説明

Fターム[5F140BK34]の内容

Fターム[5F140BK34]の下位に属するFターム

雰囲気 (113)

Fターム[5F140BK34]に分類される特許

161 - 180 / 1,109


【課題】MIPS構造等のゲート電極と同時形成が可能であり且つ抵抗が高い抵抗素子を有する半導体装置及びその製造方法を提供する。
【解決手段】基板上に金属含有膜108及びポリシリコン膜109を順次形成する工程と、前記金属含有膜及び前記ポリシリコン膜を抵抗素子形状にパターニングする工程と、前記金属含有膜の少なくとも一部分を除去することにより、前記ポリシリコン膜の下に中空領域119を形成する工程とを備えている。 (もっと読む)


【課題】高耐圧で、特性の優れた半導体装置を提供する。
【解決手段】素子分離領域STIと、ウェルPWと、活性領域を横断するゲート電極Gと、ゲート電極の一方の側からゲート電極下方に入り込んで形成された低濃度ドレイン領域LDDと、ゲート電極の他方の側からゲート電極下方に入り込み、低濃度ドレイン領域とオーバーラップし、低濃度ドレイン領域より浅い、チャネル領域CHと、ゲート電極の他方の側に形成されたソース領域Snと、ゲート領域の一方の側に、ゲート電極から離間したドレイン領域Dnと、を有し、ゲート電極と高濃度ドレイン領域Dnとの間の中間領域の実効不純物濃度は、オーバーラップ領域の不純物濃度より高い。 (もっと読む)


【課題】ゲート電極とプラグとの接続信頼性を向上することができる技術を提供する。
【解決手段】本発明では、MISFETのゲート電極G1を金属膜MF2とポリシリコン膜PF1の積層膜から構成するMIPS電極を前提とする。そして、このMIPS電極から構成されるゲート電極G1のゲート長に比べて、ゲートコンタクトホールGCNT1の開口径を大きく形成する第1特徴点と、ゲート電極G1を構成する金属膜MF2の側面に凹部CP1を形成する第2特徴点により、さらなるゲート抵抗(寄生抵抗)の低減と、ゲート電極G1とゲートプラグGPLG1との接続信頼性を向上することができる。 (もっと読む)


【課題】 所望の極浅拡散層を形成することが可能な半導体製造方法を提供する。
【解決手段】
シリコン基板1にイオン注入するイオン注入工程と、イオン注入工程の後に、シリコン
基板1にマイクロ波を照射するマイクロ波照射工程と、マイクロ波照射工程の後に、シリ
コン基板1を熱処理装置に移し、シリコン基板に0.1ミリ以上100m秒以下のパルス
幅の光を照射することにより、シリコン基板1を熱処理する熱処理工程と、を備える。 (もっと読む)


【課題】 ウェット洗浄工程を増加させることなく、かつ、より低温でシリサイドを形成することが可能なシリサイドの形成方法を提供すること。
【解決手段】 表面にシリコンとシリコン酸化物とが露出している基板101上にシリサイドを形成するシリサイドの形成方法であって、基板101の温度を400℃以上として、シリコンとシリコン酸化物とが露出している基板101の表面上にマンガン有機化合物ガスを供給し、基板101の表面に露出したシリコンを選択的にマンガンシリサイド化する。 (もっと読む)


【課題】MIPS構造を採るメタル膜とコンタクトプラグとの界面抵抗を低減できるようにする。
【解決手段】まず、半導体基板1の上に、ゲート絶縁膜3を形成し、形成したゲート絶縁膜3の上に、TiN膜4及びポリシリコン膜5を順次形成する。続いて、ポリシリコン膜5にTiN膜4を露出するコンタクトホール5aを形成する。続いて、ポリシリコン膜5における第1のコンタクトホール5aの少なくとも底面及び壁面上に金属膜7を形成する。 (もっと読む)


【課題】ゲート電極周辺の寄生容量を低減させることのできる半導体装置の製造方法を提供する。
【解決手段】半導体基板上にゲート絶縁膜を形成する。ゲート絶縁膜上に、その上部に絶縁膜を有するゲート電極を形成する。ゲート電極を形成した後、半導体基板とゲート電極を覆う第1シリコン酸化膜を形成する。第1シリコン酸化膜を形成した後、第1シリコン酸化膜を覆う第1シリコン窒化膜を形成する。第1シリコン窒化膜を形成した後、第1シリコン窒化膜を覆う第2シリコン酸化膜を形成する。第2シリコン酸化膜を形成した後、第2シリコン酸化膜をエッチングして、第2シリコン酸化膜をゲート電極の側壁部に残す。第2シリコン酸化膜をゲート電極の側壁部に残す工程の後、半導体基板に不純物拡散層を形成する。不純物拡散層を形成した後、第2シリコン酸化膜を除去する。第2シリコン酸化膜を除去した後、半導体基板を覆う第2シリコン窒化膜を形成する。 (もっと読む)


【課題】より高い耐熱性を有するシリサイド層を備えた半導体装置およびその製造方法を提供する。
【解決手段】本発明の一態様に係る半導体装置100の製造方法は、半導体基板2上にゲート絶縁膜4を介してゲート電極5を形成する工程と、半導体基板2上のゲート電極5の両側に、Ge含有領域8を形成する工程と、半導体基板2およびGe含有領域8のゲート電極5の両側の領域中に、ソース・ドレイン領域9を形成する工程と、Ge含有領域8上に、濃度5原子%以上のPdを含む金属シリサイドからなるシリサイド層11を形成する工程と、シリサイド層11を形成した後、半導体基板2に650〜750℃の熱処理を施す工程と、を含む。 (もっと読む)


【課題】 ゲートとドレインの間で生じる電界集中を緩和する半導体装置を提供する。
【解決手段】本発明によれば,半導体基板上にゲート絶縁膜を介して形成された第1のゲート電極と、前記半導体基板上に前記ゲート絶縁膜を介して形成され、かつ、第1のゲート電極の側面に絶縁性のスペーサを介して配置された第2のゲート電極と、第1及び第2のゲート電極を挟むように前記半導体基板上に形成されたソース領域及びドレイン領域と、第1のゲート電極下方における前記半導体基板の一部の領域を挟むように形成され、第2のゲート電極及び前記ソース領域及びドレイン領域と重なるように形成された電界緩和領域と、を備える半導体装置が提供される。 (もっと読む)


【課題】 高性能の半導体構造およびかかる構造を製造する方法を提供する。
【解決手段】 半導体構造は、半導体基板12の上面14上に位置する、例えばFETのような少なくとも1つのゲート・スタック18を含む。構造は更に、少なくとも1つのゲート・スタックのチャネル40上にひずみを誘発する第1のエピタキシ半導体材料34を含む。第1のエピタキシ半導体材料は、少なくとも1つのゲート・スタックの対向側に存在する基板内の1対のくぼみ領域28の実質的に内部で少なくとも1つのゲート・スタックの設置場所に位置する。くぼみ領域の各々において第1のエピタキシ半導体材料の上面内に拡散拡張領域38が位置する。構造は更に、拡散拡張領域の上面上に位置する第2のエピタキシ半導体材料36を含む。第2のエピタキシ半導体材料は、第1のエピタキシ半導体材料よりも高いドーパント濃度を有する。 (もっと読む)


【課題】寄生抵抗の低下を図る。
【解決手段】半導体装置は、半導体基板10と、前記半導体基板上のソース/ドレイン領域に形成された第1半導体層11と、前記第1半導体層上に形成された第1部分12aと、前記ソース/ドレイン領域の間に位置するチャネル領域に形成された第2部分12bとを有する第2半導体層12と、前記第2半導体層の前記第1部分上に形成された第3半導体層13と、前記第2半導体層の前記第2部分の周囲に絶縁膜21を介して形成されたゲート電極22と、前記第1半導体層、前記第2半導体層の第1部分および前記第3半導体層内に形成されたコンタクトプラグ31と、を具備し、前記第2半導体層内における前記コンタクトプラグの径は、前記第1半導体層及び前記第3半導体層内における前記コンタクトプラグの径より小さい。 (もっと読む)


【課題】SiGe層を用いてPチャネル型トランジスタのチャネル形成領域に圧縮応力を印加すると共に、リーク電流を低減する。
【解決手段】半導体装置120は、半導体基板100の表面部に形成されたソース領域及びドレイン領域122と、これらに挟まれたチャネル形成領域上にゲート絶縁膜101を介して形成されたゲート電極102とを含むPチャネル型トランジスタを備える。ゲート電極102の両側それぞれにおいて半導体基板100にリセスが形成され、リセスに、SiGeからなる第1エピタキシャル層111と、その上に形成され且つSiからなる第2エピタキシャル層112と、その上に形成され且つSiGeからなり、チャネル形成領域を挟む第3エピタキシャル層113とを備える。ソース領域及びドレイン領域122は、第3エピタキシャル層113中に形成され、且つ、それぞれの接合深さがいずれも第3エピタキシャル層133の深さよりも浅い。 (もっと読む)


【課題】駆動電力の高いフィン型のトランジスタを提供する。
【解決手段】所定の間隔で配置され、それぞれの中央部がチャネル領域、その両側部がソース/ドレイン領域となるフィン状の第1の半導体11層及び第2の半導体層11と、第1の半導体層11及び第2の半導体層11それぞれのチャネル領域の両側面にゲート絶縁膜12を介して形成されたゲート電極13と、第1の半導体層11のソース/ドレイン領域と第2の半導体層11のソース/ドレイン領域との間の溝を埋め込むように形成された絶縁膜19と、第1の半導体層11のソース/ドレイン領域及び第2の半導体層11のソース/ドレイン領域の絶縁膜19で覆われていない側面にそれぞれ形成されたシリサイド16とを備える。 (もっと読む)


【課題】ゲート電極の下部からゲート電極の形成されていない基板上の領域に斜め方向のイオン注入を行って形成される不純物拡散領域を有する半導体装置において、半導体装置のサイズを従来に比して縮小化することができる半導体装置を提供する。
【解決手段】N型半導体層13の表面に形成されるP型のベース領域21と、ベース領域21内に形成されるP+型ソース領域22およびN+型ソース領域23を有するソース領域と、N型半導体層13の表面にベース領域21から離れて形成されるN+型のドレイン領域26と、ソース領域とドレイン領域26との間にゲート絶縁膜41を介して形成されるゲート電極42と、ドレイン領域26からゲート電極42の下部にかけて、ドレイン領域26に隣接して形成されるN型のドリフト領域と、を備え、ゲート電極42とゲート絶縁膜41との積層体のソース領域側側面の高さが、ドレイン領域側側面の高さよりも高く形成される。 (もっと読む)


トレンチDMOSトランジスタの製造方法であって、半導体基板上に酸化物層及びバリア層を形成するステップと、トレンチを形成するために、酸化物層及び半導体基板をエッチングするステップと、トレンチの内壁にゲート酸化物層を形成するステップと、バリア層上にポリシリコン層を形成し、トレンチを充填するステップと、トレンチゲートを形成するために、ポリシリコン層をエッチバックするステップと、バリア層及び酸化物層を除去するステップと、拡散層を形成するために、トレンチゲートの両側の半導体基板内にイオンを注入するステップと、拡散層上をフォトレジスト層で覆い、ソース/ドレイン配置を定義するステップと、拡散層内にイオンを注入するステップと、トレンチゲートの両側に側壁を形成するステップと、拡散層及びトレンチゲート上に金属シリサイド層を形成するステップとを含む。低コスト及び改善された製造効率を伴う効果的な結果が達成される。
(もっと読む)


【課題】
高温、長時間のアニールを必要とすることなく、低いオン抵抗を実現可能な高耐圧MOSトランジスタを含む半導体装置を提供する。
【解決手段】
半導体基板の高耐圧トランジスタ用第1導電型領域上にゲート電極を形成し、ゲート電極のドレイン側部分及びドレイン領域を覆う第1のマスクをイオン注入マスクとして、ゲート電極を貫通する加速エネルギで第1導電型の不純物イオンを注入して、ソース領域で深く、ゲート電極下方で浅いチャネルドーズ領域を形成し、ゲート電極のドレイン側部分及びドレイン領域を覆う第2のマスク及びゲート電極をイオン注入マスクとして第2導電型の不純物をイオン注入してソースエクステンション領域を形成し、半導体装置を製造する。 (もっと読む)


【課題】 半導体装置に関し、ソース・ドレイン領域を実効的に埋込Si混晶層で構成する際の電気的特性を向上する
【解決手段】 一導電型シリコン基体と、一導電型シリコン基体上に設けたゲート絶縁膜と、ゲート絶縁膜の上に設けたゲート電極とゲート電極の両側の一導電型シリコン基体に設けた逆導電型エクステンション領域と、逆導電型エクステンション領域に接するとともに、一導電型シリコン基体に形成された凹部に埋め込まれた逆導電型Si混晶層とを備えた半導体装置であって、逆導電型Si混晶層が、第1不純物濃度Si混晶層/第2不純物濃度Si混晶層/第3不純物濃度Si混晶層を有し、第2不純物濃度を第1不純物濃度及び第3不純物濃度よりも高くする。 (もっと読む)


【課題】高誘電体ゲート絶縁膜/メタルゲート電極のMOSトランジスタ構造において、メタルゲート電極側壁の酸化層を抑制し、トランジスタ駆動能力を改善する。
【解決手段】基板101上に、金属含有膜110を形成する工程(a)と、反応室内において金属含有膜にアンモニアラジカルを曝露する工程(b)と、反応室内に不活性ガスを供給し、工程(b)において生じたガスを排気する工程(c)と、工程(b)及び工程(c)を所定の回数繰り返した後に、大気曝露することなく、反応室内において金属含有膜110を覆うシリコン窒化膜100aを形成する工程(d)とを備える。 (もっと読む)


【課題】FINFETにおいて、寄生抵抗の改善を図ることができる技術を提供する。
【解決手段】本発明におけるFINFETでは、サイドウォールSWを積層膜から形成している。具体的に、サイドウォールSWは、酸化シリコン膜OX1と、酸化シリコン膜OX1上に形成された窒化シリコン膜SN1と、窒化シリコン膜SN1上に形成された酸化シリコン膜OX2から構成されている。一方、フィンFIN1の側壁には、サイドウォールSWが形成されていない。このように本発明では、ゲート電極G1の側壁にサイドウォールSWを形成し、かつ、フィンFIN1の側壁にサイドウォールSWを形成しない。 (もっと読む)


【課題】ソース/ドレイン領域のPN接合部とコンタクト間のリーク電流を抑制する。
【解決手段】半導体基板(1)と、半導体基板(1)に形成されたSTI(Shallow Trench Isolation)構造(2)と、半導体基板(1)に形成され、STI構造(2)に隣接する拡散領域(12)と、層間絶縁膜(15)を貫通して拡散領域(12)とSTI構造(2)とに到達する接続コンタクト(20)と、拡散領域(12)の側面と拡散領域(12)の下の半導体基板(1)の側面に形成され、接続コンタクト(20)と拡散領域(12)の側面とを電気的に絶縁し、かつ、接続コンタクト(20)と半導体基板(1)の側面とを電気的に絶縁する酸化膜(19)とを具備する半導体装置を構成する。その半導体装置では、STI素子分離とソース/ドレイン領域のPN接合部分の間のみに選択的に絶縁膜(酸化膜)を形成している。 (もっと読む)


161 - 180 / 1,109