説明

Fターム[5F140CA03]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | 配線 (1,162) | 材料 (584)

Fターム[5F140CA03]の下位に属するFターム

多結晶 (34)
超電導材料

Fターム[5F140CA03]に分類される特許

41 - 60 / 550


【課題】オン抵抗を低減し、かつ高耐圧で駆動することが可能な半導体装置を提供する。
【解決手段】当該高耐圧トランジスタは、第1の不純物層PEPと、第1の不純物層PEPの内部に形成される第2の不純物層HVNWと、第2の不純物層HVNWを挟むように、第1の不純物層PEPの内部に形成される1対の第3の不純物層OFBおよび第4の不純物層PWと、第3の不純物層OFBから、第2の不純物層HVNWの配置される方向へ、主表面に沿って突出するように、第1の不純物層PEPの最上面から第1の不純物層PEPの内部に形成される第5の不純物層OFB2と、第2の不純物層HVNWの最上面の上方に形成される導電層GEとを備える。第4の不純物層PWにおける不純物濃度は、第3および第5の不純物層OFB,OFB2における不純物濃度よりも高く、第5の不純物層OFB2における不純物濃度は、第3の不純物層OFBにおける不純物濃度よりも高い。 (もっと読む)


【課題】配線抵抗を低減することのできる半導体装置を提供する。
【解決手段】一の実施の形態に係る半導体装置は、半導体基板と、半導体基板上にそれぞれ設けられた第1の領域及び第2の領域とを備える。第1の領域は、半導体基板上の第1配線層に形成され、所定の第1の幅を有する第1の金属配線と、第1配線層の上層の第2配線層に形成され第1の幅を有する第2の金属配線と、第1の金属配線と第2の金属配線とを接続し、第1の幅以下の第2の幅を有する第1のコンタクトとを有する。第2の領域は、第1配線層から第2配線層へと亘る膜厚を有し、所定の第3の幅を有する第3の金属配線を有する。 (もっと読む)


【課題】 層間絶縁膜をCMP法で研磨、平坦化する際、MOS型トランジスタのチャネル領域に応力を与えるためにゲート電極を覆うように形成される応力ライナー膜が研磨されて、トランジスタ特性の変動やバラツキが発生しないようにする。
【解決手段】 第1活性領域(例えばPチャネルトランジスタ形成領域)上のゲート電極(シリコン膜14と金属シリサイド膜15との積層膜)上には第1応力膜(圧縮応力ライナー膜)16のみを形成し、第2活性領域(例えばNチャネルトランジスタ領域)上のゲート電極上には第2応力膜(引っ張り応力ライナー膜)18のみを形成する。一方、素子分離10上のゲート電極上には第1および第2応力膜16、18の積層膜を形成する。層間絶縁膜20のCMP法による研磨は、素子分離10上の第2応力膜18の露出後に停止する。 (もっと読む)


【課題】高電力で高性能なデバイスによって生成される熱応力に耐えることができる金属相互接続システムを提供する。
【解決手段】半導体デバイス構造であって、炭化ケイ素およびIII族窒化物からなる群から選択される広バンドギャップの半導体部分と、該半導体部分に対する相互接続構造であって、それぞれ2つの高導電性層と互い違いに、少なくとも2つの拡散バリア層を含む、相互接続構造とを備え、該拡散バリア層は、該高導電性層とは異なる熱膨張係数を有し、該高導電性層よりも低い熱膨張係数を有し、該それぞれの熱膨張係数の差異は、該高導電性層の膨張を抑えるために十分な大きさであるが、層間の接着強度を超える歪みを隣接層間に生じさせる差異よりも小さい、半導体デバイス構造。 (もっと読む)


【課題】本発明は、接合リーク電流を低減可能で、かつトランジスタの信頼性を向上させることの可能な半導体装置及びその製造方法を提供することを課題とする。
【解決手段】ゲート電極61よりも上方に配置されたゲート絶縁膜21、及びゲート電極61の上面61aを覆う水素含有絶縁膜62と、水素含有絶縁膜62を介して、ゲート電極用溝17の上部17Bを埋め込むフッ素含有絶縁膜63と、を備え、ゲート絶縁膜21と接触する第1及び第2の不純物拡散領域65,66の面に、半導体基板13に含まれるシリコンと水素含有絶縁膜62に含まれる水素とが結合したSi−H結合、及び半導体基板13に含まれるシリコンとフッ素含有絶縁膜63に含まれるフッ素とが結合したSi−F結合を有する。 (もっと読む)


【課題】高誘電率ゲート絶縁膜を用いたCMIS型半導体集積回路において、短チャネル長、且つ狭チャネル幅のデバイス領域では、ソースドレイン領域の活性化アニールによって、高誘電率ゲート絶縁膜とシリコン系基板部との界面膜であるILの膜厚が増加することによって、閾値電圧の絶対値が増加するという問題がある。
【解決手段】本願の一つの発明は、MISFETを有する半導体集積回路装置の製造方法において、MISFETのゲートスタック及びその周辺構造を形成した後、半導体基板表面を酸素吸収膜で覆い、その状態でソースドレインの不純物を活性化するためのアニールを実行し、その後、当該酸素吸収膜を除去するものである。 (もっと読む)


【課題】高誘電率ゲート絶縁膜を用いたCMIS型半導体集積回路において、短チャネル長、且つ狭チャネル幅のデバイス領域では、ソースドレイン領域の活性化アニールによって、高誘電率ゲート絶縁膜とシリコン系基板部との界面膜であるILの膜厚が増加することによって、閾値電圧の絶対値が増加するという問題がある。
【解決手段】本願の一つの発明は、MISFETを有する半導体集積回路装置の製造方法において、MISFETのゲートスタック及びその周辺構造を形成した後、半導体基板表面を酸素吸収膜で覆い、その状態でソースドレインの不純物を活性化するためのアニールを実行し、その後、当該酸素吸収膜を除去するものである。 (もっと読む)


【課題】高集積化を図ることができる半導体装置の製造方法を提供することである。
【解決手段】実施形態に係る半導体装置の製造方法は、半導体基板に第1の方向に延びる複数の溝を形成する工程と、前記溝の内面上及び前記半導体基板の上面上に絶縁膜を形成する工程と、前記絶縁膜上に、前記溝を埋めるように、第1の導電層を堆積する工程と、前記第1の導電層上に第2の導電層を堆積する工程と、前記第2の導電層上における前記溝の直上域の一部を含む領域にハードマスクを形成する工程と、前記ハードマスクをマスクとして前記第2の導電層をエッチングすることにより、前記ハードマスク及び前記第2の導電層を含む柱状体を形成する工程と、前記柱状体における前記溝の幅方向に面する2つの側面上に、電極加工側壁を形成する工程と、前記柱状体及び前記電極加工側壁をマスクとしてエッチングすることにより、前記第1の導電層における露出した部分の上部を除去し下部を残留させる工程と、前記電極加工側壁を除去する工程とを備える。 (もっと読む)


【課題】ゲート絶縁膜界面材料としてGeO2 を用いた場合においてもGeO2 層の劣化を抑制することができ、素子の信頼性向上をはかると共に、プロセスの歩留まり向上をはかる。
【解決手段】本発明の実施形態による電界効果トランジスタは、Geを含む基板10上の一部に設けられた、少なくともGeO2 層を含むゲート絶縁膜20と、ゲート絶縁膜20上に設けられたゲート電極30と、ゲート電極30下のチャネル領域を挟んで前記基板に設けられたソース/ドレイン領域50と、前記ゲート絶縁膜20の両側部に形成された窒素含有領域25と、を備えた。 (もっと読む)


【課題】パターンの微細化、特に、SRAMのセル面積を縮小するためには、隣接ゲートの端部間距離を縮小することが重要となる。しかし、28nmテクノロジノードにおいては、ArFによる単一回露光でパターンを転写することは、一般に困難である。従って、通常、複数回の露光、エッチング等を繰り返すことによって、微細パターンを形成しているが、ゲートスタック材にHigh−k絶縁膜やメタル電極部材が使用されているため、酸化耐性やウエットエッチ耐性が低い等の問題がある。
【解決手段】本願発明は、メモリ領域におけるhigh−kゲート絶縁膜およびメタル電極膜を有するゲート積層膜のパターニングにおいて、最初に、第1のレジスト膜を用いて、隣接ゲート電極間切断領域のエッチングを実行し不要になった第1のレジスト膜を除去した後、第2のレジスト膜を用いて、ライン&スペースパターンのエッチングを実行するものである。 (もっと読む)


【課題】高耐圧電界効果トランジスタの素子面積を増大させること無しに、十分に低いオン抵抗を得る。
【解決手段】半導体基板101のn型領域102内に、チャネル形成領域102aを挟んでドレイン低濃度領域103およびソース低濃度領域104を形成し、ドレイン高濃度領域105およびソース高濃度領域106を形成し、ゲート酸化膜109を形成し、該ゲート酸化膜109の端部および低濃度領域103,104を含む領域にフィールド酸化膜110を形成し、さらにゲート酸化膜109からフィールド酸化膜110の端部にかけてゲート電極111を形成した高耐圧pMOSトランジスタにおいて、ゲート電極111とドレイン高濃度領域105との間に、フィールド酸化膜110が形成されていない非酸化領域112を設ける。製造時に、ドレイン低濃度領域103の不純物がフィールド酸化膜110に取り込まれ難くなるので、オン抵抗の増加が抑制される。 (もっと読む)


【課題】特性の良好な半導体装置を形成する。
【解決手段】本発明は、pチャネル型MISFETをpMIS形成領域1Aに有し、nチャネル型MISFETをnMIS形成領域1Bに有する半導体装置の製造方法であって、HfON膜5上にAl膜8aを形成する工程と、Al膜上にTiリッチなTiN膜7aを形成する工程と、を有する。さらに、nMIS形成領域1BのTiN膜およびAl膜を除去する工程と、nMIS形成領域1BのHfON膜5上およびpMIS形成領域1AのTiN膜7a上にLa膜8bを形成する工程と、La膜8b上にNリッチなTiN膜7bを形成する工程と、熱処理を施す工程とを有する。かかる工程によれば、pMIS形成領域1Aにおいては、HfAlON膜のN含有量を少なくでき、nMIS形成領域1Bにおいては、HfLaON膜のN含有量を多くできる。よって、eWFを改善できる。 (もっと読む)


【課題】低廉なプロセスにて高性能・高信頼性を実現しうる半導体装置及びその製造方法を提供する。
【解決手段】第1の領域に形成された第1導電型の不純物層及び第1のエピタキシャル半導体層と、第1のエピタキシャル半導体層上に第1のゲート絶縁膜を介して形成された第1のゲート電極と、第1の領域に形成された第1のソース/ドレイン領域とを有する第1のトランジスタと、第2の領域に形成された第2導電型の不純物層及び第1のエピタキシャル半導体層とは膜厚の異なる第2のエピタキシャル半導体層と、第2のエピタキシャル半導体層上に第1のゲート絶縁膜と同じ膜厚の第2のゲート絶縁膜を介して形成された第2のゲート電極と、第2の領域に形成された第2のソース/ドレイン領域とを有する第2のトランジスタとを有する。 (もっと読む)


【課題】良好なノーマリ・オフ動作を可能とすることに加え、アバランシェ耐量が大きく、外部のダイオードを接続することを要せず、確実に安定動作を得ることができる信頼性の高い高耐圧のHEMTを得る。
【解決手段】化合物半導体積層構造2に形成された電極用リセス2Cを、ゲート絶縁膜6を介して電極材料で埋め込むようにゲート電極7を形成すると共に、化合物半導体積層構造2に形成された電極用リセス2Dを、少なくとも電極用リセス2Dの底面で化合物半導体積層構造2と直接的に接するように電極材料で埋め込み、化合物半導体積層構造2とショットキー接触するフィールドプレート電極8を形成する。 (もっと読む)


【課題】電極材料が拡散するのを抑制し、特性の向上を実現する。
【解決手段】半導体装置を、ゲート電極3とゲート絶縁膜2との間、Al含有オーミック電極4、5とAu配線9との間、及び、ゲート電極3の下方及びAl含有オーミック電極4、5の上方、のいずれかに設けられ、第1TaN層6A、Ta層6B、第2TaN層6Cを順に積層した構造を有する電極材料拡散抑制層6を備えるものとする。 (もっと読む)


【課題】 高耐圧MOS型トランジスタなどの高耐圧半導体装置における耐圧を向上させ、またドレインオフセット層などの内部電界強度が経時的に変化し、耐圧が変動することを防止する。
【解決手段】 半導体装置、例えば高耐圧MOS型トランジスタは、半導体層2、それと反対導電型の低不純物濃度ソース層3および低不純物濃度ドレイン層4、高不純物濃度ソース層5および高不純物濃度ドレイン層6、厚い絶縁膜8、ゲート絶縁膜9、ゲート電極10を有する。さらにゲート電極10の両側に例えば狭いギャップをもって隣接すると共に電気的フローティングとされた導電性プレート11が厚い絶縁膜8上に設置される。 (もっと読む)


【課題】半導体装置の製造方法において、異なる膜特性を有する絶縁膜に形成されるコンタクト形状の制御性を向上させる。
【解決手段】半導体基板に素子領域を形成し、半導体基板の第1の領域上に、第1の絶縁膜を形成し、半導体基板の第2の領域上に、膜応力及びコンタクトの形成の際のエッチング加工時のエッチングレートが、第1の絶縁膜と異なる第2の絶縁膜を形成し、少なくとも第2の絶縁膜において、コンタクトが形成されるコンタクト領域に選択的にUV光を照射し、UV光を照射した後、第1の絶縁膜及び前記第2の絶縁膜をエッチングして前記コンタクトを形成する。 (もっと読む)


【課題】半導体装置の性能と信頼性を向上させる。
【解決手段】nチャネル型MISFETQn1,Qn2を覆うように半導体基板1上に引張応力膜としての窒化シリコン膜5を形成する。窒化シリコン膜5は窒化シリコン膜5a,5b,5cの積層膜である。窒化シリコン膜5a,5bの膜厚の合計は、サイドウォールスペーサSW1とサイドウォールスペーサSW2との間の間隔の半分よりも小さく、窒化シリコン膜5a,5bは、成膜後に紫外線照射処理を行って引張応力を増大させる。窒化シリコン膜5a,5b,5cの膜厚の合計は、サイドウォールスペーサSW1とサイドウォールスペーサSW2との間の間隔の半分以上であり、窒化シリコン膜5cに対しては紫外線照射処理を行わない。 (もっと読む)


【課題】LDMOSトランジスタとESD保護素子とを有する半導体装置において、製造工程が簡単であるとともに、所望の特性を確保しつつ従来に比べてより一層の高密度化が可能な半導体装置及びその製造方法を提供する。
【解決手段】LDMOSトランジスタ形成領域のゲート電極18aと素子分離膜11bの重なり幅をA1、ゲート電極18aとドレイン領域23bとの間隔をB1とし、ESD保護素子形成領域のゲート電極18と素子分離膜11cとの重なり幅をA2、ゲート電極18bとアノード領域22cとの間隔をB2としたときに、A1≧A2、且つB1<B2の関係を満足するように、ゲート電極18a、素子分離膜11b、ドレイン領域20a、ゲート電極18b、素子分離膜11c及び前記アノード領域22cを形成する (もっと読む)


【課題】携帯電話などのフロントエンドモジュールに使用されているハイパワーアンプは、シリコン系CMOS集積回路をベースとするデバイスであるが、その出力段に多数のLDMOSFETセルを集積し、通常、複数のLDMOSFETを構成したLDMOSFET部を有する。このLDMOSFETセルにおいては、裏面のソース電極と表面のソース領域との間の抵抗を低減するために、半導体基板に高濃度にボロンドープされたポリシリコンプラグが埋め込まれている。このポリシリコンプラグは、熱処理に起因する固相エピタキシャル成長により収縮し、シリコン基板に歪が発生する。
【解決手段】本願発明は、LDMOSFET等の半導体装置の製造方法において、基板の表面からエピタキシャル層を貫通するホールを形成し、ポリシリコンプラグを埋め込むに際して、ホールの内面に薄膜酸化シリコン膜が存在する状態で、ポリシリコン部材の堆積を行うものである。 (もっと読む)


41 - 60 / 550