説明

半導体装置の作製方法

【課題】大面積な半導体装置を低コストに提供することを目的の一とする。または、nチャネル型トランジスタ及びpチャネル型トランジスタに最適な結晶面をチャネル形成領域とすることにより、性能向上を図ることを目的の一とする。
【解決手段】絶縁表面上に(211)面から±10°以内の面を上面とする島状の単結晶半導体層を形成し、単結晶半導体層の上面及び側面に接して形成し、且つ絶縁表面上に非単結晶半導体層を形成し、非単結晶半導体層にレーザー光を照射して非単結晶半導体層を溶融し、且つ、単結晶半導体層を種結晶として絶縁表面上に形成された非単結晶半導体層を結晶化して結晶性半導体層を形成し、結晶性半導体層を用いて、nチャネル型トランジスタ及びpチャネル型トランジスタを形成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体装置の作製方法に関する。
【背景技術】
【0002】
単結晶半導体のインゴットを薄くスライスして作製されるシリコンウェハに代わり、絶縁表面に薄い単結晶半導体層を設けたシリコン・オン・インシュレータ(以下、「SOI」ともいう)と呼ばれる半導体基板を使った集積回路が開発されている。SOI基板を使った集積回路は、トランジスタのドレインと基板間における寄生容量を低減し、半導体集積回路の性能を向上させるものとして注目を集めている。
【0003】
SOI基板を製造する方法としては、水素イオン注入剥離法が知られている(例えば、特許文献1参照)。水素イオン注入剥離法は、シリコンウェハに水素イオンを注入することによって表面から所定の深さに脆化領域を形成し、該脆化領域において分離することで、別のシリコンウェハに薄いシリコン層を接合する方法である。
【0004】
ところで、CMOS技術において、NMOS、PMOSは、(100)面と呼ばれる面方位のシリコンウェハを用いて形成するのが主流となっている。この(100)面は、電子について高い移動度を示すため、NMOSにとっては適した結晶面であるが、正孔については(110)面で高い移動度を示すため、PMOSに適した結晶面ではない。また、(110)面は、PMOSにとって適した結晶面であるが、電子移動度は(100)面と比べると劣るため、NMOSに適した結晶面ではない。
【0005】
そこで、NMOSの電子移動度と、PMOSの正孔移動度を両立させるため、(110)面を有するシリコンウェハに形成されたPMOSと、(110)面を有するシリコンウェハ上に形成された(100)面を有するシリコン層に形成されたNMOSとを備えた半導体装置が知られている(例えば、特許文献2参照)。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2000−124092号公報
【特許文献2】特開2006−229047号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
2枚の半導体基板を互いに貼り合わせて半導体装置を形成する場合には、半導体装置の大きさが半導体基板の大きさに限定されるため、大面積化には不利である。また、異なる面方位を有する2枚の基板を用いる必要があるため、低コスト化が困難である。
【0008】
本発明の一態様は、大面積な半導体装置を低コストに提供することを目的の一とする。または、本発明の別の一態様は、nチャネル型トランジスタ及びpチャネル型トランジスタを有する半導体装置の性能向上を図ることを目的の一とする。
【課題を解決するための手段】
【0009】
本発明の一態様は、絶縁表面上に{211}面から±10°以内の面(つまり、{211}面を基準に、−10°以上+10°以下の範囲にある面)を上面とする島状の単結晶半導体層を形成する工程と、単結晶半導体層の上面及び側面に接して形成し、且つ絶縁表面上に非単結晶半導体層を形成する工程と、非単結晶半導体層にレーザー光を照射して非単結晶半導体層を溶融し、且つ、単結晶半導体層を種結晶として絶縁表面上に形成された非単結晶半導体層を結晶化して結晶性半導体層を形成する工程と、結晶性半導体層を用いて、nチャネル型トランジスタ及びpチャネル型トランジスタを形成する工程と、を有する半導体装置の作製方法である。
【0010】
また、本発明の別の一態様は、絶縁表面上に{211}面から±10°以内の面を上面とする島状の単結晶半導体層を形成する工程と、単結晶半導体層の上面及び側面を覆い且つ絶縁表面上に絶縁層を形成する工程と、絶縁層に開口部を形成して、単結晶半導体層の上面を露出させる工程と、露出した単結晶半導体層の上面及び絶縁表面を覆うように非単結晶半導体層を形成する工程と、非単結晶半導体層にレーザー光を照射して非単結晶半導体層を溶融し、且つ、単結晶半導体層を種結晶として絶縁表面上に形成された非単結晶半導体層を結晶化して結晶性半導体層を形成する工程と、結晶性半導体層を用いて、nチャネル型トランジスタ及びpチャネル型トランジスタを形成する工程と、を有する半導体装置の作製方法である。
【0011】
上記において、絶縁表面上に{211}面から±10°以内の面を上面とする島状の単結晶半導体層を形成する工程は、{211}面から±10°以内の面を上面とする単結晶半導体基板にイオンを添加して脆化領域を形成する工程と、単結晶半導体基板と絶縁表面を有するベース基板とを貼り合わせる工程と、脆化領域において、単結晶半導体基板を分離する工程と、を有することが望ましい。
【0012】
また、本発明の別の一態様は、絶縁表面上に非単結晶半導体層を形成する工程と、非単結晶半導体層上に{211}面から±10°以内の面を上面とする島状の単結晶半導体層を形成する工程と、非単結晶半導体層にレーザー光を照射して非単結晶半導体層を溶融し、且つ、単結晶半導体層を種結晶として非単結晶半導体層を結晶化して結晶性半導体層を形成する工程と、結晶性半導体層を用いて、nチャネル型トランジスタ及びpチャネル型トランジスタを形成する工程と、を有する半導体装置の作製方法である。
【0013】
上記において、非単結晶半導体層上に{211}面から±10°以内の面を上面とする島状の単結晶半導体層を形成する工程は、{211}面から±10°以内の面を上面とする単結晶半導体基板にイオンを添加して脆化領域を形成する工程と、単結晶半導体基板と非単結晶半導体層を有するベース基板とを貼り合わせる工程と、脆化領域において、単結晶半導体基板を分離する工程と、を有することが望ましい。
【0014】
また、上記において、nチャネル型トランジスタ及びpチャネル型トランジスタのチャネル長方向を<111>方向とすることが望ましい。また、nチャネル型トランジスタ及びpチャネル型トランジスタを用いてCMOS回路を形成すると良い。また、上記において、nチャネル型トランジスタのチャネル長と、pチャネル型トランジスタのチャネル長を同程度に形成すると良い。ここで同程度とは、nチャネル型トランジスタとpチャネル型トランジスタのチャネル長の平均値から±20%の範囲をいう。また、単結晶半導体層としては、単結晶シリコン層を形成すると良い。
【0015】
なお、本明細書において、{211}面から±10°以内の面とは、対象とする面に垂直な方向と、<211>との成す角度が10°以下の面をいう。
【0016】
また、本明細書において、単結晶とは、ある結晶軸に注目した場合、その結晶軸の方向が試料のどの部分においても同じ方向を向いている結晶のことをいい、かつ結晶と結晶との間に結晶粒界が存在しない結晶である。なお、本明細書では、結晶欠陥やダングリングボンドを含んでいても、上記のように結晶軸の方向が揃っており、粒界が存在していない結晶であるものは単結晶とする。
【0017】
また、本明細書で示すトランジスタの構成は、様々な形態をとることができ、特定の構成に限定されない。例えば、ゲート電極が2個以上のマルチゲート構造を適用することができる。マルチゲート構造にすると、チャネル領域が直列に接続されるため、複数のトランジスタが直列に接続された構成となる。マルチゲート構造により、オフ電流の低減、トランジスタの耐圧向上(信頼性の向上)を図ることができる。あるいは、マルチゲート構造により、飽和領域で動作する時に、ドレイン・ソース間電圧が変化しても、ドレイン・ソース間電流があまり変化せず、電圧・電流特性の傾きをフラットにすることができる。電圧・電流特性の傾きがフラットである特性を利用すると、理想的な電流源回路や、非常に高い抵抗値をもつ能動負荷を実現することが出来る。その結果、特性のよい差動回路やカレントミラー回路を実現することが出来る。
【0018】
別の例として、チャネルの上下にゲート電極が配置されている構造を適用することができる。チャネルの上下にゲート電極が配置されている構造にすることにより、チャネル領域が増えるため、電流値の増加を図ることができる。または、チャネルの上下にゲート電極が配置されている構造にすることにより、空乏層ができやすくなるため、S値の改善を図ることができる。なお、チャネルの上下にゲート電極が配置される構成にすることにより、複数のトランジスタが並列に接続されたような構成となる。
【0019】
チャネル領域の上にゲート電極が配置されている構造、チャネル領域の下にゲート電極が配置されている構造、正スタガ構造、逆スタガ構造、チャネル領域を複数の領域に分けた構造、チャネル領域を並列に接続した構造、またはチャネル領域が直列に接続する構成も適用できる。さらに、チャネル領域(もしくはその一部)にソース電極やドレイン電極が重なっている構造も適用できる。チャネル領域(もしくはその一部)にソース電極やドレイン電極が重なる構造にすることによって、チャネル領域の一部に電荷が溜まることにより動作が不安定になることを防ぐことができる。あるいは、LDD領域を設けた構造を適用できる。LDD領域を設けることにより、オフ電流の低減、又はトランジスタの耐圧向上(信頼性の向上)を図ることができる。あるいは、LDD領域を設けることにより、飽和領域で動作する時に、ドレイン・ソース間電圧が変化しても、ドレイン・ソース間電流があまり変化せず、電圧・電流特性の傾きがフラットな特性にすることができる。
【0020】
本明細書中において、酸化窒化シリコンとは、その組成として、窒素よりも酸素の含有量が多いものであって、好ましくは、ラザフォード後方散乱法(RBS:Rutherford Backscattering Spectrometry)及び水素前方散乱法(HFS:Hydrogen Forward Scattering)を用いて測定した場合に、濃度範囲として酸素が50〜70原子%、窒素が0.5〜15原子%、シリコンが25〜35原子%、水素が0.1〜10原子%の範囲で含まれるものをいう。また、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多いものであって、好ましくは、RBS及びHFSを用いて測定した場合に、濃度範囲として酸素が5〜30原子%、窒素が20〜55原子%、シリコンが25〜35原子%、水素が10〜30原子%の範囲で含まれるものをいう。ただし、酸化窒化シリコン又は窒化酸化シリコンを構成する原子の合計を100原子%としたとき、窒素、酸素、シリコン及び水素の含有比率が上記の範囲内に含まれるものとする。
【0021】
本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指し、表示装置、半導体回路および電子機器は全て半導体装置に含まれる。
【0022】
また、本明細書中において表示装置とは、発光装置や液晶表示装置を含む。発光装置は発光素子を含み、液晶表示装置は液晶素子を含む。発光素子は、電流または電圧によって輝度が制御される素子をその範疇に含んでおり、具体的には無機EL(Electro Luminescence)素子、有機EL素子等が含まれる。
【発明の効果】
【0023】
本発明の一態様によれば、基板上に設けられた単結晶半導体層を種結晶として形成された結晶性半導体層を用いることで、大面積な半導体装置を低コストに提供することができる。または、本発明の一態様によれば、nチャネル型トランジスタ及びpチャネル型トランジスタに適した結晶面を用いてチャネル層を設けることにより、半導体装置の性能向上を図ることができる。
【図面の簡単な説明】
【0024】
【図1】半導体基板の作製方法の一例を示す図。
【図2】半導体基板の作製方法の一例を示す図。
【図3】半導体装置の作製方法の一例を示す図。
【図4】半導体基板の作製方法の一例を示す図。
【図5】半導体装置の作製方法の一例を示す図。
【図6】半導体基板の作製方法の一例を示す図。
【図7】半導体基板の作製方法の一例を示す図。
【図8】半導体基板の作製方法の一例を示す図。
【図9】半導体基板の作製方法の一例を示す図。
【図10】半導体基板の作製方法の一例を示す図。
【図11】半導体基板の作製方法の一例を示す図。
【図12】本発明の一態様に係るマイクロプロセッサの構成を示すブロック図。
【図13】本発明の一態様に係るRFCPUの構成を示すブロック図。
【図14】(A)液晶表示装置の画素の平面図。(B)J−K切断線による図14(A)の断面図。
【図15】(A)エレクトロルミネセンス表示装置の画素の平面図。(B)J−K切断線による図15(A)の断面図。
【図16】本発明の一態様に係る電子機器を示す図。
【図17】本発明の一態様に係る電子機器を示す図。
【発明を実施するための形態】
【0025】
以下に、本発明の実施の形態について、図面を用いて詳細に説明する。ただし、本発明は以下に示す実施の形態の記載内容に限定されず、発明の趣旨から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者にとって自明である。したがって、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。また、異なる実施の形態に係る構成は、適宜組み合わせて実施することができる。また、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を用い、その繰り返しの説明は省略する。
【0026】
(実施の形態1)
本実施の形態では、絶縁表面上に半導体層を有する半導体基板の作製方法及び当該半導体基板を用いた半導体装置の作製方法の一例について、図面を参照して説明する。
【0027】
<半導体基板の作製方法>
はじめに、半導体基板の作製方法について図1、図2を用いて説明する。なお、図1は断面の模式図に相当し、図2は平面の模式図に相当する。
【0028】
まず、絶縁表面上に単結晶半導体層を設ける。ここでは、絶縁層101を有する基板100上に絶縁層102を介して単結晶半導体層104を設ける場合を示している(図1(A)参照)。
【0029】
基板100は、ガラス基板、セラミック基板、石英基板やサファイア基板等の絶縁体でなる基板を用いることができる。他にも、シリコン等の半導体でなる基板、金属やステンレスなどの導電体でなる基板等を用いることもできる。また、本実施の形態の作製工程における処理温度に耐えうるのであれば基板100としてプラスチック基板を用いてもよい。
【0030】
絶縁層101は、酸化シリコン膜、酸化窒化シリコン膜、窒化シリコン膜、窒化酸化シリコン膜等の絶縁層を用いて、単層構造又は積層構造とすることができる。なお、絶縁層101を設けずに、基板100上に絶縁層102を介して単結晶半導体層104を設けてもよい。
【0031】
単結晶半導体層104は、{211}面から±10°以内の面を上面とする島状の単結晶半導体層を用いて形成することができる。単結晶半導体層104としては、単結晶シリコンを用いることができる。他にも、ゲルマニウム、シリコンゲルマニウム、炭化シリコンなどの第14族元素でなる半導体を用いることができる。
【0032】
単結晶半導体層104の上面とは、絶縁層102と接する面と反対側の表面を指す。また、{211}面から±10°以内の面とは、対象とする面に垂直な方向と、<211>との成す角度が10°以下の面を指す。
【0033】
次に、単結晶半導体層104及び基板100を覆うように非単結晶半導体層106を形成する(図1(B)、図2(A)参照)。非単結晶半導体層106は、単結晶半導体層104の上面及び側面に接するように形成すると共に、露出している基板100の表面に形成する。
【0034】
非単結晶半導体層106は、非晶質半導体、微結晶半導体、多結晶半導体を用いて形成することができる。また、非単結晶半導体層106は、単結晶半導体層104と同じ材料を用いて形成すればよく、例えば、単結晶半導体層104として単結晶シリコンを用いる場合には、非単結晶半導体層106として、アモルファスシリコン、微結晶シリコン又は多結晶シリコンを用いることができる。
【0035】
次に、非単結晶半導体層106にレーザー光108を照射して当該非単結晶半導体層106を溶融し(図1(C)参照)、単結晶半導体層104を種結晶として基板100上に形成された非単結晶半導体層106を結晶化させる(図1(D)、図2(B)参照)。
【0036】
具体的には、単結晶半導体層104の上面に接する非単結晶半導体層106にレーザー光108を照射して溶融させた後、当該レーザー光108を走査することによって、基板100上に形成された非単結晶半導体層106を連続的に溶融させて、基板100上に結晶性半導体層を形成する。
【0037】
レーザー光108の照射に適用するレーザー発振器としては、非単結晶半導体層106を溶融できるものであれば特に限定されない。例えば、レーザー発振器として、パルス発振レーザーまたは連続発振レーザー(CWレーザー)を用いることができる。例えば、パルス発振レーザーは、繰り返し周波数10MHz未満、パルス幅10n秒以上500n秒以下とすることができる。代表的なパルス発振レーザーは、400nm以下の波長のレーザー光を発振するエキシマレーザーである。上記エキシマレーザーとして、例えば、繰り返し周波数10Hz〜300Hz、パルス幅25n秒、波長308nmのXeClエキシマレーザーを用いることができる。また、パルス発振レーザー光の走査において、1回のショットと次のショットとを一部重ねてオーバーラップさせてもよい。
【0038】
また、レーザー光108の照射工程において、非単結晶半導体層106と共に単結晶半導体層104を溶融させてもよいが、単結晶半導体層104の溶融は完全に行うのではなく、部分的に溶融(部分溶融)させることが好ましい。部分溶融とは、レーザー光108の照射により単結晶半導体層104の溶融されている深さが絶縁層102の界面(単結晶半導体層104の厚さ)よりも浅くなることである。つまり、単結晶半導体層104の上層は溶融して液相となり、下層は溶けずに固相の単結晶半導体のままである状態をいう。この場合、レーザー光108の照射により溶融した部分の結晶成長は、溶融していない単結晶半導体層の面方位に基づいて行われる。
【0039】
非単結晶半導体層106を溶融させるためのレーザー光のエネルギー密度の取りうる範囲は、レーザー光の波長、非単結晶半導体層106の膜厚などを考慮して、単結晶半導体層104が完全に溶融しない程度のエネルギー密度の範囲とすればよい。
【0040】
以上の工程により、基板100上に{211}面から±10°以内の面を上面とする結晶性半導体層110を有する半導体基板を形成することができる(図1(E)参照)。
【0041】
結晶性半導体層110は、単結晶半導体層104と同等の構造を有している。なお、結晶軸の方向が揃っていれば、結晶欠陥やダングリングボンドを含んでいてもよい。
【0042】
<半導体装置の作製方法>
続いて、基板100上に設けられた結晶性半導体層110を用いて、n型のトランジスタ及びp型のトランジスタを有する半導体装置を作製する方法について、図3を参照して説明する。
【0043】
まず、上記図1の作製工程で得られた半導体基板を準備する(図3(A)参照)。なお、図3(A)は、図1(E)に対応している。
【0044】
次に、結晶性半導体層110をエッチングして、島状の結晶性半導体層120a、120bを形成する(図3(B)参照)。ここでは、種結晶として用いた単結晶半導体層104をエッチングにより除去する場合を示しているが、単結晶半導体層104を残存させてもよい。
【0045】
次に、結晶性半導体層120a、120bを覆うように絶縁層122を形成した後、当該絶縁層122上に、結晶性半導体層120aと重なる導電層124a及び結晶性半導体層120bと重なる導電層124bを形成する(図3(C)参照)。
【0046】
絶縁層122は、酸化シリコン膜、酸化窒化シリコン膜、窒化シリコン膜、窒化酸化シリコン膜等の絶縁層を用いて、単層又は積層させて形成することができる。これらの膜は、CVD法又はスパッタリング法等を用いて形成することができる。また、絶縁層122は、結晶性半導体層120aをチャネル層とするトランジスタ、結晶性半導体層120bをチャネル層とするトランジスタのゲート絶縁層として機能する。
【0047】
導電層124a、124bは、タンタル(Ta)、タングステン(W)、チタン(Ti)、モリブデン(Mo)、アルミニウム(Al)、銅(Cu)、クロム(Cr)、ニオブ(Nb)等の材料を用いて、単層又は積層させて形成することができる。また、上記金属を主成分とする合金材料を用いてもよいし、上記金属を含む化合物を用いても良い。又は、半導体に導電性を付与する不純物元素をドーピングした多結晶珪素等の半導体材料を用いて形成してもよい。これらの材料は、CVD法、スパッタリング法等を用いて形成することができる。また、導電層124aは結晶性半導体層120aをチャネル層とするトランジスタのゲート電極として機能し、導電層124bは結晶性半導体層120bをチャネル層とするトランジスタのゲート電極として機能する。
【0048】
次に、結晶性半導体層120a、120bに不純物元素を添加することにより、結晶性半導体層120aにn型の不純物領域126a、126bを形成し、結晶性半導体層120bにp型の不純物領域128a、128bを形成する(図3(D)参照)。
【0049】
不純物領域126a、126bは、結晶性半導体層120aをチャネル層とするトランジスタのソース領域又はドレイン領域として機能し、不純物領域128a、128bは、結晶性半導体層120bをチャネル層とするトランジスタのソース領域又はドレイン領域として機能する。
【0050】
不純物元素としては、ホウ素、アルミニウム、ガリウム等のp型を付与する不純物元素、又はリン、ヒ素等のn型を付与する不純物元素を添加すればよい。
【0051】
次に、導電層124a、124b及び絶縁層122を覆うように絶縁層132を形成した後、当該絶縁層132上に、不純物領域126aに電気的に接続する導電層134a、不純物領域126b及び不純物領域128aに電気的に接続する導電層134b、不純物領域128bに電気的に接続する導電層134cを形成する(図3(E)参照)。
【0052】
絶縁層132としては、酸化シリコン、酸化窒化シリコン等の無機絶縁材料、又はポリイミド、アクリルなどの有機絶縁材料を用いて形成することができる。また、絶縁層132は、単層構造としてもよいし、複数の絶縁層を積層させて積層構造としてもよい。
【0053】
導電層134a〜134cとしては、アルミニウム(Al)、銅(Cu)、チタン(Ti)、タンタル(Ta)、タングステン(W)、モリブデン(Mo)、クロム(Cr)、ネオジム(Nd)、スカンジウム(Sc)から選ばれた元素を含む金属、上述の元素を成分とする合金又は上述の元素を成分とする窒化物等からなる材料を用いて、単層又は積層させて形成することができる。これらの材料は、スパッタ法や真空蒸着法等を用いて形成することができる。
【0054】
以上の工程により、結晶性半導体層120aをチャネル層とするn型のトランジスタ130aと結晶性半導体層120bをチャネル層とするp型のトランジスタ130bを形成することができる。
【0055】
また、本実施の形態で示すトランジスタの構成において、nチャネル型トランジスタ130a及びpチャネル型トランジスタ130bを、そのチャネル長方向が<111>方向となるように形成することが好ましい。チャネル長方向を<111>方向とすることにより、nチャネル型トランジスタ及びpチャネル型トランジスタの移動度の差を低減することができる。これにより、nチャネル型トランジスタ及びpチャネル型トランジスタを構成するチャネル層の大きさ(チャネル長L、チャネル幅W)を同程度とすることができるため、静電容量の大きさの差に起因する信号のばらつきを抑制することができる。
【0056】
なお、本実施の形態では、n型のトランジスタ130aとp型のトランジスタ130bを用いて、CMOS回路を形成する場合を示しているが、これに限られない。また、本実施の形態で示すトランジスタ130a、130bの構成は、様々な形態をとることができ、図で示した構成に限定されない。
【0057】
<{211}面を用いる利点>
次に、トランジスタのチャネル層の上面を{211}面とする利点について、シミュレーションに基づいて説明する。
【0058】
トランジスタの移動度μは、(1)式で表される。
【0059】
【数1】

【0060】
ここで、τは緩和時間、mは有効質量である。なお、(1)式は等方的な場合に成り立つ式である。
【0061】
(1)式を、μとτが非等方的な場合にまで拡張すると、(2)式のようになる。
【0062】
【数2】

【0063】
(2)式から分かるように、μと1/mはテンソルである。本来はτも方向依存性を持つが、ここでは簡単のため、等方的であると仮定して計算を行った。具体的には、1/mの方向依存性を計算し、n型キャリアとp型キャリアの移動度が同程度になるシリコン結晶面とチャネル方向を求めた。その結果、{211}面の<111>方向において、n型キャリアとp型キャリアの移動度が同程度となる事が分かった。
【0064】
このように、{211}面の<111>方向では、n型キャリアとp型キャリアの移動度が同程度となるため、これを用いてnチャネル型トランジスタ及びpチャネル型トランジスタを形成する場合にはトランジスタのチャネル層の大きさ(チャネル長L、チャネル幅W)を同程度とすることができる。これにより、静電容量の差に起因する信号のばらつきを抑制することができる。
【0065】
<変形例>
なお、上記図1、図2では、一つの単結晶半導体層104を用いて、結晶性半導体層110を形成する場合を示したが、これに限られない。適用する基板100の大きさに応じて、複数の結晶性半導体層110を配置することができる。
【0066】
例えば、基板100上に複数の単結晶半導体層(ここでは、単結晶半導体層104a、104b)を所定の間隔毎に設け(図4(A)参照)、当該単結晶半導体層104a、104bを覆うように非単結晶半導体層106を形成した後(図4(B)参照)、レーザー光108を照射して、単結晶半導体層104a、104bを種結晶として基板100上に形成された非単結晶半導体層106を結晶化させてもよい(図4(C)参照)。
【0067】
また、上記図3では、種結晶として用いた単結晶半導体層104をエッチングにより除去する場合を示したが、単結晶半導体層104をトランジスタのチャネル層として用いてもよい。この場合について、図5を参照して以下に説明する。
【0068】
まず、上記図1の作製工程で得られた半導体基板を準備した後(図5(A)参照)、結晶性半導体層110をエッチングして、島状の結晶性半導体層120a、120b、120cを形成する(図5(B)参照)。結晶性半導体層120cは、単結晶半導体層104と非単結晶半導体層106が結晶化されて形成された結晶性半導体層の積層構造となる。つまり、結晶性半導体層120cは、結晶性半導体層120a、120bより膜厚が厚くなる。
【0069】
次に、結晶性半導体層120a、120b、120cを覆うように絶縁層122を形成した後、当該絶縁層122上に、結晶性半導体層120aと重なる導電層124a、結晶性半導体層120bと重なる導電層124b及び結晶性半導体層120cと重なる導電層124cを形成する(図5(C)参照)。
【0070】
次に、結晶性半導体層120a、120b、120cに不純物元素を添加することにより、結晶性半導体層120aにn型の不純物領域126a、126bを形成し、結晶性半導体層120bにp型の不純物領域128a、128bを形成し、結晶性半導体層120cにn型又はp型の不純物領域129a、129bを形成する(図5(D)参照)。
【0071】
不純物領域129a、129bは、結晶性半導体層120cをチャネル層とするトランジスタのソース領域又はドレイン領域として機能する。
【0072】
次に、導電層124a、124b、124c及び絶縁層122を覆うように絶縁層132を形成した後、当該絶縁層132上に、不純物領域126aに電気的に接続する導電層134a、不純物領域126b及び不純物領域128aに電気的に接続する導電層134b、不純物領域128bに電気的に接続する導電層134c、不純物領域129aに電気的に接続する導電層134d、不純物領域129bに電気的に接続する導電層134eを形成する(図5(E)参照)。
【0073】
以上の工程により、結晶性半導体層120aをチャネル層とするn型のトランジスタ130a、結晶性半導体層120bをチャネル層とするp型のトランジスタ130b、結晶性半導体層120cをチャネル層とするn型又はp型のトランジスタ130cを形成することができる。トランジスタ130cは、チャネル層が厚いため、耐圧を高めることができ、動作電圧の高い回路に用いることができる。
【0074】
なお、本実施の形態において、各々の図で述べた内容は、別の実施の形態で述べた内容に対して、組み合わせ、置き換えなどを自由に行うことができる。
【0075】
(実施の形態2)
本実施の形態では、上記実施の形態と異なる半導体基板の作製方法の一例について、図面を参照して説明する。なお、本実施の形態で示す作製工程(適用できる材料等)は多くの部分で上記実施の形態1と共通している。したがって、以下においては、重複する部分の説明は省略し、異なる点について詳細に説明する。
【0076】
まず、絶縁表面上に単結晶半導体層を設ける。ここでは、絶縁層101を有する基板100上に絶縁層102を介して、{211}面から±10°以内の面を上面とする単結晶半導体層104を形成した後、当該単結晶半導体層104を覆うように絶縁層142を形成する(図6(A)参照)。
【0077】
絶縁層142は、酸化シリコン膜、酸化窒化シリコン膜、窒化シリコン膜、窒化酸化シリコン膜等の絶縁層を用いて形成することができる。ここでは、絶縁層142を、単結晶半導体層104の上面及び側面に接するように形成すると共に、露出している基板100の表面に形成する場合を示している。
【0078】
次に、絶縁層142をエッチングして開口部144を形成し、単結晶半導体層104の上面を露出させる(図6(B)参照)。この際、単結晶半導体層104の側面を露出させないようにエッチングを行うことが好ましい。また、絶縁層101上に形成された絶縁層142を除去して、絶縁層101を露出させてもよい。
【0079】
次に、単結晶半導体層104及び絶縁層142上に非単結晶半導体層106を形成する(図6(C)参照)。非単結晶半導体層106は、露出した単結晶半導体層104の上面に接するように形成すると共に、絶縁層142上に形成する。
【0080】
次に、非単結晶半導体層106にレーザー光108を照射して当該非単結晶半導体層106を溶融し、単結晶半導体層104を種結晶として基板100上に形成された非単結晶半導体層106を結晶化させる(図6(D)参照)。
【0081】
以上の工程により、基板100上に絶縁層101及び絶縁層142を介して、{211}面から±10°以内の面を上面とする結晶性半導体層110を有する半導体基板を形成することができる(図6(E)参照)。
【0082】
その後、得られた結晶性半導体層110を用いて、当該結晶性半導体層110をチャネル層とするp型トランジスタ及びn型トランジスタを形成することができる。トランジスタの作製方法は、上記図3、図5と同様に行えばよい。
【0083】
なお、本実施の形態において、各々の図で述べた内容は、別の実施の形態で述べた内容に対して、組み合わせ、置き換えなどを自由に行うことができる。
【0084】
(実施の形態3)
本実施の形態では、上記実施の形態と異なる半導体基板の作製方法の一例について、図面を参照して説明する。なお、本実施の形態で示す作製工程(適用できる材料等)は多くの部分で上記実施の形態1と共通している。したがって、以下においては、重複する部分の説明は省略し、異なる点について詳細に説明する。
【0085】
まず、絶縁表面上に非晶質半導体層を設ける。ここでは、基板100上に絶縁層101を介して非単結晶半導体層106を形成する(図7(A)参照)。
【0086】
次に、非単結晶半導体層106上に、{211}面から±10°以内の面を下面とする単結晶半導体層104を形成する(図7(B)参照)。ここで、単結晶半導体層104の下面とは、非単結晶半導体層106と接する表面を指す。
【0087】
次に、非単結晶半導体層106にレーザー光108を照射して当該非単結晶半導体層106を溶融し(図7(C)参照)、単結晶半導体層104を種結晶として基板100上に形成された非単結晶半導体層106を結晶化させる(図7(D)参照)。
【0088】
具体的には、単結晶半導体層104の下面に接する非単結晶半導体層106にレーザー光108を照射して溶融させた後、当該レーザー光108を走査することによって、基板100上に形成された非単結晶半導体層106を連続的に溶融させて、基板100上に結晶性半導体層を形成する。
【0089】
単結晶半導体層104を完全に溶融させずに(部分溶融させると共に)、非単結晶半導体層106を溶融させる場合には、図7(C)に示すように、基板100の裏面側(非単結晶半導体層106が設けられる面と反対側の面)からレーザー光108を照射することが好ましい。この場合、基板100として、レーザー光108を透過させる材料(例えば、透光性を有するガラス基板等)を用いることが好ましい。
【0090】
なお、単結晶半導体層104を完全に溶融させずに、非単結晶半導体層106を溶融できる場合には、単結晶半導体層104の上面側からレーザー光108を照射してもよい。
【0091】
以上の工程により、基板100上に絶縁層101を介して、{211}面から±10°以内の面を上面とする結晶性半導体層110を有する半導体基板を形成することができる(図7(E)参照)。
【0092】
その後、得られた結晶性半導体層110を用いて、当該結晶性半導体層110をチャネル層とするp型トランジスタ及びn型トランジスタを形成することができる。トランジスタの作製方法は、上記図3又は図5と同様に行えばよい。
【0093】
なお、本実施の形態において、各々の図で述べた内容は、別の実施の形態で述べた内容に対して、組み合わせ、置き換えなどを自由に行うことができる。
【0094】
(実施の形態4)
本実施の形態では、{211}面から±10°以内の面を上面とする島状の単結晶半導体層の作製方法の例について、図8〜図11を参照して説明する。なお、図8〜図11はそれぞれ異なる作製方法について説明する図面であるが、互いに類似する点も多いから、主に相違点について説明し、類似する構成の詳細については省略することがある。
【0095】
<第1の態様>
はじめに、図8を参照して、第1の態様にかかる作製方法を説明する。
【0096】
まず、ベース基板200を用意し、該ベース基板200上に絶縁層202を形成する(図8(A)参照)。ベース基板200としては、液晶表示装置などに使用されている透光性を有するガラス基板を用いることができる。ガラス基板としては、歪み点が580℃以上(好ましくは、600℃以上)であるものを用いると良い。また、ガラス基板は無アルカリガラス基板であることが好ましい。無アルカリガラス基板には、例えば、アルミノシリケートガラス、アルミノホウケイ酸ガラス、バリウムホウケイ酸ガラスなどのガラス材料が用いられている。
【0097】
なお、ベース基板200として、ガラス基板の他、セラミック基板、石英基板、サファイア基板などを代表例とする絶縁体でなる基板、シリコンなどの半導体でなる基板、金属やステンレスなどの導電体でなる基板などを用いることもできる。
【0098】
絶縁層202の形成方法は特に限定されないが、例えば、スパッタリング法、プラズマCVD法などを用いることができる。絶縁層202は、貼り合わせに係る表面を有する層であるから、その表面が、高い平坦性を有するように形成されることが好ましい。絶縁層202は、酸化シリコン、窒化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、窒化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウムなどから選ばれた一または複数の材料を用いて形成することができる。例えば、酸化シリコンを用いて絶縁層202を形成する場合には、有機シランガスを用いて化学気相成長法により形成することで極めて平坦性に優れた絶縁層202を得ることができる。なお、絶縁層202は単層構造としても良いし、積層構造としても良い。
【0099】
なお、本実施の形態においては絶縁層202を単層構造としているが、積層構造としても良い。また、貼り合わせに際して特に問題がない場合など、絶縁層202を設ける必要がない場合には、絶縁層202を設けない構成としても良い。
【0100】
次に、単結晶半導体基板210を用意する(図8(B)参照)。単結晶半導体基板210としては、例えば、シリコン、ゲルマニウム、シリコンゲルマニウム、炭化シリコンなどの第14族元素でなる半導体基板を用いることができる。本実施の形態においては、単結晶半導体基板210として、{211}面から±10°以内の面を表面とする単結晶シリコン基板を用いることとする。
【0101】
単結晶半導体基板210のサイズに制限は無いが、例えば、直径が8インチ(200mm)、12インチ(300mm)、18インチ(450mm)といったサイズの半導体基板を用いることができる。また、円形の半導体基板を、矩形に加工して用いても良い。
【0102】
次に、単結晶半導体基板210を分断して、分断後の単結晶半導体基板212を形成し、単結晶半導体基板212の表面に絶縁層214を形成する(図8(C)参照)。絶縁層214については、絶縁層202と同様に形成することができるため、詳細については省略する。なお、本実施の形態においては、単結晶半導体基板210を分断して単結晶半導体基板212を形成しているが、開示する発明の一態様はこれに限定されない。あらかじめ所定の大きさに分断された単結晶半導体基板を用意しておき、これに絶縁層214を形成して用いても良い。また、絶縁層214を形成した後に単結晶半導体基板210の分断を行っても良い。
【0103】
なお、本実施の形態においては絶縁層214を単層構造としているが、積層構造としても良い。また、貼り合わせに際して特に問題がない場合など、絶縁層214を設ける必要がない場合には、絶縁層214を設けない構成としても良い。
【0104】
単結晶半導体基板212には、イオンを添加することにより、脆化領域216を形成する(図8(D)参照)。より具体的には、例えば、電界で加速されたイオンでなるイオンビームを照射して、単結晶半導体基板212の表面から所定の深さの領域に脆化領域216を形成する。脆化領域216が形成される深さは、イオンビームの加速エネルギーやイオンビームの入射角によって制御される。つまり、脆化領域216は、イオンの平均侵入深さと同程度の深さの領域に形成されることになる。ここで、脆化領域216が形成される深さは、単結晶半導体基板212の全面において均一であることが望ましい。また、イオンの照射に係る表面は{211}面から±10°以内の面であることが望ましい。これにより、単結晶半導体基板212の表面と同等の結晶面({211}面から±10°以内の面)において分離させることが可能になる。すなわち、単結晶半導体基板212の分離によって形成される単結晶半導体層の上面を、{211}面から±10°以内の面とすることができる。
【0105】
また、上述の脆化領域216が形成される深さにより、単結晶半導体基板212から分離される半導体層の厚さが決定される。脆化領域216が形成される深さは、単結晶半導体基板212の表面から50nm以上1μm以下であり、好ましくは50nm以上300nm以下である。
【0106】
イオンを単結晶半導体基板212に添加する際には、イオン注入装置またはイオンドーピング装置を用いることができる。イオン注入装置は、ソースガスを励起してイオン種を生成し、生成されたイオン種を質量分離して、所定の質量を有するイオン種を被処理物に照射する。イオンドーピング装置は、プロセスガスを励起してイオン種を生成し、生成されたイオン種を質量分離せずに被処理物に照射する。なお、質量分離装置を備えているイオンドーピング装置では、イオン注入装置と同様に、質量分離を伴うイオンの照射を行うこともできる。
【0107】
イオンドーピング装置を用いる場合の脆化領域216の形成工程は、例えば、以下の条件で行うことができる。
・加速電圧 10kV以上100kV以下(好ましくは30kV以上80kV以下)
・ドーズ量 1×1016/cm以上4×1016/cm以下
・ビーム電流密度 2μA/cm以上(好ましくは5μA/cm以上、より好ましくは10μA/cm以上)
【0108】
イオンドーピング装置を用いる場合、ソースガスとして水素を含むガスを用いることができる。該ガスを用いることによりイオン種としてH、H、Hを生成することができる。水素ガスをソースガスとして用いる場合には、Hを多く照射することが好ましい。具体的には、イオンビームに、H、H、Hの総量に対してHイオンが70%以上含まれるようにすることが好ましい。また、Hイオンの割合を80%以上とすることがより好ましい。このようにHの割合を高めておくことで、脆化領域216に1×1020atoms/cm以上の濃度で水素を含ませることが可能である。これにより、脆化領域216における分離が容易になる。また、Hイオンを多く照射することで、H、Hを照射する場合より短時間で脆化領域216を形成することができる。また、Hを用いることで、イオンの平均侵入深さを浅くすることができるため、脆化領域216を浅い領域に形成することが可能になる。
【0109】
イオン注入装置を用いる場合には、質量分離により、Hイオンが照射されるようにすることが好ましい。もちろん、HやHを照射してもよい。ただし、イオン注入装置を用いる場合には、イオン種を選択して照射するため、イオンドーピング装置を用いる場合と比較して、イオン照射の効率が低下する場合がある。
【0110】
イオン照射工程のソースガスには水素を含むガスの他に、ヘリウムやアルゴンなどの希ガス、フッ素ガスや塩素ガスに代表されるハロゲンガス、フッ素化合物ガス(例えば、BF)などのハロゲン化合物ガスから選ばれた一種または複数種類のガスを用いることができる。ソースガスにヘリウムを用いる場合は、質量分離を行わないことで、Heイオンの割合が高いイオンビームを作り出すことができる。このようなイオンビームを用いることで、脆化領域216を効率よく形成することができる。
【0111】
また、イオンの照射を複数回に分けて行うことで、脆化領域216を形成することもできる。この場合、ソースガスを異ならせてイオン照射を行っても良いし、同じソースガスを用いてもよい。例えば、ソースガスとして希ガスを用いてイオン照射を行った後、水素を含むガスをソースガスとして用いてイオン照射を行うことができる。また、初めにハロゲンガスまたはハロゲン化合物ガスを用いてイオン照射を行い、次に、水素を含むガスを用いてイオン照射を行うこともできる。
【0112】
なお、本実施の形態では、単結晶半導体基板210を単結晶半導体基板212に分断した後に、絶縁層214を形成し、脆化領域216を形成する例について説明しているが、開示する発明の一態様はこれに限定されない。単結晶半導体基板212に分断する前に絶縁層214および脆化領域216を形成し、その後、単結晶半導体基板212に分断しても良い。
【0113】
その後、ベース基板200と単結晶半導体基板212を貼り合わせる(図8(E)参照)。具体的には、絶縁層202および絶縁層214を介してベース基板200と単結晶半導体基板212を貼り合わせる。なお、貼り合わせに係る絶縁層202および絶縁層214の表面は、超音波洗浄などの方法で洗浄しておくことが望ましい。絶縁層202の表面と絶縁層214の表面とを接触させた後、加圧処理を施すことで、ベース基板200と単結晶半導体基板212の貼り合わせが実現される。なお、貼り合わせのメカニズムとしては、ファン・デル・ワールス力が関与するメカニズムや、水素結合が関与するメカニズムなどが考えられている。
【0114】
なお、貼り合わせに係る表面を酸素プラズマまたはオゾンで処理することにより、その表面を親水性にしても良い。この処理によって、貼り合わせ表面に水酸基が付加されるため、貼り合わせ界面に水素結合を形成することができる。
【0115】
上記貼り合わせ後には、貼り合わせられたベース基板200および単結晶半導体基板212に対して熱処理を施して、貼り合わせを強固なものとすると良い。この際の加熱温度は、脆化領域216における分離が進行しない温度とする必要がある。例えば、400℃未満、好ましくは300℃以下とする。熱処理時間については特に限定されず、処理時間と貼り合わせ強度との関係から適切な条件を設定すればよい。例えば、200℃、2時間の熱処理を施すことができる。なお、貼り合わせに係る領域にマイクロ波などを照射して、該領域のみを局所的に加熱することも可能である。貼り合わせ強度に問題がない場合には、上記熱処理は省略すれば良い。
【0116】
次に、単結晶半導体基板212を、脆化領域216において、単結晶半導体層220と島状の単結晶半導体基板222とに分離する(図8(F)参照)。単結晶半導体基板212の分離は、熱処理により行うと良い。該熱処理の温度は、ベース基板200の耐熱温度を目安にすることができる。例えば、ベース基板200としてガラス基板を用いる場合には、熱処理の温度は400℃以上750℃以下とすることが好ましい。ただし、ガラス基板の耐熱性が許すのであればこの限りではない。なお、本実施の形態においては、600℃、2時間の熱処理を施すこととする。
【0117】
上述のような熱処理を行うことにより、脆化領域216に形成された微小な空孔の体積変化が生じ、脆化領域216に亀裂が生ずる。その結果、脆化領域216に沿って単結晶半導体基板212が分離する。これにより、ベース基板200上には単結晶半導体基板212から分離された単結晶半導体層220が残存することになる。また、この熱処理で、貼り合わせに係る界面が加熱されるため、当該界面に共有結合が形成され、貼り合わせを一層強固なものとすることができる。
【0118】
ここで、単結晶半導体基板212は、{211}面から±10°以内の面を貼り合わせに係る表面としているため、当該表面と略平行な脆化領域216において単結晶半導体基板212を分離することで、{211}面から±10°以内の面を上面に有する単結晶半導体層220を形成することができる。
【0119】
上述のようにして形成された単結晶半導体層220の表面には、分離工程やイオン照射工程に起因する欠陥が存在し、また、その平坦性は損なわれている。そのため、単結晶半導体層220の欠陥を低減させる処理、または、単結晶半導体層220の表面の平坦性を向上させる処理を行うと良い。
【0120】
本実施の形態において、単結晶半導体層220の欠陥の低減、および、平坦性の向上は、例えば、単結晶半導体層220にレーザー光を照射することで実現できる。レーザー光を単結晶半導体層220に照射することで、単結晶半導体層220が溶融し、その後の冷却、固化によって、欠陥が低減され、表面の平坦性が向上した単結晶半導体層が得られるのである。
【0121】
また、単結晶半導体層の膜厚を小さくする薄膜化工程を行っても良い。半導体層の薄膜化には、ドライエッチング処理またはウエットエッチング処理の一方、または双方を組み合わせたエッチング処理を適用すればよい。例えば、半導体層がシリコンからなる場合、SFとOをプロセスガスに用いたドライエッチング処理で、半導体層を薄くすることができる。
【0122】
以上により、ベース基板200上に、{211}面から±10°以内の面を上面とする島状の単結晶半導体層224を形成することができる(図8(G)参照)。
【0123】
なお、本実施の形態においては、レーザー光を用いて欠陥の低減、および、平坦性の向上を実現しているが、開示する発明の一態様はこれに限定されない。熱処理など、他の方法を用いて欠陥の低減、平坦性の向上を実現しても良い。また、欠陥低減処理が不要であれば、エッチング処理などの平坦性向上処理のみを適用しても良い。
【0124】
第1の態様では、単結晶半導体基板を分断してその一部である単結晶半導体基板のみを用いて単結晶半導体層を形成している。つまり、一の単結晶半導体基板を用いて複数のベース基板上に単結晶半導体層を形成することができる。これにより、半導体基板および半導体装置の製造コストを低減させることができる。
【0125】
<第2の態様>
次に、図9を参照して、第2の態様にかかる作製方法を説明する。第2の態様と第1の態様の相違は、単結晶半導体基板210を分断しない点にある。よって、以下ではこの点について主に説明する。
【0126】
まず、ベース基板200を用意し、該ベース基板200上に絶縁層202を形成する(図9(A)参照)。詳細については、第1の態様を参酌すればよい。
【0127】
次に、単結晶半導体基板210を用意する(図9(B)参照)。この部分の詳細についても、第1の態様を参酌することができる。
【0128】
次に、単結晶半導体基板210の表面に絶縁層214を形成し、単結晶半導体基板210に対してイオンを添加することで脆化領域216を形成する(図9(C)参照)。絶縁層214、および脆化領域216の詳細については、第1の態様を参酌できる。
【0129】
その後、単結晶半導体基板210(脆化領域216の一部を含む)および絶縁層214を選択的にエッチングして凹部を形成する(図9(D)参照)。これにより、単結晶半導体基板210には凹部とそれ以外の部分が形成されることになる。以下では、凹部の形成によって張り出した部分を「凸部」と称することにする。
【0130】
その後、ベース基板200と単結晶半導体基板210を貼り合わせる(図9(E)参照)。具体的には、絶縁層202および絶縁層214を介してベース基板200と単結晶半導体基板210の「凸部」を貼り合わせる。詳細は、第1の態様におけるベース基板200と単結晶半導体基板212の貼り合わせの場合と同様であるため、これらに関する記載を参酌すればよい。
【0131】
次に、単結晶半導体基板210を、脆化領域216において、単結晶半導体層220と単結晶半導体基板222とに分離する(図9(F)参照)。この部分の詳細についても、第1の態様を参酌することができる。
【0132】
その後、欠陥低減処理や、表面の平坦性向上処理などを施すことにより、ベース基板200上に、{211}面から±10°以内の面を上面とする島状の単結晶半導体層224を形成することができる(図9(G)参照)。欠陥低減処理や、表面の平坦性向上処理などの詳細については第1の態様を参酌すればよい。
【0133】
以上、第2の態様に係る作製方法を用いることによって、第1の態様に係る作製方法を用いる場合と同様に{211}面から±10°以内の面を上面とする島状の単結晶半導体層を形成することができる。なお、第2の態様では、単結晶半導体基板を分断する必要がないため、単結晶半導体基板の取り扱いが容易であるというメリットがある。
【0134】
<第3の態様>
次に、図10を参照して、第3の態様にかかる作製方法を説明する。第3の態様と第1の態様の相違は、ベース基板200上に非単結晶半導体層を形成する点にある。よって、以下ではこの点について主に説明する。
【0135】
まず、ベース基板200を用意し、該ベース基板200上に絶縁層202を形成し、その後、絶縁層202上に非単結晶半導体層230を形成する(図10(A)参照)。ベース基板200および絶縁層202の詳細については第1の態様を参酌することができる。非単結晶半導体層230は、後の単結晶半導体基板と同じ材料を用いて形成することができる。つまり、単結晶半導体基板としてシリコン基板を用いる場合には、シリコンを用いて非単結晶半導体層230を形成する。形成方法としては、CVD法やスパッタリング法を用いればよい。なお、非単結晶半導体層230の結晶性や膜厚などは特に限定されない。
【0136】
次に、単結晶半導体基板210を用意する(図10(B)参照)。詳細については、第1の態様を参酌することができる。
【0137】
次に、単結晶半導体基板210を分断して、分断後の単結晶半導体基板212を形成する(図10(C)参照)。この点の詳細についても、第1の態様を参酌することができる。
【0138】
そして、単結晶半導体基板212に対してイオンを添加することで脆化領域216を形成する(図10(D)参照)。なお、第3の態様においては、単結晶半導体基板212の表面に絶縁層を形成しない。これは、ベース基板200上に形成された非単結晶半導体層230と単結晶半導体基板212の表面とを接触させる必要があるためである。脆化領域216の詳細については、第1の態様を参酌できる。
【0139】
その後、ベース基板200と単結晶半導体基板212を貼り合わせる(図10(E)参照)。具体的には、絶縁層202および非単結晶半導体層230を介してベース基板200と単結晶半導体基板212を貼り合わせる。詳細は、第1の態様におけるベース基板200と単結晶半導体基板212の貼り合わせの場合と同様であるため、これらに関する記載を参酌することができる。
【0140】
次に、単結晶半導体基板212を、脆化領域216において、単結晶半導体層220と単結晶半導体基板222とに分離する(図10(F)参照)。この部分の詳細についても、第1の態様を参酌することができる。
【0141】
その後、欠陥低減処理や、表面の平坦性向上処理などを施すことにより、ベース基板200上に、{211}面から±10°以内の面を上面とする島状の単結晶半導体層224を形成することができる(図10(G)参照)。欠陥低減処理や、表面の平坦性向上処理などの詳細については第1の態様を参酌すればよい。
【0142】
以上、第3の態様に係る作製方法を用いることによって、非単結晶半導体層上に、{211}面から±10°以内の面を上面とする島状の単結晶半導体層を形成することができる。
【0143】
<第4の態様>
次に、図11を参照して、第4の態様にかかる作製方法を説明する。第4の態様と第1の態様の相違は、単結晶半導体基板210を分断しない点、およびベース基板200上に非単結晶半導体層を形成する点にある。よって、以下ではこの点について主に説明する。
【0144】
まず、ベース基板200を用意し、該ベース基板200上に絶縁層202を形成し、その後、絶縁層202上に非単結晶半導体層230を形成する(図11(A)参照)。ベース基板200および絶縁層202の詳細については第1の態様を、非単結晶半導体層230の詳細については第3の態様を参酌することができる。
【0145】
次に、単結晶半導体基板210を用意する(図11(B)参照)。この部分の詳細についても、第1の態様を参酌することができる。
【0146】
次に、単結晶半導体基板210に対してイオンを添加することで脆化領域216を形成する(図11(C)参照)。脆化領域216の詳細については、第1の態様を参酌できる。なお、第4の態様においては、単結晶半導体基板210の表面に絶縁層を形成しない。これは、ベース基板200上に形成された非単結晶半導体層230と単結晶半導体基板210の表面とを接触させる必要があるためである。脆化領域216の詳細については、第1の態様を参酌できる。
【0147】
その後、単結晶半導体基板210(脆化領域216の一部を含む)を選択的にエッチングして凹部を形成する。これにより、単結晶半導体基板210には凹部とそれ以外の部分が形成されることになる。以下では、凹部の形成によって張り出した部分を「凸部」と称することにする。
【0148】
その後、ベース基板200と単結晶半導体基板210を貼り合わせる(図11(E)参照)。具体的には、非単結晶半導体層230を介してベース基板200と単結晶半導体基板210の「凸部」を貼り合わせる。詳細は、第1の態様におけるベース基板200と単結晶半導体基板212の貼り合わせの場合と同様であるため、これらに関する記載を参酌すればよい。
【0149】
次に、単結晶半導体基板210を、脆化領域216において、単結晶半導体層220と単結晶半導体基板222とに分離する(図11(F)参照)。この部分の詳細についても、第1の態様を参酌することができる。
【0150】
その後、欠陥低減処理や、表面の平坦性向上処理などを施すことにより、ベース基板200上に、{211}面から±10°以内の面を上面とする島状の単結晶半導体層224を形成することができる(図11(G)参照)。欠陥低減処理や、表面の平坦性向上処理などの詳細については第1の態様を参酌すればよい。
【0151】
以上、第4の態様に係る作製方法を用いることによって、第3の態様に係る作製方法を用いる場合と同様に、非単結晶半導体層上に、{211}面から±10°以内の面を上面とする島状の単結晶半導体層を形成することができる。なお、第4の態様では、単結晶半導体基板を分断する必要がないため、単結晶半導体基板の取り扱いが容易であるというメリットがある。
【0152】
本実施の形態は、他の実施の形態と適宜組み合わせて用いることができる。
【0153】
(実施の形態5)
本実施の形態において、図面を参照しながら半導体装置の具体的な態様を説明する。
【0154】
まず、半導体装置の一例として、マイクロプロセッサについて説明する。図12はマイクロプロセッサ500の構成例を示すブロック図である。
【0155】
マイクロプロセッサ500は、演算回路501(Arithmetic logic unit。ALUともいう。)、演算回路制御部502(ALU Controller)、命令解析部503(Instruction Decoder)、割り込み制御部504(Interrupt Controller)、タイミング制御部505(Timing Controller)、レジスタ506(Register)、レジスタ制御部507(Register Controller)、バスインターフェース508(Bus I/F)、読み出し専用メモリ509、およびメモリインターフェース510を有している。
【0156】
バスインターフェース508を介してマイクロプロセッサ500に入力された命令は、命令解析部503に入力され、デコードされた後、演算回路制御部502、割り込み制御部504、レジスタ制御部507、タイミング制御部505に入力される。演算回路制御部502、割り込み制御部504、レジスタ制御部507、タイミング制御部505は、デコードされた命令に基づき様々な制御を行う。
【0157】
演算回路制御部502は、演算回路501の動作を制御するための信号を生成する。また、割り込み制御部504は、マイクロプロセッサ500のプログラム実行中に、外部の入出力装置や周辺回路からの割り込み要求を処理する回路であり、割り込み制御部504は、割り込み要求の優先度やマスク状態を判断して、割り込み要求を処理する。レジスタ制御部507は、レジスタ506のアドレスを生成し、マイクロプロセッサ500の状態に応じてレジスタ506の読み出しや書き込みを行う。タイミング制御部505は、演算回路501、演算回路制御部502、命令解析部503、割り込み制御部504、およびレジスタ制御部507の動作のタイミングを制御する信号を生成する。例えば、タイミング制御部505は、基準クロック信号CLK1を元に、内部クロック信号CLK2を生成する内部クロック生成部を備えている。図12に示すように、内部クロック信号CLK2は他の回路に入力される。
【0158】
次に、非接触でデータの送受信を行う機能、および演算機能を備えた半導体装置の一例を説明する。図13は、このような半導体装置の構成例を示すブロック図である。図13に示す半導体装置は、無線通信により外部装置と信号の送受信を行って動作するコンピュータ(以下、「RFCPU」という)と呼ぶことができる。
【0159】
図13に示すように、RFCPU511は、アナログ回路部512とデジタル回路部513を有している。アナログ回路部512として、共振容量を有する共振回路514、整流回路515、定電圧回路516、リセット回路517、発振回路518、復調回路519と、変調回路520と、電源管理回路530とを有している。デジタル回路部513は、RFインターフェース521、制御レジスタ522、クロックコントローラ523、CPUインターフェース524、中央処理ユニット525、ランダムアクセスメモリ526、読み出し専用メモリ527を有している。
【0160】
RFCPU511の動作の概要は以下の通りである。アンテナ528が受信した信号は共振回路514により誘導起電力を生じる。誘導起電力は、整流回路515を経て容量部529に充電される。この容量部529はセラミックコンデンサーや電気二重層コンデンサーなどのキャパシタで形成されていることが好ましい。容量部529は、RFCPU511を構成する基板に集積されている必要はなく、他の部品としてRFCPU511に組み込むこともできる。
【0161】
リセット回路517は、デジタル回路部513をリセットし初期化する信号を生成する。例えば、電源電圧の上昇に遅延して立ち上がる信号をリセット信号として生成する。発振回路518は、定電圧回路516により生成される制御信号に応じて、クロック信号の周波数とデューティー比を変更する。復調回路519は、受信信号を復調する回路であり、変調回路520は、送信するデータを変調する回路である。
【0162】
例えば、復調回路519はローパスフィルタで形成され、振幅変調(ASK)方式の受信信号を、その振幅の変動をもとに、二値化する。また、送信データを振幅変調(ASK)方式の送信信号の振幅を変動させて送信するため、変調回路520は、共振回路514の共振点を変化させることで通信信号の振幅を変化させている。
【0163】
クロックコントローラ523は、電源電圧または中央処理ユニット525における消費電流に応じてクロック信号の周波数とデューティー比を変更するための制御信号を生成している。電源電圧の監視は電源管理回路530が行っている。
【0164】
アンテナ528からRFCPU511に入力された信号は復調回路519で復調された後、RFインターフェース521で制御コマンドやデータなどに分解される。制御コマンドは制御レジスタ522に格納される。制御コマンドには、読み出し専用メモリ527に記憶されているデータの読み出し、ランダムアクセスメモリ526へのデータの書き込み、中央処理ユニット525への演算命令などが含まれている。
【0165】
中央処理ユニット525は、CPUインターフェース524を介して読み出し専用メモリ527、ランダムアクセスメモリ526、制御レジスタ522にアクセスする。CPUインターフェース524は、中央処理ユニット525が要求するアドレスより、読み出し専用メモリ527、ランダムアクセスメモリ526、制御レジスタ522のいずれかに対するアクセス信号を生成する機能を有している。
【0166】
中央処理ユニット525の演算方式は、読み出し専用メモリ527にOS(オペレーティングシステム)を記憶させておき、起動とともにプログラムを読み出し実行する方式を採用することができる。また、専用回路で演算回路を構成して、演算処理をハードウェア的に処理する方式を採用することもできる。ハードウェアとソフトウェアを併用する方式では、専用の演算回路で一部の演算処理を行い、プログラムを使って、残りの演算を中央処理ユニット525が処理する方式を適用できる。
【0167】
次に、図14、図15を用いて、表示装置について説明する。
【0168】
図14は液晶表示装置を説明するための図面である。図14(A)は液晶表示装置の画素の平面図であり、図14(B)は、J−K切断線による図14(A)の断面図である。
【0169】
図14(A)に示すように、画素は、単結晶半導体層320、単結晶半導体層320と交差している走査線322、走査線322と交差している信号線323、画素電極324、画素電極324と単結晶半導体層320を電気的に接続する電極328を有する。単結晶半導体層320は、実施の形態1〜4で示した単結晶半導体層から形成された層であり、画素のTFT325を構成する。
【0170】
上記実施の形態1〜4で示した半導体基板が用いられている。図14(B)に示すように、ベース基板121上に、絶縁層102及び絶縁層112を介して単結晶半導体層320が積層されている。ベース基板121としては、ガラス基板を用いることができる。TFT325の単結晶半導体層320は、単結晶半導体層をエッチングにより素子分離して形成された膜である。単結晶半導体層320には、チャネル形成領域340、不純物元素が添加されたn型の高濃度不純物領域341が形成されている。TFT325のゲート電極は走査線322に含まれ、ソース電極およびドレイン電極の一方は信号線323に含まれている。
【0171】
層間絶縁膜327上には、信号線323、画素電極324および電極328が設けられている。層間絶縁膜327上には、柱状スペーサ329が形成されている。信号線323、画素電極324、電極328および柱状スペーサ329を覆って配向膜330が形成されている。対向基板332には、対向電極333、対向電極を覆う配向膜334が形成されている。柱状スペーサ329は、ベース基板121と対向基板332の隙間を維持するために形成される。柱状スペーサ329によって形成される隙間に液晶層335が形成されている。信号線323および電極328と高濃度不純物領域341との接続部は、コンタクトホールの形成によって層間絶縁膜327に段差が生じるので、この接続部では液晶層335の液晶の配向が乱れやすい。そのため、この段差部に柱状スペーサ329を形成して、液晶の配向の乱れを防ぐ。
【0172】
次に、エレクトロルミネセンス表示装置(以下、EL表示装置という。)について図15を参照して説明する。図15(A)はEL表示装置の画素の平面図であり、図15(B)は、J−K切断線による図15(A)の断面図である。
【0173】
図15(A)に示すように、画素は、TFTでなる選択用トランジスタ401、表示制御用トランジスタ402、走査線405、信号線406、および電流供給線407、画素電極408を含む。エレクトロルミネセンス材料を含んで形成される層(EL層)が一対の電極間に挟んだ構造の発光素子が各画素に設けられている。発光素子の一方の電極が画素電極408である。また、単結晶半導体層403は、選択用トランジスタ401のチャネル形成領域、ソース領域およびドレイン領域が形成されている。単結晶半導体層404は、表示制御用トランジスタ402のチャネル形成領域、ソース領域およびドレイン領域が形成されている。単結晶半導体層403、404は、ベース基板上に設けられた単結晶半導体層から形成された層である。
【0174】
選択用トランジスタ401において、ゲート電極は走査線405に含まれ、ソース電極またはドレイン電極の一方は信号線406に含まれ、他方は電極411として形成されている。表示制御用トランジスタ402は、ゲート電極412が電極411と電気的に接続され、ソース電極またはドレイン電極の一方は、画素電極408に電気的に接続される電極413として形成され、他方は、電流供給線407に含まれている。
【0175】
表示制御用トランジスタ402はpチャネル型のTFTである。図15(B)に示すように、単結晶半導体層404には、チャネル形成領域451、およびp型の高濃度不純物領域452が形成されている。なお、本実施の形態で用いる半導体基板は、実施の形態1〜4で作製した半導体基板である。
【0176】
表示制御用トランジスタ402のゲート電極412を覆って、層間絶縁膜427が形成されている。層間絶縁膜427上に、信号線406、電流供給線407、電極411、413などが形成されている。また、層間絶縁膜427上には、電極413に電気的に接続する画素電極408が形成されている。画素電極408は周辺部が絶縁性の隔壁層428で囲まれている。画素電極408上にはEL層429が形成され、EL層429上には対向電極430が形成されている。補強板として対向基板431が設けられており、対向基板431は樹脂層432によりベース基板121に固定されている。
【0177】
EL表示装置の階調の制御は、発光素子の輝度を電流で制御する電流駆動方式と、電圧でその輝度を制御する電圧駆動方式とがあるが、電流駆動方式は、画素ごとでトランジスタの特性値の差が大きい場合、採用することは困難であり、そのためには特性のばらつきを補正する補正回路が必要になる。実施の形態1〜4に係る半導体基板の作製工程を含む製造方法でEL表示を作製することで、選択用トランジスタ401および表示制御用トランジスタ402は画素ごとに特性のばらつきがなくなるため、電流駆動方式を採用することができる。
【0178】
つまり、実施の形態1〜4に係る半導体基板を用いることで、様々な電気機器を作製することができる。電気機器としては、ビデオカメラ、デジタルカメラ、ナビゲーションシステム、音響再生装置(カーオーディオ、オーディオコンポなど)、コンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ、携帯電話、携帯型ゲーム機または電子書籍など)、記録媒体を備えた画像再生装置(具体的にはDVD(digital versatile disc)などの記録媒体に記憶された音声データを再生し、かつ記憶された画像データを表示しうる表示装置を備えた装置などが含まれる。それらの一例を図16、図17に示す。
【0179】
図16(A)は表示装置であり、筐体901、支持台902、表示部903、スピーカ部904、ビデオ入力端子905などを含む。この表示装置は、他の実施の形態で示した作製方法により形成したトランジスタを駆動ICや表示部903などに用いることにより作製される。なお、表示装置には液晶表示装置、発光表示装置などがあり、用途別にはコンピュータ用、テレビ受信用、広告表示用などの全ての情報表示用表示装置が含まれる。具体的には、ディスプレイ、ヘッドマウントディスプレイ、反射型プロジェクターなどを挙げることができる。
【0180】
図16(B)はコンピュータであり、筐体911、表示部912、キーボード913、外部接続ポート914、ポインティングデバイス915などを含む。実施の形態1〜4に係るトランジスタは、表示部912の画素部だけではなく、表示用の駆動IC、本体内部のCPU、メモリなどの半導体装置にも適用が可能である。
【0181】
また、図16(C)は携帯電話であり、携帯用の情報処理端末の1つの代表例である。この携帯電話は筐体921、表示部922、操作キー923などを含む。実施の形態1〜4に係る半導体基板を用いて作製されたトランジスタは表示部922の画素部やセンサ部924だけではなく、表示用の駆動IC、メモリ、音声処理回路などに用いることができる。センサ部924は光センサ素子を有しており、センサ部924で得られる照度に合わせて表示部922の輝度コントロールを行うことや、センサ部924で得られる照度に合わせて操作キー923の照明を抑えることによって、携帯電話の消費電力を抑えることができる。
【0182】
上記の携帯電話を初めとして、PDA(Personal Digital Assistants、情報携帯端末)、デジタルカメラ、小型ゲーム機、携帯型の音響再生装置などの電子機器に、実施の形態1〜4に係る半導体基板を用いることもできる。例えば、CPU、メモリ、センサなどの機能回路を形成することや、これらの電子機器の画素部や、表示用の駆動ICにも適用することが可能である。
【0183】
また、図16(D)、(E)はデジタルカメラである。なお、図16(E)は、図16(D)の裏側を示す図である。このデジタルカメラは、筐体931、表示部932、レンズ933、操作キー934、シャッターボタン935などを有する。実施の形態1〜4に係るトランジスタは、表示部932の画素部、表示部932を駆動する駆動IC、メモリなどに用いることができる。
【0184】
図16(F)はデジタルビデオカメラである。このデジタルビデオカメラは、本体941、表示部942、筐体943、外部接続ポート944、リモコン受信部945、受像部946、バッテリー947、音声入力部948、操作キー949、接眼部950などを有する。実施の形態1〜4に係るトランジスタは、表示部942の画素部、表示部942を制御する駆動IC、メモリ、デジタル入力処理装置などに用いることができる。
【0185】
この他にも、ナビゲーションシステム、音響再生装置、記録媒体を備えた画像再生装置などに用いることが可能である。これらの表示部の画素部や、表示部を制御する駆動IC、メモリ、デジタル入力処理装置、センサ部などの用途に、実施の形態1〜4に係るトランジスタを用いることができる。
【0186】
図17は、本発明の一形態を適用した携帯電話の一例であり、図17(A)が正面図、図17(B)が背面図、図17(C)が2つの筐体をスライドさせたときの正面図である。図17に示す携帯電話は、筐体701及び筐体702二つの筐体で構成されている。図17に示す携帯電話は、携帯電話と携帯情報端末の双方の機能を備えており、コンピュータを内蔵し、音声通話以外にも様々なデータ処理が可能な所謂スマートフォンである。
【0187】
図17に示す携帯電話は、筐体701及び筐体702で構成されている。筐体701においては、表示部703、スピーカ704、マイクロフォン705、操作キー706、ポインティングデバイス707、表面カメラ用レンズ708、外部接続端子ジャック709及びイヤホン端子710等を備え、筐体702においては、キーボード711、外部メモリスロット712、裏面カメラ713、ライト714等により構成されている。また、アンテナは筐体701に内蔵されている。
【0188】
また、図17に示す携帯電話には、上記の構成に加えて、非接触型ICチップ、小型記録装置等を内蔵していてもよい。
【0189】
重なり合った筐体701と筐体702(図17(A)に示す)は、スライドさせることが可能であり、スライドさせることで図17(C)のように展開する。表示部703には、図14や図15に示される表示装置を組み込むことが可能である。表示部703と表面カメラ用レンズ708を同一の面に備えているため、テレビ電話としての使用が可能である。また、表示部703をファインダーとして用いることで、裏面カメラ713及びライト714で静止画及び動画の撮影が可能である。
【0190】
スピーカ704及びマイクロフォン705を用いることで、図17に示す携帯電話は、音声記録装置(録音装置)又は音声再生装置として使用することができる。また、操作キー706により、電話の発着信操作、電子メール等の簡単な情報入力操作、表示部に表示する画面のスクロール操作、表示部に表示する情報の選択等を行うカーソルの移動操作等が可能である。
【0191】
また、書類の作成、携帯情報端末としての使用等、取り扱う情報が多い場合は、キーボード711を用いると便利である。更に、重なり合った筐体701と筐体702(図17(A))をスライドさせることで、図17(C)のように展開させることができる。携帯情報端末として使用する場合には、キーボード711及びポインティングデバイス707を用いて、円滑な操作でマウスの操作が可能である。外部接続端子ジャック709はACアダプタ及びUSBケーブル等の各種ケーブルと接続可能であり、充電及びパーソナルコンピュータ等とのデータ通信が可能である。また、外部メモリスロット712に記録媒体を挿入し、より大量のデータ保存及び移動が可能になる。
【0192】
筐体702の裏面(図17(B))には、裏面カメラ713及びライト714を備え、表示部703をファインダーとして静止画及び動画の撮影が可能である。
【0193】
また、上記の機能構成に加えて、赤外線通信機能、USBポート、テレビワンセグ受信機能、非接触ICチップ又はイヤホンジャック等を備えたものであってもよい。
【0194】
図17において説明した電子機器は、上述したトランジスタ及び表示装置の作製方法を適用して作製することができる。
【符号の説明】
【0195】
100 基板
101 絶縁層
102 絶縁層
104 単結晶半導体層
106 非単結晶半導体層
108 レーザー光
110 結晶性半導体層
121 ベース基板
122 絶縁層
132 絶縁層
142 絶縁層
144 開口部
200 ベース基板
202 絶縁層
210 単結晶半導体基板
212 単結晶半導体基板
214 絶縁層
216 脆化領域
220 単結晶半導体層
222 単結晶半導体基板
224 単結晶半導体層
230 非単結晶半導体層
320 単結晶半導体層
322 走査線
323 信号線
324 画素電極
325 TFT
327 層間絶縁膜
328 電極
329 柱状スペーサ
330 配向膜
332 対向基板
333 対向電極
334 配向膜
335 液晶層
340 チャネル形成領域
341 高濃度不純物領域
401 選択用トランジスタ
402 表示制御用トランジスタ
403 単結晶半導体層
404 単結晶半導体層
405 走査線
406 信号線
407 電流供給線
408 画素電極
411 電極
412 ゲート電極
413 電極
427 層間絶縁膜
428 隔壁層
429 EL層
430 対向電極
431 対向基板
432 樹脂層
451 チャネル形成領域
452 高濃度不純物領域
500 マイクロプロセッサ
501 演算回路
502 演算回路制御部
503 命令解析部
504 制御部
505 タイミング制御部
506 レジスタ
507 レジスタ制御部
508 バスインターフェース
509 専用メモリ
510 メモリインターフェース
511 RFCPU
512 アナログ回路部
513 デジタル回路部
514 共振回路
515 整流回路
516 定電圧回路
517 リセット回路
518 発振回路
519 復調回路
520 変調回路
521 RFインターフェース
522 制御レジスタ
523 クロックコントローラ
524 CPUインターフェース
525 中央処理ユニット
526 ランダムアクセスメモリ
527 専用メモリ
528 アンテナ
529 容量部
530 電源管理回路
701 筐体
702 筐体
703 表示部
704 スピーカ
705 マイクロフォン
706 操作キー
707 ポインティングデバイス
708 表面カメラ用レンズ
709 外部接続端子ジャック
710 イヤホン端子
711 キーボード
712 外部メモリスロット
713 裏面カメラ
714 ライト
901 筐体
902 支持台
903 表示部
904 スピーカ部
905 ビデオ入力端子
911 筐体
912 表示部
913 キーボード
914 外部接続ポート
915 ポインティングデバイス
921 筐体
922 表示部
923 操作キー
924 センサ部
931 筐体
932 表示部
933 レンズ
934 操作キー
935 シャッターボタン
941 本体
942 表示部
943 筐体
944 外部接続ポート
945 リモコン受信部
946 受像部
947 バッテリー
948 音声入力部
949 操作キー
950 接眼部
104a 単結晶半導体層
120a 結晶性半導体層
120b 結晶性半導体層
120c 結晶性半導体層
124a 導電層
124b 導電層
124c 導電層
126a 不純物領域
126b 不純物領域
128a 不純物領域
128b 不純物領域
129a 不純物領域
129b 不純物領域
130a トランジスタ
130b トランジスタ
130c トランジスタ
134a 導電層
134b 導電層
134c 導電層
134d 導電層
134e 導電層

【特許請求の範囲】
【請求項1】
絶縁表面上に(211)面から±10°以内の面を上面とする島状の単結晶半導体層を形成する工程と、
前記単結晶半導体層の上面及び側面に接して形成し、且つ前記絶縁表面上に非単結晶半導体層を形成する工程と、
前記非単結晶半導体層にレーザー光を照射して前記非単結晶半導体層を溶融し、且つ、前記単結晶半導体層を種結晶として前記絶縁表面上に形成された前記非単結晶半導体層を結晶化して結晶性半導体層を形成する工程と、
前記結晶性半導体層を用いて、nチャネル型トランジスタ及びpチャネル型トランジスタを形成する工程と、
を有する半導体装置の作製方法。
【請求項2】
絶縁表面上に(211)面から±10°以内の面を上面とする島状の単結晶半導体層を形成する工程と、
前記単結晶半導体層の上面及び側面を覆い且つ前記絶縁表面上に絶縁層を形成する工程と、
前記絶縁層に開口部を形成して、前記単結晶半導体層の上面を露出させる工程と、
露出した前記単結晶半導体層の上面及び前記絶縁表面を覆うように非単結晶半導体層を形成する工程と、
前記非単結晶半導体層にレーザー光を照射して前記非単結晶半導体層を溶融し、且つ、前記単結晶半導体層を種結晶として前記絶縁表面上に形成された前記非単結晶半導体層を結晶化して結晶性半導体層を形成する工程と、
前記結晶性半導体層を用いて、nチャネル型トランジスタ及びpチャネル型トランジスタを形成する工程と、
を有する半導体装置の作製方法。
【請求項3】
請求項1または請求項2において、
前記絶縁表面上に(211)面から±10°以内の面を上面とする島状の単結晶半導体層を形成する工程は、
(211)面から±10°以内の面を上面とする単結晶半導体基板にイオンを添加して脆化領域を形成する工程と、
前記単結晶半導体基板と前記絶縁表面を有するベース基板とを貼り合わせる工程と、
前記脆化領域において、前記単結晶半導体基板を分離する工程と、
を有する半導体装置の作製方法。
【請求項4】
絶縁表面上に非単結晶半導体層を形成する工程と、
前記非単結晶半導体層上に(211)面から±10°以内の面を上面とする島状の単結晶半導体層を形成する工程と、
前記非単結晶半導体層にレーザー光を照射して前記非単結晶半導体層を溶融し、且つ、前記単結晶半導体層を種結晶として前記非単結晶半導体層を結晶化して結晶性半導体層を形成する工程と、
前記結晶性半導体層を用いて、nチャネル型トランジスタ及びpチャネル型トランジスタを形成する工程と、
を有する半導体装置の作製方法。
【請求項5】
請求項4において、
前記非単結晶半導体層上に(211)面から±10°以内の面を上面とする島状の単結晶半導体層を形成する工程は、
(211)面から±10°以内の面を上面とする単結晶半導体基板にイオンを添加して脆化領域を形成する工程と、
前記単結晶半導体基板と前記非単結晶半導体層を有するベース基板とを貼り合わせる工程と、
前記脆化領域において、前記単結晶半導体基板を分離する工程と、
を有する半導体装置の作製方法。
【請求項6】
請求項1乃至請求項5のいずれか一項において、
前記nチャネル型トランジスタ及びpチャネル型トランジスタのチャネル長方向を<111>方向とする半導体装置の作製方法。
【請求項7】
請求項1乃至請求項6のいずれか一項において、
前記nチャネル型トランジスタ及び前記pチャネル型トランジスタを用いてCMOS回路を形成する半導体装置の作製方法。
【請求項8】
請求項1乃至請求項7のいずれか一項において、
前記単結晶半導体層として単結晶シリコン層を形成する半導体装置の作製方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2010−258435(P2010−258435A)
【公開日】平成22年11月11日(2010.11.11)
【国際特許分類】
【出願番号】特願2010−78684(P2010−78684)
【出願日】平成22年3月30日(2010.3.30)
【出願人】(000153878)株式会社半導体エネルギー研究所 (5,264)
【Fターム(参考)】