説明

Fターム[5F152FH05]の内容

再結晶化技術 (53,633) | 走査方法 (1,865) | 走査 (1,343) | オーバーラップ走査 (268)

Fターム[5F152FH05]の下位に属するFターム

Fターム[5F152FH05]に分類される特許

21 - 40 / 229


【課題】平坦性を確保しつつ、結晶性の高い半導体膜を有する、SOI基板の作製方法を提供することを、目的の一とする。
【解決手段】分離により絶縁膜上に単結晶の半導体膜を形成した後、該半導体膜の表面に存在する自然酸化膜を除去し、半導体膜に対して第1のレーザ光の照射を行う。第1のレーザ光の照射は、希ガス雰囲気下、窒素雰囲気下または減圧雰囲気下にて、半導体膜の任意の一点におけるレーザ光のショット数を7以上、より好ましくは10以上100以下とする。そして、第1のレーザ光の照射を行った後、半導体膜に対して第2のレーザ光の照射を行う。第2のレーザ光の照射は、希ガス雰囲気下、窒素雰囲気下または減圧雰囲気下にて、半導体膜の任意の一点におけるレーザ光のショット数を0より大きく2以下とする。 (もっと読む)


【課題】本発明が目的とする技術的課題は、均一な表示特性を有するシリコン結晶化方法及びそれを用いた有機発光表示装置を提供することにある。
【解決手段】絶縁基板上に非晶質シリコン層を蒸着する工程と、レーザービームの透過領域と遮断領域を有するマスクを通じて前記レーザービームを照射することで前記非晶質シリコン層を溶融する工程と、前記溶融されたシリコン層が凝固して結晶化する工程とを含み、前記マスクの遮断領域と前記透過領域の境界線の少なくとも一部は階段状に形成されている。 (もっと読む)


【課題】照射面またはその近傍におけるレーザ光の端部は、レンズの収差などにより、エネルギー密度が徐々に減衰しているこのような領域(減衰領域)は被照射体のアニールにおけるエネルギー密度が十分でないので前記被照射体に対して均一なアニールを行うことを提供する。
【解決手段】複数のレーザ光のうちの1つのレーザ光のスポットを切断して2つに分割し、分割されたレーザ光のそれぞれの切断面が外側となるように入れ替える手段と、複数のレーザ光を1つに重ね合わせ線状に形成する手段とを有し、重ね合わせ線状に形成する手段により重ね合わされた線状のレーザー光の長尺方向において、減衰領域を除いたエネルギー密度の平均値は±10%以内であり、重ね合わされた線状のレーザ光は、分割された
レーザ光の切断面を長尺方向の両端部とし、かつ分割されたレーザ光同士は重なり合わない。 (もっと読む)


【課題】半導体膜の結晶性若しくは表面の平坦性、又は結晶性及び表面の平坦性を高めることのできるレーザ照射装置を提供することを目的の一とする。
【解決手段】レーザ発振器と、レーザ発振器から射出されたレーザ光を線状に成形する光学系と、光学系によって成形された線状のレーザ光が照射される被照射物を載置するステージと、を有し、ステージは、支持台上に、ヒータ、不純物吸着材及び被照射物を載置する載置台が順に固定されているレーザ照射装置を用いて、絶縁表面上に設けられた半導体膜にレーザ光を照射し、半導体膜を結晶化する。 (もっと読む)


【課題】均一性の極めて高いアニール処理結果を実現しつつ、その場合であっても生産性が損なわれてしまうことなく高スループット化を実現できるようにする。
【解決手段】基板上に少なくとも非晶質シリコン膜14と光吸収層16とが積層されてなる多層構造体に対して、前記光吸収層16の側から光を照射して当該光による局所加熱を行い、前記非晶質シリコン膜14を微結晶シリコン膜または多結晶シリコン膜に改質するアニール処理工程を備え、前記アニール処理工程では、前記局所加熱にあたり同一走査ライン上に複数の光ビームを配置するとともに、前記光吸収層16の熱伝導率をk、密度をρ、比熱をc、走査すべきライン長/走査速度をtpとした場合に、前記複数の光ビームを少なくとも間隔L=2×{k・tp/(ρ・c)}1/2だけ隔てて配置する。 (もっと読む)


【課題】 本発明では剥離技術を用いることにより様々な基板上に薄膜素子を形成し、従
来の技術では不可能であると考えられていた部分に薄膜素子を形成することにより、省ス
ペース化を図ると共に耐衝撃性やフレキシビリティに優れた半導体装置を提供する。
【解決手段】 本発明では、剥離技術を用いて一旦基板から剥離させた膜厚50μm以下
の素子形成層を基板上に固着することにより、様々な基板上に薄膜素子を形成することを
特徴とする。例えば、可撓性基板上に固着された薄膜素子をパネルの裏面に貼り付けたり
、直接パネルの裏面に固着したり、さらには、パネルに貼り付けられたFPC上に薄膜素
子を固着することにより、省スペース化を図ることができる。 (もっと読む)


【課題】ドーピング処理の条件の厳密な管理および新たな製造工程を追加することなく、良好なVg−Id特性を有する薄膜トランジスタを実現する。
【解決手段】基板25上に形成された薄膜トランジスタにおいて、島状の半導体層21は、略平坦な上面を有する中央部21aと、基板25に対して0度より大きく、且つ90度以下の傾斜角を有する端部21bとを有し、島状の半導体層21の中央部21aに含まれる半導体は、端部21bに含まれる半導体よりも結晶粒径が大きい、或いは島状の半導体層21の中央部21aは多結晶半導体を含み、且つ端部21bは非晶質半導体を含む。 (もっと読む)


【課題】連続発振又は擬似連続発振のレーザー光を用いて、結晶成長が連続で且つ表面が平坦な結晶質半導体膜を形成する。
【解決手段】絶縁基板に成膜された非晶質半導体膜12aに連続発振又は擬似連続発振のレーザー光のスポット形状が細長のビームBを、絶縁基板の一方側から他方側に向かって走査しながら照射する往路動作、及び絶縁基板の他方側から一方側に向かって走査しながら照射する復路動作を交互に繰り返して、先の動作で照射されたビームBの照射領域Rの側端部にオーバーラップするようにビームBを照射することにより、結晶質半導体膜12bを形成する半導体膜の製造方法であって、往路動作及び復路動作では、ビームBの長さ方向におけるビームBの照射領域Rの側端部にオーバーラップする側がビームBの走査方向S側に傾斜するようにビームBを照射する。 (もっと読む)


【課題】大面積な半導体装置を低コストに提供することを目的の一とする。または、nチャネル型トランジスタ及びpチャネル型トランジスタに最適な結晶面をチャネル形成領域とすることにより、性能向上を図ることを目的の一とする。
【解決手段】絶縁表面上に(211)面から±10°以内の面を上面とする島状の単結晶半導体層を形成し、単結晶半導体層の上面及び側面に接して形成し、且つ絶縁表面上に非単結晶半導体層を形成し、非単結晶半導体層にレーザー光を照射して非単結晶半導体層を溶融し、且つ、単結晶半導体層を種結晶として絶縁表面上に形成された非単結晶半導体層を結晶化して結晶性半導体層を形成し、結晶性半導体層を用いて、nチャネル型トランジスタ及びpチャネル型トランジスタを形成する。 (もっと読む)


【課題】ミッシングパルスの発生を迅速に判定する。シャッタの開閉のタイミングによってミッシングパルスの発生を誤判定してしまうことを防止する。
【解決手段】シャッタ開信号bの立上りから所定の期間G内に閾値r以上のビームセンサ信号bが検知されない場合にミッシングパルスがあったと判定する。nを自然数とし、αをシャッタの開タイミングの最大ずれ時間とするとき、n×T+α<G<(n+1)×T−αとする。
【効果】nミッシングパルスが発生した時、ただちにミッシングパルスの発生を判定することが出来る。シャッタの開閉のタイミングによってミッシングパルスの発生を誤判定してしまうことがない。 (もっと読む)


【課題】遮光層上に設けられ、光センサ等の用途に適した半導体素子と、高速駆動が可能な高性能の半導体素子とが同一の基板上に搭載されており、従来よりも部品点数が削減され、薄型化や軽量化が可能であるとともに、遮光層の有無による結晶性への影響が無い半導体装置を提供する。
【解決手段】半導体装置は、絶縁基板1上に形成されたTFT21とTFD22とを備えている。TFD22と絶縁基板1との間には、遮光層2が選択的に形成されている。TFT21およびTFD22における各半導体層5・6は、ラテラル成長結晶からなり、TFD22の半導体層6の表面には、TFT21の表面粗さよりも大きな凹凸が設けられている。 (もっと読む)


【課題】連続発振のレーザー光の照射により形成された結晶質半導体層において、結晶欠陥の発生を抑制する。
【解決手段】絶縁基板10に非晶質半導体膜12を成膜する半導体膜成膜工程と、非晶質半導体膜12を覆うようにキャップ膜13を成膜するキャップ膜成膜工程と、キャップ膜13を介して非晶質半導体膜12に連続発振のレーザー光Bを幅方向にオーバーラップするように走査しながら照射して、結晶質半導体膜12aを形成する結晶質半導体膜形成工程と、結晶質半導体膜12a及びキャップ膜13の積層膜をパターニングして、結晶質半導体層12ba及びキャップ層13baを形成する結晶質半導体層形成工程とを備える半導体装置の製造方法であって、キャップ膜13の膜厚は、10nm〜30nmである。 (もっと読む)


【課題】(110)面の配向度が向上した他結晶シリコン膜を、ニッケル等を添加することなく得る。
【解決手段】基板1上に堆積された非晶質半導体膜3の被照射領域10にレーザー4を照射して、被照射領域10の一部を溶融領域20とした後、溶融領域20の中心方向へ向けて溶融状態にある非晶質半導体膜3の再結晶化させる第1工程と、被照射領域10を短軸方向に移動させる第2工程と、を交互に繰り返して行う結晶性半導体膜32の製造方法であって、第1工程は溶融された非晶質半導体膜3が両端部より結晶成長が進行して交わる前に固化した非多結晶領域36が該照射領域10の長軸方向に間欠的に存在するようにレーザー4を照射する工程で、第2工程はN回目の第1工程で形成された非多結晶領域36がN+1回目の第1工程で形成される溶融領域22に含まれるように被照射領域10を移動させる工程である、ことを特徴とする結晶性半導体膜32の製造方法。 (もっと読む)


【課題】良好なトランジスタ特性を有する薄膜トランジスタ、その製造方法、表示装置、及び半導体装置を提供すること
【解決手段】本発明にかかる薄膜トランジスタは、基板上に形成されたゲート電極2と、ゲート電極を覆うゲート絶縁膜3と、ゲート絶縁膜3上に形成され、ゲート電極2の対面に配置された半導体層4と、半導体層4上に、n型不純物を含むn型オーミックコンタクト層6を介して形成された、ソース電極7及びドレイン電極8と、ソース電極7の下のn型オーミックコンタクト層6と半導体層4との間、ドレイン電極8の下のn型オーミックコンタクト層6と半導体層4との間にそれぞれ形成されたp型半導体層5と、を備えるものである。 (もっと読む)


【課題】レーザー光の照射による単結晶半導体層の端部からの膜剥がれを抑制した、SOI基板の作製方法及び半導体装置の作製方法を提供する。
【解決手段】加速されたイオンを単結晶半導体基板に照射することによって、単結晶半導体基板中に脆化領域を形成し、絶縁層を介して単結晶半導体基板とベース基板とを貼り合わせ、脆化領域において単結晶半導体基板を分離してベース基板上に絶縁層を介して単結晶半導体層を形成し、単結晶半導体層の端部を除去し、端部を除去した単結晶半導体層の表面にレーザー光を照射する。 (もっと読む)


【課題】工程を簡単にしながらも、多結晶化された半導体層の厚みの変動を低減する。
【解決手段】半導体装置1は、基板11の平坦な表面に形成された遮光膜14と、遮光膜14を直接に覆って基板11に形成されると共に、平坦化された表面を有する平坦層15と、遮光膜14に重なるように平坦層15上に形成され、多結晶化された半導体層16とを備えている。 (もっと読む)


【課題】生産性及びトランジスタ特性を向上することができるバックチャネルエッチ型の薄膜トランジスタ、半導体装置、及びこれらの製造方法を提供することを目的とする。
【解決手段】本発明にかかるバックチャネルエッチ型のTFT108は、ゲート電極11と、ゲート電極11上に形成されたSiN膜12と、SiN膜12上にパターニング形成されたSiO膜13とを有する。さらに、TFT108は、SiO膜13上においてSiO膜13に接し、全てのパターン端がSiO膜13のパターン端近傍に配置されるようにパターニング形成された多結晶半導体膜14を有する。 (もっと読む)


【課題】SOI基板の単結晶半導体層中の酸素濃度を低減させる方法を提供する。
【解決手段】単結晶半導体層を溶融状態にすることによって酸素の外方拡散を促進する。具体的には、ベース基板上に設けられた酸素を含有する接合層と、前記酸素を含有する接合層上に設けられた単結晶半導体層と、を有するSOI構造を形成し、前記ベース基板の温度を500℃以上の温度であって前記ベース基板の融点よりも低い温度に加熱した状態において、前記単結晶半導体層をレーザー光の照射により部分溶融させることによって、SOI基板を作製する。 (もっと読む)


【課題】工程数の増加を伴うことなく、結晶の異方性が異なる複数の領域を有する結晶化半導体膜を形成することができる結晶化半導体膜の製造方法を提供する。
【解決手段】レーザビーム6を走査している最中に、レーザビーム6の単位時間当たりの照射量を複数の領域3・4・5に応じた照射量に連続して変えることにより、結晶の異方性の異なる複数の領域3・4・5からなる結晶化半導体膜を形成する。 (もっと読む)


【課題】信頼性及び再現性良く、高性能poly-Si薄膜が形成可能な、微結晶化判定方法を提供する。
【解決手段】表面にa-Si膜が形成された基板18に、線状に整形されたパルスレーザ光を、線状レーザ光の短軸方向に移動しながらスキャン照射して、複数のエネルギー密度で、照射領域19を形成する。白色平面光源15から、レーザ光の長軸方向に並行に平面光を入射し、その反射光をCCD受光素子で受光する。CCD受光素子が受光した反射光を解析して、微結晶化しきい値を判定し、その判定した微結晶化しきい値に基づいて、本照射を行う際のパルスレーザ光のエネルギー密度を決定する。エネルギー密度の減少に伴って、結晶粒径データの周期性が崩れる状態に移行するときのエネルギー密度を、基板表面の微結晶化しきい値とする。 (もっと読む)


21 - 40 / 229