説明

Fターム[5H006CB07]の内容

整流装置 (16,649) | 整流器形式 (2,848) | 同期整流 (253)

Fターム[5H006CB07]に分類される特許

1 - 20 / 253



【課題】コンパクトで組み立て易く、トランス及び二次巻線側の不要な寄生インダクタンス成分や損失を小さくすることができるスイッチング電源装置を提供する。
【解決手段】トランス22は互いに同じ巻数の二次巻線28を複数個備える。二次巻線28は、磁性コア26に巻回されたコイル部32とその両端部を外に引き出す一対の引出部34を備える。整流回路36は、各々に主スイッチング素子20のオン・オフによる高周波電流が流れる高周波電流ライン44を有する。高周波電流ライン44は対応する二次巻線28ごとに設けられ、二次巻線28の一対の引出部34の間に接続され、引出部34と高周波電流ライン44とで高周波電流ループ46を形成する。複数の整流回路36が磁性コア26の近傍に配置され、個々の高周波電流ループ46が、他の整流回路36の高周波電流ループ46の形状と同様の形状に形成されている。 (もっと読む)


【課題】小型化が可能になるとともにコストも低減されたセミブリッジレス力率改善回路とセミブリッジレス力率改善回路の駆動方法とを実現することを目的とする。
【解決手段】AC入力電源と、整流ブリッジ部と、第一のブーストコンバータと第二のブーストコンバータと、第一のブーストコンバータまたは第二のブーストコンバータをパルス駆動するパルス生成部とを備え、AC電源の入力に対応して第一のブーストコンバータと第二のブーストコンバータとを選択的に駆動し、整流ブリッジ部を構成する四つの回路素子のうち、第一または第二のブーストコンバータからの帰還電流が流れる二つの回路素子の少なくともいずれか一方は、帰還タイミングに合わせて導通するMOSFETで構成されるセミブリッジレス力率改善回路とする。 (もっと読む)


【課題】フォワード形直流−直流変換器の同期整流回路の制御には、種々の方式があるが、一次回路の信号を受け取ることなく、簡単な制御で損失を低減することは難しかった。
【解決手段】変圧器の一次側回路からの信号を受け取ることなく、変圧器の二次巻線電圧、直流出力電圧、及び直前のオン時間幅又はオフ時間幅を組合せて把握することにより、同期整流用MOSFETのオン時間幅及びオフ時間幅を演算で求め、同期整流時にダイオードに電流が流れる時間を最少時間に抑制する。 (もっと読む)


【課題】 同期整流方式のスイッチング電源において、効率を低下させることなくオン抵抗の低いスイッチング素子を用いて正しく動作する。
【解決手段】 入力されたパルス電圧を整流する整流手段と、整流手段に対してパルス電圧が入力される側に設けられた電圧電流変換手段と、電圧電流変換手段の出力電流を電圧に変換する電流電圧変換手段と、電流電圧変換手段の電圧と基準電圧の差を比較する比較手段とを備え、比較手段からの出力によって整流手段の動作を制御する電源装置。 (もっと読む)


【課題】電圧変換時の損失を低減し、効率の低下を抑えることができる力率改善回路を提供する。
【解決手段】整流手段Rcで整流された直流の整流電圧Vpfcと、与えられた目標電圧Voとを比較し、整流電圧Vpfcが目標電圧Voよりも低いとき、第2スイッチング素子Tr2をオフにし、第1スイッチング素子Tr1をスイッチングする制御信号を出力し、整流電圧Vpfcが目標電圧Voよりも高いとき、第1スイッチング素子Tr1をオンに、第2スイッチング素子Tr2をスイッチングする制御信号を出力する制御手段Contを備えた力率改善回路。 (もっと読む)


【課題】過電圧入力に対する耐性を有しつつも、回路面積を縮小した充電回路を提供する。
【解決手段】スイッチングトランジスタM1は、高耐圧素子で構成される。パルス変調器10は、誤差増幅器EA1〜EA3の出力電圧VERR1〜VERR3を合成した電圧VERRに応じたデューティ比を有するパルス信号S1を生成する。逆流防止回路12は、(1)VIN>VBATのとき、アノードが入力端子P1側の向きで設けられたボディダイオードD1と並列な第1スイッチSW1をオンし、(2)VBAT>VINのとき、カソードが入力端子P1側の向きで設けられたボディダイオードD2と並列な第2スイッチSW2をオンする。 (もっと読む)


【課題】軽負荷状態を確実に検出する。
【解決手段】第1コントローラ10は、第1パルス信号SPWMを生成する。第2コントローラ20は、第2パルス信号SPFMを生成する。ドライバ30は、通常モードにおいて第1パルス信号SPWMにもとづいて、軽負荷モードにおいて第2パルス信号SPFMにもとづいて、スイッチングトランジスタM1および同期整流トランジスタM2を駆動する。軽負荷検出コンパレータ40は、スイッチングトランジスタM1に流れる検出電流IM1が第1しきい値電流ITH1を超えるとアサートされる比較信号S1を生成する。制御回路100は、比較信号S1がアサートされるとき通常モードに、アサートされないとき、軽負荷モードに設定される。 (もっと読む)


【課題】集積電力段において、入力電圧を集積電力段の一側面(例えば上面)で受け取り、出力電圧を集積電力段の反対側面(例えば底面)から出力する。
【解決手段】集積電力段は負荷段の上に位置する共通ダイを備え、共通ダイはドライバ段102及び電力スイッチ104を備える。電力スイッチは制御トランジスタ110及び同期トランジスタ112を含む。制御トランジスタのドレインD1が共通ダイの入力電圧を共通ダイの一側面(例えば上面)で受ける。制御トランジスタのソースS1が同期トランジスタのドレインD2に結合され、前記共通ダイの出力電圧を共通ダイの反対側面(例えば底面)で出力する。電力段の下にインターポーザ106を含めることができる。インターポーザは共通ダイの反対側面で共通ダイの出力電圧に結合される出力インダクタ118及び必要に応じ出力キャパシタ120を含む。 (もっと読む)


【課題】回路素子の動作損失を低減し、変換効率の高効率化を図ることができる電力変換装置を提供する。
【解決手段】絶縁トランス12の二次側の整流回路13の後段に、平滑リアクトルLb、平滑コンデンサCbを有するフィルタ回路14が備えられるDC−DCコンバータ10において、絶縁トランス12の二次側コイル12bと整流回路13との間に共振コンデンサCxが直列に接続される。一次側のインバータ回路11は、スイッチング素子SW1〜SW4のフルブリッジ回路よりなり、フィルタ回路14の平滑リアクトルLbと共振コンデンサCxとの共振周波数に応じたスイッチング周波数にてスイッチング動作が行われる。 (もっと読む)


【課題】回路素子の動作損失を低減し、変換効率の高効率化を図ることができる電力変換装置を提供する。
【解決手段】絶縁トランス12の二次側の整流回路13の後段に、平滑リアクトルLb、平滑コンデンサCbを有するフィルタ回路14が備えられるDC−DCコンバータ10において、絶縁トランス12の二次側コイル12bと整流回路13との間に共振コンデンサCxが直列に接続される。一次側のインバータ回路11は、スイッチング素子SW1,SW2のハーフブリッジ回路よりなり、フィルタ回路14の平滑リアクトルLbと共振コンデンサCxとの共振周波数に応じたスイッチング周波数にてスイッチング動作が行われる。 (もっと読む)


【課題】広い入力電圧範囲に対しても補助電源電圧が安定で、低コストな高効率スイッチング電源装置を提供することを目的としている。
【解決手段】入力電源12とメインスイッチング素子TR1が直列に接続された一次巻線TN1、同期整流素子TR21、TR22、出力チョークコイルLo、出力コンデンサCoから構成された出力平滑回路20が接続された二次巻線TN2とを備えたトランスT1と、ダイオードDsubを介してコンデンサCsubに充電する補助電源回路22と、電源装置を制御する制御回路14とを備えたスイッチング電源装置において、補助電源回路22は、アクティブクランプ回路24を介してトランスT1の三次巻線TN3に接続しており、クランプコンデンサC2と、スイッチング用のクランプ素子TR2とから構成され、クランプ素子TR2はメインスイッチング素子TR1と交互にオン・オフする動作を行っている。 (もっと読む)


【課題】コンデンサインプット型全波整流回路をnチャンネルMOSFETのみで実現する。
【解決手段】抵抗101は、MOSFET22,24のソース側に接続され、MOSFET22,24を流れる電流を検知する電流検知回路を構成し、電流値に対応した電圧をコンパレータ104の反転入力端子に出力する。コンパレータ104は、抵抗102,103の所定の分圧比により設定される所定の閾値となる電圧と、抵抗101の電圧とを比較し、抵抗101の電圧が所定の閾値よりも小さくなり、抵抗101を流れる電流が所定の閾値よりも小さくなったとみなされた場合、トランジスタ105,106をオンさせて、MOSFET22,24をオフに制御することにより、平滑コンデンサ81による電流の逆流を防止する。本技術は、コンデンサインプット型全波整流回路に適用することができる。 (もっと読む)


【課題】双方向電力変換装置の電池の本数を減らす。
【解決手段】交流電源1と、交流電源1に直列に接続された中間端子を有するリアクトル2と、リアクトル2と交流電源1の間に直列に挿入された第1のスイッチ素子3と第1のダイオード7からなる並列回路と、リアクトル2と交流電源1の間に直列に挿入された第2のスイッチ素子4と第2のダイオード8からなる並列回路と、一方の端子がリアクトル2の中間端子に接続された電池11と、リアクトル2の一方の端子と電池11の他方の端子の間に接続された第3のスイッチ素子5と第3のダイオード9からなる並列回路とリアクトル2の他方の端子と電池11の他方の端子の間に接続された第4のスイッチ素子6と第4のダイオード10からなる並列回路と、第1ないし第4のスイッチ素子3〜6のオンオフを制御する発振制御回路12を備え、交流電源1と電池11の間で電力を双方向に変換する。 (もっと読む)


【課題】主スイッチング素子のZVSが可能であり、特定の回路素子に過大な電気的ストレスが加わることなく安全性の高い小型のスイッチング電源装置を提供する。
【解決手段】フルブリッジ構成の主スイッチング素子18a,18b,20a,20bから成る第一アーム18と第二アーム20をオンオフ駆動し、フェイズシフト制御を行うスイッチング制御回路44を備える。トランス22の一次巻線22aと直列の位置に挿入されトランス22の直流偏磁を抑制する第一コンデンサ24を備える。一次巻線22a及び第一コンデンサ24と直列であって、一端が第二アーム20の中点20cに接続された共振インダクタ26を備える。共振インダクタ26の一次巻線22a側の一端に、第一及び第二回生ダイオード28a,28bを備える。スイッチング制御回路44は、第二アーム20のターンオン又はターンオフによってトランス22aの電圧印加を停止させる。 (もっと読む)


【課題】 負荷電流に対する依存性が少なく、安定した出力電圧が得られる整流回路を提供する。
【解決手段】 第1の給電線101および第2の給電線102の線間には交流電圧が与えられる。Nチャネルトランジスタ110は、第3の給電線103と、第2の給電線102との間に介挿されている。直流安定化電源120は、第1の給電線101と第3の給電線103との線間に発生する交流電圧を整流して直流電圧を出力する。負帰還増幅回路130は、直流安定化電源120が出力する直流電圧を電源電圧とする差動増幅器131を含み、第3の給電線103および第2の給電線102間に所定の極性の電圧が発生する間、Nチャネルトランジスタ110をONとし、かつ、第3の給電線103および第2の給電線102間の電圧の増減に応じてNチャネルトランジスタ110のゲート電圧を増減する。 (もっと読む)


【課題】出力電圧が高電圧であっても同期整流を行うことが出来るとともに、コストパフォーマンスに優れている整流スイッチユニット、整流回路及びスイッチング電源装置を提供する。
【解決手段】整流スイッチユニット1は、ノーマリオフMOSFET6と、アノードが上記ソースに接続され、カソードが上記ドレインに接続されるボディダイオードDbと、ソースが上記ノーマリオフMOSFET6のドレインに接続され、ゲートが上記ノーマリオフMOSFET6のソースに接続されたノーマリオンMOSFET5と、一方の入力端子が上記ドレインに接続され、他方の入力端子に、電圧源50から閾値電圧−Vthが入力され、上記一方の入力端子の電圧と閾値電圧−Vthとの比較結果を示す信号を出力するセンサ2と、ノーマリオフMOSFET6のオン及びオフを指示する信号を、ノーマリオフMOSFET6に出力する制御回路30とを備える。 (もっと読む)


【課題】交流電圧の極性に応じた信号を誤出力しないようにする。
【解決手段】交流電源から出力される交流電圧の極性を示す信号を出力する極性検出回路であって、前記交流電源から出力される第1相の交流電圧がアノードに印加される第1ダイオードと、前記交流電源から出力される前記第1相とは位相が逆の第2相の交流電圧がアノードに印加される第2ダイオードと、正の定電圧を出力する定電圧電源と、前記第1相の交流電圧が正極である場合は前記定電圧に応じた電圧を出力し、前記第1相の交流電圧が負極である場合は前記第2ダイオードのカソードの電圧に応じた電圧を出力する第1基準電圧出力回路と、前記第1ダイオードのカソードの電圧に応じた第1電圧と、前記第1基準電圧出力回路から出力される電圧と、を比較し、比較の結果に応じて、前記第1相の交流電圧の極性を示す信号を出力する第1信号出力回路と、を備える。 (もっと読む)


【課題】
従来のダイオードを用いた整流回路よりも電力損失を低減することのできる整流回路を提供する。
【解決手段】
スイッチ1、スイッチ2、スイッチ3、スイッチ4をブリッジ接続し、スイッチ4を入力端5と入力端6との間の電圧に応じて開閉するとともに、スイッチ1を該スイッチ1の両端の間の電圧に応じて開閉し、スイッチ3を入力端5と入力端6との間の電圧に応じて開閉するとともに、スイッチ2を該スイッチ2の両端の間の電圧に応じて開閉する。 (もっと読む)


【課題】同期整流回路を有し、出力短絡時等に負荷や内部の回路素子を確実に保護するシングルエンディッド・フォワード型のスイッチング電源装置を提供する。
【解決手段】MOS型FETの主スイッチング素子14及び転流側スイッチング素子24を備える。主スイッチング素子14のオン時間が短くなると、転流側スイッチング素子24をオフ状態に保持する同期整流駆動回路32を備える。出力電圧Voの誤差信号ΔVoに基づいてパルス幅変調すると共に、電流検出回路38のスイッチング電流信号が第1基準電圧Vr1に達すると駆動パルスV16をローレベルにするPWM制御回路16を備える。主スイッチング素子14のゲート・ソース端子間に可変抵抗素子46を備える。スイッチング電流信号が第2基準電圧Vr2に達すると、可変抵抗素子46の抵抗値を低下させ、主スイッチング素子14のゲート・ソース端子間電圧Vg14を抑える可変制御回路48を備える。 (もっと読む)


1 - 20 / 253