説明

Fターム[5F140BJ07]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ソース・ドレイン電極 (8,852) | 最下層材料 (3,069) | 金属 (2,883) | 高融点金属 (492)

Fターム[5F140BJ07]に分類される特許

61 - 80 / 492


【課題】高性能なIII−V族MISFETの実現を可能にする、より効果的なIII−V族化合物半導体表面のパッシベーション技術を提供する。
【解決手段】エピタキシャル成長により化合物半導体層をベース基板上に形成するステップと、前記化合物半導体層の表面をセレン化合物を含む洗浄液で洗浄するステップと、前記化合物半導体層の上に絶縁層を形成するステップと、を有する半導体基板の製造方法を提供する。前記セレン化合物として、セレン酸化物が挙げられる。前記セレン酸化物として、HSeOが挙げられる。前記洗浄液が、水、アンモニアおよびエタノールからなる群から選択された1以上の物質をさらに含んでもよい。前記化合物半導体層の表面がInGa1−xAs(0≦x≦1)からなる場合、前記絶縁層がAlからなるものであることが好ましく、Alは、ALD法により形成されることが好ましい。 (もっと読む)


【課題】ゲート電極のドレイン端の電界を緩和し、ゲート絶縁膜の破損を低減する。
【解決手段】窒化物半導体で形成されたチャネル層108と、チャネル層108の上方に、チャネル層よりバンドギャップエネルギーが大きい窒化物半導体で形成された電子供給層112と、チャネル層108の上方に形成されたソース電極116およびドレイン電極118と、チャネル層108の上方に形成されたゲート電極120と、チャネル層108の上方に形成され、チャネル層108からホールを引き抜くホール引抜部126と、ゲート電極120およびホール引抜部126を、電気的に接続する接続部124と、を備える電界効果型トランジスタ100。 (もっと読む)


【課題】信頼性が高い半導体装置を提供する。
【解決手段】例えば、ドレイン用の半導体層DF2(n),DF1(n)およびコンタクト層CNTdと、ソース用の半導体領域DFAおよびコンタクト層と、ソース・ドレイン間に配置されるゲート層GTとを備える。ソース用のコンタクト層は、長辺側に対応する2個のコンタクト層CNTs1,CNTs2で構成され、短辺側に対応する部分には配置されない(C1−C1’間でY軸方向に延伸するコンタクト層は備えない)。また、ドレイン用のCNTdとDF1(n)の短辺側の間隔X1は、長辺側の間隔Y1よりも例えば3倍以上広い。 (もっと読む)


【課題】オン抵抗が低く、かつ、Vth(閾値電圧)が高い窒化物半導体装置の提供。
【解決手段】アクセプタになるアクセプタ元素を含み、窒化物半導体で形成されたバックバリア層106と、バックバリア層106上に窒化物半導体で形成されたチャネル層108と、チャネル層108の上方に、チャネル層よりバンドギャップが大きい窒化物半導体で形成された電子供給層112と、チャネル層108と電気的に接続された第1主電極116、118と、チャネル層108の上方に形成された制御電極120と、を備え、バックバリア層106は、制御電極120の下側の領域の少なくとも一部に、アクセプタの濃度がバックバリア層の他の一部の領域より高い高アクセプタ領域126を有する窒化物半導体装置100。 (もっと読む)


【課題】 半導体装置を高耐圧化する技術を提供することを目的とする。
【解決手段】 半導体装置100は、p型の埋込み層26と、p型埋込み層26上に設けられており、ヘテロ接合面3が構成されている窒化物半導体のヘテロ接合層32を備えている。p型埋込み層26は、ソース電極10側からドレイン電極2側に向けて厚みが減少する厚み減少部24を有している。厚み減少部24では、ソース電極10側の減少開始点14からドレイン電極2側の減少終了点16までの長さ24bが、減少開始点14における厚み24aよりも長い。 (もっと読む)


【課題】ゲート電極の側壁側にサイドウォールを精度よく形成することが可能な半導体装置の製造方法及び半導体装置を提供することを目的とする。
【解決手段】まず、SOI基板5の一方面側においてゲート電極34上及びゲート電極34の周囲の領域に第1絶縁膜40を形成する。次に、第1絶縁膜40上に積層させる構成で第1絶縁膜40とは材質の異なる第2絶縁膜42を形成する。そして、第1絶縁膜40及び第2絶縁膜42におけるゲート電極34の側壁34a側の部分を残しつつ、第2絶縁膜42よりも第1絶縁膜40のほうが、エッチング速度が遅くなるように第1絶縁膜40及び第2絶縁膜42を除去し、ゲート電極34の側壁34a側にサイドウォール45を形成する。 (もっと読む)


【課題】オン抵抗が低く、かつ、Vthが高い半導体装置を提供する。
【解決手段】基板102の上方に、III−V族化合物半導体で形成されたバックバリア層106と、バックバリア層106上に、バックバリア層106よりバンドギャップエネルギーが小さいIII−V族化合物半導体で形成され、バックバリア層106の上方の少なくとも一部に設けられたリセス部122において、他の部分より膜厚が薄いチャネル層108と、チャネル層108にオーミック接合された第1の電極116,118と、少なくともリセス部においてチャネル層の上方に形成された第2の電極120と、を備える半導体装置を提供する。 (もっと読む)


【課題】半導体素子、例えばFETのソース領域にショットキー電極を形成し、ゲート電極をソース電極の一部領域と窒化物半導体領域の一部に形成することによって、ノーマリ−オフまたはエンハンスメントモード動作する半導体素子及び製造方法を提供する。
【解決手段】基板10上に配設され、内部に2次元電子ガス(2DEG)チャネルを形成する窒化物半導体層30と、該窒化物半導体層30にオミック接合されたドレイン電極50と、該ドレイン電極50と離間して配設され、該窒化物半導体層30にショットキー接合されたソース電極60と、該ドレイン電極50と該ソース電極60との間の窒化物半導体層30上及び該ソース電極60の少なくとも一部上にかけて形成された誘電層40と、該ドレイン電極50と離間して誘電層40上に配設され、一部が誘電層40を挟んでソース電極60のドレイン方向のエッジ部分上に形成されたゲート電極70とを含む。 (もっと読む)


【課題】オン抵抗を低減し、かつ高耐圧で駆動することが可能な半導体装置を提供する。
【解決手段】当該高耐圧トランジスタは、第1の不純物層PEPと、第1の不純物層PEPの内部に形成される第2の不純物層HVNWと、第2の不純物層HVNWを挟むように、第1の不純物層PEPの内部に形成される1対の第3の不純物層OFBおよび第4の不純物層PWと、第3の不純物層OFBから、第2の不純物層HVNWの配置される方向へ、主表面に沿って突出するように、第1の不純物層PEPの最上面から第1の不純物層PEPの内部に形成される第5の不純物層OFB2と、第2の不純物層HVNWの最上面の上方に形成される導電層GEとを備える。第4の不純物層PWにおける不純物濃度は、第3および第5の不純物層OFB,OFB2における不純物濃度よりも高く、第5の不純物層OFB2における不純物濃度は、第3の不純物層OFBにおける不純物濃度よりも高い。 (もっと読む)


【課題】オン抵抗が低く、かつ、耐圧が高いノーマリーオフの半導体装置を提供する。
【解決手段】基板102の上方に形成された、III−V族化合物半導体からなるバックバリア層106と、バックバリア層106上に形成され、バックバリア層よりバンドギャップエネルギーが小さいIII−V族化合物半導体からなるチャネル層と108、チャネル層108にオーミック接続された第1の電極116,118と、チャネル層の上方に形成された第2の電極120と、を備え、バックバリア層106は第2の電極120の下方に設けられ、かつ、第2の電極120の下方から第1の電極の116,118下方まで連続して設けられていない半導体装置を提供する。 (もっと読む)


【課題】FETのソース領域にショットキー電極を形成し、内部にオミックパターン電極を備え、ゲート電極をソース電極の一部領域と窒化物半導体領域の一部に形成することによって、ノーマリ−オフ動作すると共に高耐圧及び高電流で動作可能な、半導体素子及び製造方法を提供する。
【解決手段】内部に2次元電子ガス(2DEG)チャネルを形成する窒化物半導体層30と、窒化物半導体層30にオーミック接合されたドレイン電極50と、ドレイン電極50と離間され、窒化物半導体層30にショットキー接合されるソース電極60と、ドレイン電極50とソース電極60との間の窒化物半導体層30上及びソース電極60の少なくとも一部上にかけて形成された誘電層40と、ドレイン電極50と離間されるように誘電層40上に配設され、一部が誘電層40を挟んでソース電極60のドレイン方向のエッジ部分上部に形成されたゲート電極70とを含む。 (もっと読む)


【課題】FETのソース領域にショットキー電極を形成し、ゲート電極をソース電極の一部領域と窒化物半導体領域の一部に形成し、ドレイン電極と該ソース電極との間にフローティングガードリングを設けることによって、ノーマリ−オフで動作する半導体素子を提供する。
【解決手段】内部に2次元電子ガス(2DEG)チャネルを形成する窒化物半導体層30と、窒化物半導体層30にオーミック接合されたドレイン電極50と、ショットキー接合されたソース電極60と、ドレイン電極50とソース電極60との間で窒化物半導体層30にショットキー接合されたフローティングガードリング75と、ドレイン電極50とソース電極60との間及びソース電極60の少なくとも一部上にかけて形成された誘電層40と、誘電層40上に形成され、一部が、誘電層40を挟んでソース電極60のドレイン方向のエッジ部分上に形成されたゲート電極70とを含む。 (もっと読む)


【課題】高電力で高性能なデバイスによって生成される熱応力に耐えることができる金属相互接続システムを提供する。
【解決手段】半導体デバイス構造であって、炭化ケイ素およびIII族窒化物からなる群から選択される広バンドギャップの半導体部分と、該半導体部分に対する相互接続構造であって、それぞれ2つの高導電性層と互い違いに、少なくとも2つの拡散バリア層を含む、相互接続構造とを備え、該拡散バリア層は、該高導電性層とは異なる熱膨張係数を有し、該高導電性層よりも低い熱膨張係数を有し、該それぞれの熱膨張係数の差異は、該高導電性層の膨張を抑えるために十分な大きさであるが、層間の接着強度を超える歪みを隣接層間に生じさせる差異よりも小さい、半導体デバイス構造。 (もっと読む)


【課題】 信頼性及び色再現性の高い電子装置を提供する。
【解決手段】 単結晶半導体基板11上にスイッチング用FET201及び電流制御用FET202を形成し、電流制御用FET202にEL素子203が電気的に接続された画素構造とする。電流制御用FET202は画素間での特性ばらつきが極めて小さく、色再現性の高い画像を得ることができる。電流制御用FET202にホットキャリア対策を施すことで信頼性の高い電子装置が得られる。 (もっと読む)


【課題】10nm程度の溝を有する微細構造物を安価で簡便かつ高精度に作製可能な微細構造物の製造方法、該微細構造物の製造方法により製造される微細構造物、及び該微細構造物を有する電界効果型半導体素子を提供すること。
【解決手段】本発明の微細構造物の製造方法は、トップダウン形成法により、基板上に少なくとも2つの凸状の形状からなる第1の構造体を形成する第1の構造体形成工程と、ボトムアップ形成法により、前記第1の構造体が形成された基板上に形成材料を堆積させ、隣接する前記第1の構造体の中間位置に凹状の溝を有する第2の構造体を形成する第2の構造体形成工程と、を含むことを特徴とする。 (もっと読む)


【課題】3次元形の半導体素子において、オン抵抗をより効果的に低減できる半導体素子及び半導体素子の製造方法を提供する。
【解決手段】半導体素子は、ドレイン層と、ドレイン層内に選択的に設けられたドリフト領域と、ドリフト領域内に選択的に設けられたベース領域と、ベース領域内に選択的に設けられたソース領域と、ソース領域又はドレイン層の少なくとも一方の内部に、ソース領域又はドレイン層の少なくとも一方に選択的に設けられた第1,第2の金属層と、ドレイン層の表面に対して略平行な方向に、ソース領域の一部から、ソース領域の少なくとも一部に隣接するベース領域を貫通して、ドリフト領域の一部にまで到達するトレンチ状のゲート電極と、第1の金属層に接続されたソース電極と、ドレイン層又は第2の金属層に接続されたドレイン電極と、を備える。 (もっと読む)


【課題】ドレイン電極とドレイン層とのコンタクト抵抗を低減できる半導体素子及び半導体素子の製造方法を提供する。
【解決手段】半導体素子は、第1導電型のドレイン層と、ドレイン層上に形成された第1導電型のドリフト層と、ドリフト層上に選択的に形成された第2導電型のベース層と、ベース層上に選択的に形成された第1導電型のソース層と、ゲート絶縁膜を介して、ドリフト層、ベース層及びソース層に跨って形成されたゲート電極と、ベース層及びソース層に電気的に接続されたソース電極と、ドリフト層を貫通して、底部の少なくとも一部がドレイン層にまで達する第1のトレンチ内に形成され、ドレイン層と電気的に接続されたドレイン電極と、を備え、底部には、凹凸が形成されている。 (もっと読む)


【課題】ピンチオフ特性を維持しながら動作効率を向上することができる化合物半導体装置及びその製造方法を提供する。
【解決手段】基板11と、基板11上方に形成された電子走行層12と、電子走行層12上方に形成された電子供給層13と、電子供給層13上方に形成されたソース電極15s及びドレイン電極15dと、電子供給層13上方で、ソース電極15s及びドレイン電極15dの間に形成された第1のゲート電極15g−1及び第2のゲート電極15g−2と、が設けられている。ゲート電極15g−1の仕事関数は、第2のゲート電極15g−2の仕事関数よりも低い。 (もっと読む)


【課題】大電流かつ高耐圧な窒化物系半導体デバイスを提供する。
【解決手段】基板10と、基板10の上方に形成された電子走行層30と、電子走行層30上に形成された、電子走行層30とバンドギャップエネルギーの異なる電子供給層40と、電子供給層40上に形成されたドレイン電極80と、ドレイン電極80に流れる電流を制御するゲート電極70と、ゲート電極70をはさんでドレイン電極80の反対側に形成されたソース電極90とを備え、ゲート電極70とドレイン電極80との間の電子走行層30の表面には、2次元電子ガスの濃度が他の領域より低い複数の低濃度領域32が、互いに離れて形成されている、窒化物系半導体デバイス100。 (もっと読む)


【課題】高電子移動度トランジスタの耐圧を高くする。
【解決手段】第1の高電子移動度トランジスタ4と、負の閾値電圧を有する第2の高電子移動度トランジスタ6とを有し、第2の高電子移動度トランジスタ6のソースS2は、第1の高電子移動度トランジスタ4のゲートG1に接続され、第2の高電子移動度トランジスタ6のゲートG2は、第1の高電子移動度トランジスタ4のソースS1に接続されている。 (もっと読む)


61 - 80 / 492