説明

Fターム[5H007CA01]の内容

インバータ装置 (60,604) | スイッチング素子 (5,393) | トランジスタ (5,228)

Fターム[5H007CA01]の下位に属するFターム

Fターム[5H007CA01]に分類される特許

101 - 120 / 3,640


【課題】還流ダイオードに流れる電流の振動によって発生するノイズを抑制する電力変換装置を提供する。
【解決手段】複数のスイッチング素子Q1〜Q6と還流ダイオードD1〜D6とを有し、前記複数のスイッチング素子Q1〜Q6のオン及びオフを切り換えることで、入力された電力を変換し、負荷に出力する電力変換回路と、前記複数のスイッチング素子Q1〜Q6を駆動する駆動回路20と、前記電力変換回路及び前記駆動回路20を制御する制御手段とを備え、前記制御手段は、前記電力変換回路から前記負荷に供給される供給電流が0アンペア付近にある場合に、前記スイッチング素子Q1〜Q6をターンオンさせる際のスイッチング速度を、前記供給電流が0アンペア付近ではない場合のスイッチング速度より低下させる。 (もっと読む)


【課題】電力変換装置の半導体素子群の発熱ばらつきを活かして、冷却器の冷却性能を向上し、かつ回路のインダクタンスを最小限にして、冷却器の小型化を図る。
【解決手段】ユニット構成する半導体素子群は、冷却器受熱部1に設置され自冷あるいは風冷により放熱するようにし、第1、第4の半導体素子Q1,Q4を冷却器受熱部の下側に配置し、第2、第3の半導体素子Q2,Q3を中央に配置し、第1のダイオードD5と第2のダイオードD6を上側に配置し、第1、第2の半導体素子Q1,Q2、第3、第4の半導体素子Q3,Q4はそれぞれ冷却器の上下方向の中心線に対し、左右方向で互いに反対側の位置に配置し、第1のダイオードD5は、第2の半導体素子Q2と前記中心線に対し左右方向で同じ側に配置し、第2のダイオードD6は、第3の半導体素子Q3と前記中心線に対し左右方向で同じ側に配置する。 (もっと読む)


【課題】回転電機制御システムにおいて、電流センサの検出電流値に誤差が重畳している場合でも、過電流及び過電圧の発生を有効に防止することである。
【解決手段】回転電機制御システム10は、回転電機であるモータジェネレータMG2と、リアクトル20を含むDC/DCコンバータ14と、DC/DCコンバータ14に接続された平滑コンデンサC1,C2と、正弦波PWM制御方式または過変調制御方式または矩形波制御方式でインバータを制御する制御部18とを含む。制御部18は、正弦波PWM制御方式の実行時に、LC共振回路の共振周波数領域の周波数とモータジェネレータMG2のパワー変動の周波数とが一致したときに、インバータ16の入力電圧VHを低下させ、インバータ16の制御方式を正弦波PWM制御方式から過変調制御方式または矩形波制御方式に切り替える電圧低下制御部30を有する。 (もっと読む)


【課題】直流電源の出力電圧を一律に、当該直流電源の出力電圧の最大値まで昇圧する構成に比べて、インバータ回路での電力変換ロスを軽減すること。
【解決手段】直流電源のパワーコンディショナは、電圧検出回路からの前記検出信号に基づき、直流電源の出力電圧が、基準値未満であると判断した場合に、出力電圧を昇圧回路で昇圧した電圧を、入力直流電圧として前記インバータ回路に与えつつ、当該入力直流電圧を前記基準値に維持する昇圧電圧付与処理を実行し、出力電圧が基準値以上であると判断した場合に、出力電圧を、昇圧回路で昇圧せずに、入力直流電圧としてインバータ回路に与えつつ、当該入力電流電圧を、前記出力電圧に応じて変更させる出力電圧付与処理と、を実行する。 (もっと読む)


【課題】2枚の板状導電体と絶縁部材との積層構造において、両板状導電体に設けられる端子部を簡単な構成により形成し、両板状導電体間に所望の沿面距離を持たせる。
【解決手段】幅寸法が同じの2枚の板状導電体10,10を相対向させて配設して配線形成部10aから複数の端子部10b,10cを張り出させて設け、板状導電体10に、それより幅の大きい電気絶縁部材11を積層させて、電気絶縁部材11は板状導電体10が積層される本体部11aの両側部に所定幅の沿面距離形成部11bが形成され、この沿面距離形成部11bには、板状導電体10の各端子部10b,10cが張り出している部位に欠落部11cが形成され、電気絶縁部材11の欠落部11cを形成した位置でいずれかの板状導電体10側に向けて折り曲げることにより端子部10b,10cと異なる側の配線形成部10aとの間に所定の沿面距離を持たせている。 (もっと読む)


【課題】還流モードであるか否かの判断に用いる電流の更新を離散的に行なう場合、還流モードであるか否かの判断に利用された値と、パワースイッチング素子S¥#(¥=u,v,w;#=p,n)の強制的なオフ処理がなされるときにおける値とが相違しうるため、還流モードの判断のための閾値に大きなマージンを設ける必要が生じること。
【解決手段】デッドタイム生成部36では、パワースイッチング素子S¥p,S¥nを相補駆動するための操作信号g¥p,g¥nを生成する。遮断部38では、還流モードに対応するパワースイッチング素子S¥#の操作信号g¥#を強制的にオフ操作指令とする。この際、還流モードの有無を判断するための閾値を、モータジェネレータ10の回転速度等に応じて可変設定する。 (もっと読む)


【課題】系統連系時の効率向上を図りながら、高調波を抑制する。
【解決手段】系統3に直流電源4を連系させる電力変換装置1は、インバータ回路13と、コンバータ回路14と、制御装置15とを備える。制御装置15は、|Vac|>Vdcのとき、コンバータ回路14だけをノーマルコイルL2に流れる電流に基づいて比例積分制御する。このとき、インバータ回路13は整流器として制御される。また、制御装置15は、|Vac|<Vdcのとき、インバータ回路13をノーマルコイルL2に流れる電流に基づいてヒステリシス制御する。このとき、コンバータ回路14は直結回路として制御される。スッチングの抑制により効率向上を図りながら、交流電流の高調波成分が抑制される。さらに高調波成分を抑制するために、インバータ回路13のヒステリシス制御とコンバータ回路14の比例積分制御との両方が同時に実行される期間を設定してもよい。 (もっと読む)


【課題】主回路インダクタンスを低減でき、かつ、電流振動が発生する周波数帯域で高抵抗になる導体形態を有する電力変換器を提供することにある。
【解決手段】上記の課題を解決する手段として、正極側電流を流す導体と絶縁シートと負極側電流を流す導体とを積層接着させ、各々の導体に流れる電流の経路を対向させた電力変換器の主回路配線において、積層された導体の表面のうち、他方の導体側の面について、導体内部よりも高周波帯域において高抵抗な部材を用いる。 (もっと読む)


【課題】正極バスバーと負極バスバーとの相互インダクタンスの低減に加え、正極バスバー及び負極バスバーの両方を用いて半導体モジュールとの相互インダクタンスを低減する電力変換装置を提供すること。
【解決手段】正極バスバー3は、正極端子5と負極端子6との間であって半導体モジュール1の並び方向に沿って配置される正極本体部31を備える。負極バスバー4は、正極端子5と負極端子6との間であって、半導体モジュール16の並び方向に沿って配置される負極本体部41を備える。正極本体部31と負極本体部41は、正極端子5と負極端子6とを結ぶ方向に対して向かい合うように配置されている。 (もっと読む)


【課題】回転電機制御システムにおいて、電流センサの検出電流値に誤差が重畳している場合でも、過電流及び過電圧の発生を有効に防止することである。
【解決手段】回転電機制御システム10は、回転電機であるモータジェネレータMG2と、リアクトル20を含むDC/DCコンバータ14と、DC/DCコンバータ14に接続された平滑コンデンサC1,C2と、予め設定されたPWM条件下で電流フィードバックを用いるPWM制御方式でインバータ16を制御する制御部18とを含む。制御部18は、LC共振回路の共振周波数領域の周波数とモータジェネレータMG2のパワー変動の周波数とが一致したときに、PWM制御で電流フィードバックを行う場合のフィードバックゲインを、通常時に使用する通常時ゲインよりも低下させるゲイン低下部であるゲイン決定部30を有する。 (もっと読む)


【課題】車両の接近を歩行者等に知らせる接近音を十分な音圧レベルで出力しつつエネルギ効率の低下を抑制する。
【解決手段】電動走行している最中に車速Vが閾値Vref未満のときには、車速Vが閾値Vref以上のときに比して昇圧コンバータの高電圧側の目標電圧VH*が高くなるように且つ車速Vが大きいほど昇圧コンバータの高電圧側の目標電圧VH*に高くなるように設定する。これにより、歩行者等に車両の接近を車速Vに応じた接近音を用いて知らせることができると共に、車速Vが閾値Vref未満のときに昇圧コンバータの高電圧側の目標電圧VH*を最大値のVmaxに設定するものに比して電力消費(エネルギ効率の低下)を抑制することができる。 (もっと読む)


【課題】電力変換回路で、素子故障の場合,運転継続は不可能となるため,故障検知後は半導体スイッチを全オフし,システムを停止する。UPSのような運転継続が必要なシステムでは,インバータを並列接続する並列冗長システムを構築するが、装置の大型化やシステム価格の上昇といった課題を有する。
【解決手段】直列接続された直流電源と、直流電源と並列接続される半導体スイッチ直列回路とその直列接続点と前記直流電源の直列接続点との間に接続される双方向スイッチとからなる1相分のスイッチ回路を複数個用いた3レベル電力変換回路において、双方向スイッチを構成する半導体素子が故障した場合に、前記半導体素子の主電流が流れる経路を電気的に開放する手段を備え、残りの双方向スイッチを常時オフ状態とし、2レベルインバータとして運転を続行させる。 (もっと読む)


【課題】誘導性負荷に交流電圧を出力した場合に、当該負荷に流れる電流の奇数次調波成分に起因した有効電力の脈動を低減する。
【解決手段】インバータ4の変調率kは、直流成分k0と、交流成分k6ncos(6n・ω・t+φ6n)とを有している。当該交流成分はインバータ4が出力する交流電圧Vu,Vv,Vwの基本周波数(ω/2π)の6n倍の周波数(6ω/2π)を有する。負荷電流iu,iv,iwの5次調波成分のみならず、7次調波成分が存在しても、交流成分の大きさと直流成分の比を適宜に設定し、これらの高調波成分に起因した消費電力の脈動を低減することができる。当該脈動の低減は電源高調波の抑制に資する。 (もっと読む)


【課題】LCフィルタによる共振を抑制しつつ誘導負荷の高調波を抑制でき、誘導負荷に対して応答性のよい最適な制御ができる電力変換装置を提供する。
【解決手段】電圧検出部101により検出されたリアクトルLの両端電圧VLに基づいて、インバータ部12を制御する制御部100を備える。上記制御部100は、ダイオードブリッジ11からの直流電圧に対するインバータ部12の入力電圧の伝達特性が、直列接続された位相進み要素と二次遅れ要素による減衰特性になるように、インバータ部12を制御すると共に、ダイオードブリッジ11からの直流電圧に対するインバータ部12の入力電圧の伝達特性の減衰係数ζが1よりも大きく設定される。 (もっと読む)


【課題】系統瞬低時において出力電流を継続させつつも共振電流の発生を抑制し、一層の系統安定化を図ることが可能な系統連系用電力変換装置の制御装置を提供する。
【解決手段】出力電流値の設定に用いる電流位相θαβの算出を行う位相算出部22に位相保持部44を備え、該位相保持部44にて系統電圧の電圧低下異常が判定される時までの正常時の位相情報がmサイクル分(例えば1サイクル分)、更新されつつ保持される。出力電流値の設定に際しては、位相値切替部43及び電圧低下判定部47等の動作にて、電圧低下異常が生じていない場合には、位相演算部42から出力される都度抽出の位相情報を出力し、電圧低下異常が生じた場合には、先の位相保持部44にて保持された位相情報が出力される。 (もっと読む)


【課題】パワーモジュールの信頼性をより向上させる。
【解決手段】セラミック基板8の一方の面の電極8にはんだ付けされた能動素子13,14が樹脂2で封止されたパワーモジュールにおいて、前記セラミック基板8の他方の面に導体膜11を形成し、この導体膜11の周縁部にまで樹脂2をおよばせる。 (もっと読む)


【課題】鉄道車両の走行風によって冷却を行うようにした鉄道車両用電力変換装置におけるコンバータおよびインバータの冷却体の全体の温度分布が均一になるようにして、コンバータおよびインバータ双方の半導体素子を冷却効果を高めることにより全半導体素子の温度上昇がほぼ均等になるようにすることを課題とする。
【解決手段】鉄道車両の床下に設置され、半導体素子変換回路により交流電力を直流電力に変換するコンバータと、半導体素子変換回路により前記コンバータから出力される直流電力を三相交流電力に変換するインバータと、前記コンバータおよび前記インバータの変換回路を構成する半導体素子を冷却する、複数の冷却フィンを有する冷却体とを備え、前記鉄道車両の走行によって発生する走行風を前記冷却フィンに当てて前記半導体素子の冷却を行うようにした鉄道車両用電力変換装置において、前記コンバータの変換回路を構成する半導体素子と前記インバータの変換回路を構成する半導体素子を冷却する冷却体を熱的に一体化した共通の冷却体とする。 (もっと読む)


【課題】本発明は、従来の直列型H−ブリッジ高圧インバータに回生運転が可能な能動整流部を有する回生型単位電力セルを混合して、部分的な回生運転ができるようにする部分回生型高圧インバータを提供する。
【解決手段】本発明によるインバータは、直列型H−ブリッジ高圧インバータの単位電力セルの入力端構造を変更して回生運転が可能にし、制動抵抗(dynamic braking resistor)を要しないため、DCリンクキャパシタのサイズを従来の高圧インバータより減らすことができる。 (もっと読む)


【課題】3相インバータを構成するスイッチング素子の操作信号の伝送と駆動回路への電力の供給とをトランス1つで行なうことが困難なこと。
【解決手段】マイクロプロセッサ50から出力される操作信号g¥#は、エンコーダ41にてマンチェスタ符号にて符号化され、1次側コイルW1の印加電圧信号となる。2次側コイルW2uには、電源回路60およびデコードユニット70が並列接続されている。電源回路60は、スイッチング素子Supの駆動部20の電源を生成する。これに対し、デコードユニット70は、2次側コイルW2uに伝送された電圧信号の復号処理をすることで、スイッチング素子Supの操作信号gupを抽出し、駆動部20に出力する。 (もっと読む)


【課題】リアクトルとコンデンサとが面している配置においても、コンデンサの温度上昇を抑制することができる電力変換装置を提供する。
【解決手段】電力変換回路の一部を構成する半導体モジュール130、コンデンサ5及びリアクトル7と、該半導体モジュール130を両主面から冷却する冷却器6とを備えた電力変換装置1である。上記冷却器6は、上記半導体モジュール130の両主面に配される複数の冷媒流路60を備え、上記複数の冷媒流路60と上記半導体モジュール130とが互いに積層されて積層体13を構成している。上記コンデンサ5は、上記積層体13における積層方向Xの一端に配置されており、上記リアクトル7は、上記コンデンサ5に対して、上記積層方向Xに直交する方向に配置されている。そして、上記コンデンサ5と上記リアクトル7との間には、両者間の熱の移動を遮る遮熱板3が配置されている。 (もっと読む)


101 - 120 / 3,640