸化絶縁膜に接し、かつチャネル形成領域である第1の領域と、第1の領域を挟み、第1及び第2の酸化絶縁膜に接する一対の第2の領域とを有する半導体装置。 (もっと読む)


【課題】素子分離領域を縮小化しつつ、第1のMISトランジスタの閾値電圧を、第2のMISトランジスタの閾値電圧に比べて低くする。
【解決手段】半導体装置は、第1のMISトランジスタTrlと第2のMISトランジスタTrhとを備えている。第1のMISトランジスタTrlは、第1の活性領域1aにおける第1導電型の第1のエクステンション領域8Aの下に形成された第2導電型の第1のポケット領域9Aと、第1の活性領域1aにおける第1のポケット領域9Aの下に形成された拡散抑制不純物を含む第1の拡散抑制領域7Aとを備えている。第2のMISトランジスタTrhは、第2の活性領域に1bおける第1導電型の第2のエクステンション領域8Bの下に形成された第2導電型の第2のポケット領域9Bとを備えている。第1のポケット領域9Aの拡散深さは、第2のポケット領域9Bの拡散深さに比べて浅い。 (もっと読む)


【課題】信頼性の高い半導体装置を提供する。
【解決手段】N型基板10と、N型基板10の一面側に設けられたP型ウェル40と、P型ウェル40に設けられたP型高濃度不純物領域42と、P型ウェル40に設けられたN型のソース・ドレイン領域を有するMOSトランジスタ20と、N型基板10の一面側に設けられ、かつ一方がP型高濃度不純物領域42と電気的に接続し、他方が接地されているソース・ドレイン領域を有するMOSトランジスタ30と、を備える。 (もっと読む)


【課題】ESD耐量を向上させたLDMOSFETを備える半導体装置を提供する。
【解決手段】半導体層200よりも高濃度のP型の押込拡散領域440は、半導体層200の表層から底面まで設けられている。押込拡散領域440よりも低濃度のP型の第1ウェル領域300は、半導体層200に、平面視で一部が押込拡散領域440と重なるように設けられている。N型のドレインオフセット領域540は、半導体層200に、平面視で第1ウェル領域300と接するように設けられている。ドレインオフセット領域540よりも高濃度のN+型のドレイン領域520は、ドレインオフセット領域540内に設けられている。ドレインオフセット領域540よりも高濃度のN型の第2ウェル領域560は、半導体層200のうち、ドレインオフセット領域540の下に位置して、平面視でドレイン領域520と重なる領域に設けられている。 (もっと読む)


【課題】半導体基板の表面に導入された不純物を、前記表面の浅い領域に高精度かつ高濃度で分布させ、不純物が半導体基板の深い領域に拡散することを防ぐことで、半導体装置の歩留まりおよび性能を向上させ、装置の微細化を容易にする。
【解決手段】N型MISトランジスタにおいて、半導体基板300に打ち込まれた炭素が、同じ領域に打ち込まれたホウ素を引き寄せる性質を利用し、ホウ素をN型の不純物として注入したハロー領域306に炭素を共注入して炭素注入層307を形成する。これにより、ホウ素が増速拡散することを防ぎ、ハロー領域306を高い精度で形成することを可能とすることで、微細化された半導体素子の短チャネル効果の発生を抑制する。 (もっと読む)


【課題】半導体集積回路の微細化に伴い非常に短くなったゲート長を有するトランジスタにおいて、ゲート絶縁膜におけるリーク電流の発生を抑制し、トランジスタとしての機能を高めることが可能な半導体装置を提供する。
【解決手段】主表面を有する半導体基板SUBと、半導体基板SUBの主表面に形成された1対のソース/ドレイン領域と、1対のソース/ドレイン領域に挟まれる領域上であって、主表面に接するように形成されたゲート絶縁膜AFEと、ゲート絶縁膜AFEの上面に接するように形成されたゲート電極POとを備える。上記1対のソース/ドレイン領域の一方から他方へ向かう方向のゲート電極POの長さは45nm未満である。ゲート絶縁膜AFEは反強誘電体膜を有する。 (もっと読む)


【課題】被処理体の所定領域に注入された、N型領域を形成する元素のイオンを、アニール処理の前後において被処理体の内部に維持し、所望のキャリア濃度のN型領域を形成することを可能とする、半導体デバイスの製造方法を提供する。
【解決手段】減圧雰囲気とした真空チャンバ内に、シリコンからなる被処理体101を配して、該真空チャンバ内に導入した、N型領域106Nを形成する元素Xを含むガスをプラズマ励起し、励起された該元素Xのイオンを、被処理体101の所定領域に注入する前工程と、該元素Xが注入された被処理体101をアニール処理する後工程と、を含み、該前工程と該後工程との間に、該真空チャンバ内に導入した酸素元素を含むガスをプラズマ励起し、励起された該酸素元素のラジカルに、該被処理体101の所定領域を曝露する工程を、さらに備えてなることを特徴とする半導体デバイスの製造方法。 (もっと読む)


【課題】半導体装置の性能向上を図る。
【解決手段】ゲート電極GE1,GE2,GE3,GE4の側壁上にオフセットスペーサを形成した状態で半導体基板1のnMIS領域1A,1BおよびpMIS領域1C,1Dのそれぞれにイオン注入を行うことで、ソース・ドレインのエクステンション領域を形成する。この際、nMIS領域1A,1BおよびpMIS領域1C,1Dのそれぞれに対して別々のフォトレジストパターンを用いて個別にイオン注入を行うが、フォトレジストパターンを形成し直す度に、オフセットスペーサを形成し直すようにする。 (もっと読む)


【課題】n型MOSトランジスタ及びp型MOSトランジスタのそれぞれに共通のゲート電極材料を用い、且つそれぞれの閾値電圧が適切な値に調整された半導体装置を実現できるようにする。
【解決手段】半導体装置は、第1トランジスタ11及び第2トランジスタ12を備えている。第1トランジスタ11は、第1ゲート絶縁膜131と、第1ゲート電極133とを有し、第2トランジスタ12は、第2ゲート絶縁膜132と、第2ゲート電極134とを有している。第1ゲート絶縁膜131及び第2ゲート絶縁膜132は、第1絶縁層151及び第2絶縁層152を含む。第1ゲート電極133及び第2ゲート電極134は、断面凹形の第1導電層155及び該第1導電層155の上に形成された第2導電層156を含む。第1絶縁層151及び第2絶縁層152は平板状であり、第1ゲート絶縁膜131は、仕事関数調整用の第1元素を含んでいる。 (もっと読む)


【課題】オン抵抗の低減を実現できる、高耐圧のLDMOSトランジスタを有する半導体装置を提供する。
【解決手段】半導体基板上に配置された第2導電型の第1半導体領域と、第1半導体領域の上面の一部に埋め込まれた第1導電型の第2半導体領域と、第2半導体領域の上面の一部に埋め込まれた第2導電型のソース領域と、第2半導体領域と離間して第1半導体領域の上面の一部に埋め込まれた第2の導電型のドレイン領域と、ソース領域とドレイン領域間で第2半導体領域上に配置されたゲート電極と、第2半導体領域とドレイン領域間で第1半導体領域上に配置された絶縁膜と、絶縁膜上に配置されてゲート電極とドレイン領域間の電圧を分圧する分圧素子と、分圧素子とドレイン領域との間に接続された電荷移動制限素子とを備える。 (もっと読む)


【課題】低電圧領域として使用されるSOI型MISFETと、高電圧領域として使用されるバルク型MISFETとが共存する半導体装置であっても半導体装置全体を縮小でき、更にプロセスが複雑化することなく作製できる半導体装置と製造方法を提供する。
【解決手段】単結晶半導体基板1、単結晶半導体基板から薄い埋め込み絶縁膜4で分離された薄い単結晶半導体薄膜(SOI層)3を持つSOI基板を用い、SOI型MISFET100およびバルク型MISFET200のウエル拡散層領域6と、ドレイン領域9、11、14、16と、ゲート絶縁膜5と、ゲート電極20とを同一工程にて形成する。バルク型MISFETとSOI型MISFETとを同一基板上に形成できるので、基板の占有面積を縮小できる。SOI型MISFETとバルク型MISFETとの作製工程の共通化により簡易プロセスを実現することができる。 (もっと読む)


【課題】低電圧領域として使用されるSOI型MISFETと、高電圧領域として使用されるバルク型MISFETとが共存する半導体装置であっても半導体装置全体を縮小でき、更にプロセスが複雑化することなく作製できる半導体装置と製造方法を提供する。
【解決手段】単結晶半導体基板1、単結晶半導体基板から薄い埋め込み絶縁膜4で分離された薄い単結晶半導体薄膜(SOI層)3を持つSOI基板を用い、SOI型MISFET100およびバルク型MISFET200のウエル拡散層領域6と、ドレイン領域9、11、14、16と、ゲート絶縁膜5と、ゲート電極20とを同一工程にて形成する。バルク型MISFETとSOI型MISFETとを同一基板上に形成できるので、基板の占有面積を縮小できる。SOI型MISFETとバルク型MISFETとの作製工程の共通化により簡易プロセスを実現することができる。 (もっと読む)


【課題】制御性よく空洞部を形成することが可能な半導体装置の製造方法を提供する。
【解決手段】ダミーゲート電極22上にオフセットスペーサ材料層を形成し、オフセットスペーサ材料層に異方性エッチングを行い、ダミーゲート電極22の側壁下部にオフセットスペーサ24を形成する。そして、サイドウォール15の形成後、ダミーゲート電極22とオフセットスペーサ24とを除去し、高誘電率材料からなるゲート絶縁膜13とメタルゲート電極14とを異方性の高い堆積方法を用いて形成する。 (もっと読む)


1 - 20 / 475