説明

Fターム[5F140BF27]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ゲート電極 (19,255) | 3層目より上層の材料 (915) | 金属 (751) | 高融点金属 (221)

Fターム[5F140BF27]に分類される特許

121 - 140 / 221


【課題】ゲートコンタクト抵抗値及びシート抵抗値を同時に低くし得る中間構造物を有するゲート構造及びゲート構造を有する半導体素子、並びにそれらの製造方法を提供すること。
【解決手段】本発明の半導体素子は、上面及び下面を有する基板21と、基板21の上面近くに形成され、ゲート絶縁膜22、ゲート絶縁膜22上に形成された第1電極23、第1電極23上に形成された中間構造物24、及び中間構造物24上に形成された第2電極25を含むゲート構造とを備え、中間構造物24が、チタン(Ti)を含む第1Ti膜101と、タングステン及びシリコンを含み、第1Ti膜上に形成された第2W膜24Dとを備えることを特徴とする。 (もっと読む)


【課題】ゲートスタックのシート抵抗及びコンタクト抵抗が小さいながらも、不純物の外部拡散を効果的に抑制することのできる拡散防止膜を備える半導体素子の製造方法を提供すること。
【解決手段】本発明に係る半導体素子の製造方法は、第1導電層(21)上に、少なくとも第1金属膜(22A)および窒素含有の金属シリサイド膜(22C)を含む積層構造で拡散防止膜を形成するステップと、該拡散防止膜上に第2導電層(23)を形成するステップとを含む。 (もっと読む)


【課題】 素子領域のエッジコーナー部における電界集中を緩和し、トランジスタの特性劣化を防止することを可能とする。
【解決手段】半導体基板上に、ゲート絶縁膜及びゲート電極を設け、それらの側面にダミー側壁を形成し、その周囲を層間絶縁膜で囲み、前記ゲート電極及びダミー側壁の上面が露出する構造を提供する工程と、
前記ダミー側壁を除去して空洞を形成する工程と、
前記空洞内を側壁材料で埋め、側壁を形成する工程と
を具備する半導体装置の製造方法。 (もっと読む)


【課題】ゲート絶縁膜上にpMOS電極材料として金属電極を形成する際に金属膜中からゲート絶縁膜へ拡散する炭素成分を抑制し、固定電荷要因を下げることができる半導体装置及びその製造方法を提供することである。
【解決手段】半導体装置の製造方法は、半導体基板100上にゲート絶縁膜101を形成する工程と、ゲート絶縁膜上に薄いシリコン層102を形成する工程と、この薄いシリコン層上にゲート絶縁膜界面での仕事関数が所定範囲内の値となる金属膜103を形成する工程と、を備えたものである。 (もっと読む)


【課題】 製造プロセスの複雑化や製造コストの増大を招くことなく、デュアルメタルゲートCMOS構造を実現する。
【解決手段】 基板上にn,pチャネルの各MISトランジスタ100,200を有する半導体装置であって、nMISトランジスタ100は、基板10上に形成されたp型半導体領域101と、p型半導体領域101上にゲート絶縁膜104を介して形成され、1モノレイヤー以上3nm以下の下層ゲート電極111と、下層ゲート電極111上に形成され、平均的な電気陰性度が下層ゲート電極111のそれより0.1以上小さい上層ゲート電極112とを含み、pMISトランジスタ200は、基板10上に形成されたn型半導体領域201と、n型半導体領域201上にゲート絶縁膜204を介して形成され、上層ゲート電極111と同一金属材料からなるゲート電極210とを含んで形成されている。 (もっと読む)


【課題】 ダマシンゲート技術等を用いてゲート電極が作製される半導体装置において、半導体装置の微細化等を可能にする。
【解決手段】 N型MISトランジスタ及びP型MISトランジスタそれぞれのゲート電極が半導体基板に形成された凹部内にゲート絶縁膜を介して形成されている半導体装置であって、N型MISトランジスタ及びP型MISトランジスタの一方のゲート電極は第1の金属含有膜F1及び第1の金属含有膜上の第2の金属含有膜F2の積層構造によって構成され、N型MISトランジスタ及びP型MISトランジスタの他方のゲート電極は第3の金属含有膜F3及び第3の金属含有膜上の第2の金属含有膜F2の積層構造によって構成されている。 (もっと読む)


【課題】FinFETのチャネル上縁部付近での電界集中を抑えると共に、製造の歩留りを高めた半導体装置を提供する。
【解決手段】FinFETは、シリコン基板11の表面に堆積され、ソース拡散層24a、ドレイン拡散層24b、及び、チャネル領域を形成するシリコン層14と、シリコン基板11上に素子分離層12を介して堆積され側部ゲート絶縁膜16を介してチャネルの側面に対向する一対の第1電極部分18と、頂部ゲート絶縁膜15を介してチャネルの頂面に対向し、且つ、第1電極部分18の頂部に接する第2電極部分19とを有するゲート電極とを有する。 (もっと読む)


【課題】 FinFET構造を有する半導体装置に完全空乏化SOI技術を適用した場合でも、トランジスタに十分なオン電流を流すことができる半導体装置及びその製造方法を提供する。
【解決手段】 活性領域であるフィン部を形成した後、フィン部を覆う第1ゲート絶縁膜22及びシリコン窒化膜23のチャネル部となる部分に対応する位置に開口を形成する。開口内に露出するシリコン基板21の表面を酸化し酸化膜28を形成し、その酸化膜28を除去する。これにより、フィン部のチャネル部となる部分のみの幅を選択的に狭くする。 (もっと読む)


【課題】 素子分離領域に囲まれたアクティブ領域にトレンチを形成する場合に、トレンチに隣接する素子分離領域の側壁にシリコンのエッチ残りが発生しないようにする。
【解決手段】 ゲート用トレンチを形成する前に、素子分離領域を構成する埋め込み酸化膜を選択的にエッチングし、ラウンド形状となっているアクティブ領域の側壁肩部を露出させる。これにより、ゲート用トレンチを形成する際に、埋め込み酸化膜の端部がマスクとして作用する範囲を縮小する。この後、ゲート用トレンチを形成する。 (もっと読む)


【課題】金属ゲート電極のエッチング条件が、閾値電極を構成する材料が異なっても同一となる金属ゲート電極MOSFETを提供すること。
【解決手段】ゲート酸化膜に接して形成された第1の金属層と第1の金属層の上に形成された第1の低抵抗層とからなる第1のゲート電極を有するnチャネルMOSFETとゲート酸化膜に接して形成された第2の金属層と第2の金属層の上に形成された第2の低抵抗層とからなる第2のゲート電極を有するpチャネルMOSFETとを有する半導体集積回路において、第1の金属層と第2の金属層が異なった仕事関数を有する金属によって構成され、第1の低抵抗層と第2の低抵抗層とが同一の材料からなる多結晶で構成され、第1の金属層と第1の低抵抗層の間に第1の中間層を有し、且つ第2の金属層と第2の低抵抗層の間に第2の中間層を有し、第1の中間層および第2の中間層が組成、粒径、結晶構造、及び配向方向が同一の導電性多結晶膜からなる。 (もっと読む)


【課題】 微細化された半導体デバイスにおいては、側面酸化時にゲート電極のポリシリコン膜やゲート絶縁膜が酸化されゲート絶縁膜厚が部分的に厚くなり、MISFETの電気特性が劣化するという問題がある。
【解決手段】 側面酸化をプラズマ酸化により行う。プラズマ酸化により酸化種の侵入距離を短くし、ポリシリコン膜やゲート絶縁膜の酸化を抑制する。側面酸化時の酸化を抑制することで、ゲート絶縁膜厚の増大を抑える事ができる。ゲート絶縁膜厚の増大を抑制することで安定した電気特性を有するMISFETを備えた半導体装置が得られる。 (もっと読む)


【課題】 微細化された半導体デバイスにおいては、ゲート電極のドープドポリシリコンが酸化されゲート酸化膜厚が部分的に厚くなり、MOSFETの電気特性が劣化するという問題がある。
【解決手段】 ゲート電極のポリシリコン形成工程において、ノンドープポリシリコンを成膜する。ノンドープポリシリコンとすることで、ゲート電極パターニング後の選択酸化時に形成される選択酸化膜を薄く、バーズビークを小さくすることができる。選択酸化時のポリシリコンの酸化を抑制することで、ゲート酸化膜厚のばらつきを抑える事ができる。ゲート酸化膜厚の増加や、ばらつきを抑制することで安定した電気特性を有するMOSFETを備えた半導体装置が得られる。 (もっと読む)


【課題】 製品の製造に適用が容易な簡単な方法で,アクティブ領域をラウンド形状にし,特にメモリセル領域に用いられるトランジスタのオン電流(Ion)減少を防止することができる半導体装置とその製造方法とを提供することにある。
【解決手段】 シリコン基板上に、素子分離によって区画された複数の拡散層からなる第1の拡散層領域2aと、前記第1の拡散層領域とは別の場所に設けられた複数の拡散層からなる第2の拡散層領域2bとを備えた半導体装置において、前記第1の拡散層領域2aは前記シリコン基板表面が上方へ湾曲する形状の拡散層で形成され、前記第2の拡散層領域2bは前記シリコン基板表面が第1の拡散層領域に比較して平坦な形状の拡散層で形成されている。 (もっと読む)


【課題】製造プロセス上の制約を緩和しつつ、高融点金属シリサイド層の自然酸化による界面抵抗の増大を抑制できる半導体装置を提供する。
【解決手段】半導体装置10でゲート電極14は、シリコン基板11側から、多結晶シリコン層15、タングステン・シリサイド層16、タングステン・ナイトライド層17、及び、タングステン層18を順次に備える。多結晶シリコン層15にはリンがドープされ、タングステン・シリサイド層16には窒素がドープされている。 (もっと読む)


【課題】フィントランジスタにおいて、フィン状の活性領域の上端部(角部)における電界集中を緩和し、フィントランジスタの閾値電圧の低下を抑制し、電流駆動能力の高いフィントランジスタを有する半導体装置及びその製造方法を提供する。
【解決手段】フィン状の活性領域12と、活性領域の上面を覆う第1ゲート絶縁膜13tと、活性領域の側面を覆う第2ゲート絶縁膜13sとを備え、第1ゲート絶縁膜13tの膜厚が第2ゲート絶縁膜13sの膜厚よりも厚く構成される。あるいは、第2ゲート絶縁膜13tを第1ゲート絶縁膜13sよりも誘電率の高い材料で形成する。これにより、フィン状の活性領域の上端部(角部)における電界集中が緩和されることから、フィントランジスタの電流駆動能力を維持しつつ、閾値電圧の低下を抑制することが可能となる。 (もっと読む)


【課題】ポリメタル構造のゲート電極を有するDRAM装置について、リフレッシュ特性を改善すると共に、配線抵抗の低減を実現する。
【解決手段】ポリメタルゲート電極の製造に際して、まず、ポリシリコンのゲート下部電極6を、その上に形成したマスク窒化膜でパターニングする。次いで、ゲート下部電極6についてリフレッシュ特性改善のための側壁酸化を行う。ゲート下部電極6及びマスク窒化膜の側壁に側壁酸化膜7を形成した後に、マスク窒化膜を除去してゲート下部電極6の表面を露出させ、その露出した表面上にタングステン層を含むゲート上部電極13を形成する。 (もっと読む)


【課題】金属窒化膜からなるゲート電極を有するMOSFETにおいて、ゲート電極の窒素組成を容易に制御することを可能とする半導体装置の製造方法を実現できるようにする。
【解決手段】半導体装置の製造方法は、半導体基板11の上に絶縁膜15を形成する工程(a)と、絶縁膜15の上に窒素を含まない材料かなる膜である第1の導電膜16を形成する工程(b)と、第1の導電膜16の上に窒素を含む材料からなる膜である第2の導電膜18を形成する工程(c)と、第2の導電膜18及び第1の導電膜16をパターニングしてゲート電極を形成すると共に、絶縁膜15をパターニングしてゲート絶縁膜を形成する工程(d)とを備えている。 (もっと読む)


【課題】 選択エピタキシャル成長技術を用いて基板上のソース及びドレインをせり上げた構造を有するMOSトランジスタにおいて、選択エピタキシャル成長によるシリコン層への不純物濃度を低く抑えたまま、バルクの抵抗を低減する。
【解決手段】 シリコン基板上に形成したサイドウォールを有するゲートと、シリコン基板上に選択エピタキシャル成長により形成したシリコン層とを備えるMOSトランジスタにおいて、シリコン層及びゲートを含む断面の少なくとも一部に、ゲートと反対の方向に下る傾斜部を形成する。 (もっと読む)


【課題】半導体装置において隣接するポリシリコンパッド間のショートを防止する技術を提供する。
【解決手段】半導体装置の製造方法は、(a)第1絶縁膜13を介して下面を基板1表面に接するサイドウォール12、13、14を備えるゲート21を、基板1上に形成する工程と、(b)ゲート21間において、基板1内の拡散領域41上にエピタキシャル膜31を形成する工程と、(c)拡散領域41間に隣接する素子分離領域上に第2絶縁膜32、33を形成する工程と、(d)拡散領域41のエピタキシャル膜31上にコンタクトプラグ11を形成する工程とを具備する。(c)工程は、(c1)第2絶縁膜32、33の膜厚が第1絶縁膜13よりも厚くなるように第2絶縁膜32、33を形成する工程を備えていても良い。 (もっと読む)


【課題】改善されたリセスチャンネルトランジスタを備えた半導体素子及びその製造方法に関するものである。
【解決手段】本発明は、半導体素子及びその製造方法に関し、特に3次元リセスチャンネル構造を埋め込む下部ゲート電極を第1下部ゲート導電層、リセスチャンネル構造の埋込み時に発生するシームとその移動を防止する支持層及び第2下部ゲート導電層の積層構造で形成するように半導体素子を設計することで、3次元リセスチャンネル構造のトポロジー特性により、リセスチャンネル構造内に生成するシームと後続する熱処理工程によるシームの移動現象を最小化し、素子の動作特性を向上させることのできる技術である。 (もっと読む)


121 - 140 / 221