説明

Fターム[5H026BB01]の内容

燃料電池(本体) (95,789) | 製造方法、処理方法 (13,294) | 熱処理(加熱、冷却、焼結、焼成) (2,349)

Fターム[5H026BB01]に分類される特許

161 - 180 / 2,349


【課題】生産効率を向上させることができる固体酸化物形燃料電池を提供する。
【解決手段】セルホルダ4と空気極セパレータとの位置合わせを行うだけで、各単セル3と酸化剤流路6aおよび突出部6cとの位置合わせが行われるので、単セル3毎の位置合わせが不要となるため、組立が容易となる。結果として生産効率を向上させることができる。 (もっと読む)


【課題】スカンジア安定化ジルコニアにセリアを添加して結晶相を安定化させ、高い酸素イオン導電性と高強度とを備えた高イオン導電性固体電解質材料及び焼結体、並びにそれらを用いた固体電解質型燃料電池を提供すること。
【解決手段】ジルコニアを主成分とし、これにスカンジア8.5〜15モル%と、セリア0.5〜1モル%とが配合固溶されると共に、スカンジアとセリアとの合計配合量が9〜15モル%の範囲に調製されている高イオン導電性固体電解質材料とする。これを焼結して焼結体とし、固体電解質型燃料電池の固体電解質として使用する。 (もっと読む)


【課題】 乾紙時の強度や伸びが高く、濡れた時の強度も十分大きく、電解質の含浸加工性に優れる、固体燃料電池の固体電解質膜の補強に有用な固体電解質膜補強材の提供。
【解決手段】 ガラス繊維と有機繊維と無機バインダーからなる固体電解質膜補強材であって、前記有機繊維は非自己接着性有機繊維と熱接着性有機繊維とからなり、前記ガラス繊維が30〜70wt%、前記有機繊維が15〜65wt%及び前記無機バインダーが0.1〜30wt%含有し、全組成中において前記熱接着性有機繊維を10〜50wt%含有していることを特徴とする。 (もっと読む)


【課題】複合集電体を備えた燃料電池モジュールを提供する。
【解決手段】中空筒状に形成され、中心軸から径方向外側に第1電極層、電解質層、及び第2電極層を備える単位セルと、金属材料でメッシュ状または導線状に形成され、前記第2電極層の外周面に備えられる集電体と、セラミック材料で粉末状に形成され、前記集電体の表面に付着する補助集電体とを備える、複合集電体を備えた燃料電池モジュールである。すなわち、金属及びセラミック材料を同時に用いて集電手段を構成することにより、単一の材料を用いた場合に発生し得る欠点を補い、各材料の利点を集めてより効率よく燃料電池を構成することができる。 (もっと読む)


【課題】単セルの機械的強度によらないで全体としてSOFCとしての機械的強度を確保できるスタック構造を備える積層型SOFCを提供する。
【解決手段】固体電解質4を挟んで対向状に配置される燃料極7を含む燃料極層6と空気極9を含む空気極層8とを含んで積層される複数個の単セルと、積層される前記単セル間に介在されて単セル間を分離するセパレータ14と、燃料極層及び前記空気極層の各層内にあって、少なくとも熱膨張収縮特性に関してセパレータ又は固体電解質と均等であって、燃料極の周縁部又は空気極の周縁部に一体化されるとともに隣接する前記セパレータ及び固体電解質に一体化される非多孔質部を含むシール部10a、10bと、を備え、燃料極及び空気極にそれぞれ供給される燃料ガス及び空気ガスの流通が可能に形成されている、スタック構造体20を用いる。 (もっと読む)


【課題】簡単な工程で、電極触媒層から外方に延在する固体高分子電解質膜の外周端部に発生した皺を確実且つ容易に除去し、高品質な電解質膜・電極構造体を効率的に得ることを可能にする。
【解決手段】電解質膜・電極構造体10は、固体高分子電解質膜34の両側に電極触媒層36a、38aが設けられる触媒被覆膜40を有し、前記触媒被覆膜40の両側には、ガス拡散層36c、38cが積層される。電解質膜・電極構造体10の製造方法は、加熱された押圧部材52が、触媒被覆膜40を加圧しながら、該触媒被覆膜40の内側から外側に向かって移動されることにより、固体高分子電解質膜34の外周端部に発生した皺を除去する工程と、前記皺が除去された前記触媒被覆膜40の両側に、ガス拡散層36c、38cを一体化する工程とを有する。 (もっと読む)


【課題】固体電解質を用いた電気化学反応を利用したガス分解装置に用いる筒状MEAの製造工程を削減し、また製造コストを低減させることのできる、筒状MEAの製造方法を提供。
【解決手段】筒状の固体電解質層と、この固体電解質層を内外から挟むようにして積層形成された第1の電極層及び第2の電極層とを備えて構成される筒状MEAの製造方法であって、上記固体電解質層又は上記電極層の1つを構成する第1の未焼成筒状部を、所定の粉体材料を用いて成形する第1の成形工程S103と、上記第1の未焼成筒状部の内周部又は外周部に、上記固体電解質層又は上記電極層の他の1つを構成する第2の未焼成筒状部を、所定の粉体材料を用いて形成する第2の成形工程S106と、上記第1の未焼成筒状部と上記第2の未焼成筒状部とを備える筒状体を焼成して焼成筒状体を形成する焼成工程S109とを含む。 (もっと読む)


【課題】600℃前後の中低温で作動する固体酸化物燃料電池電解質を、粉末原料の焼結で製造する際、電解質材料は焼結性が悪いため、緻密体を得るために焼結を促進する添加物元素を加える。しかし、この種の添加物はプロトン伝導性を阻害する。
【解決手段】焼結した電解質緻密体に残留して電気伝導を阻害する焼結助剤の元素を、これと密着する電極基板中の他の元素の固相拡散を利用して置換する。例として、電解質はBaZrOであり、その粉末の焼結助剤はInである。電極基盤はNiOドープまたはBaZr1−x3−δである。電解質のInは電極のYと置換してBaZr1−x3−δになり、良好なプロトン伝導を示す。 (もっと読む)


【解決課題】セパレータ基材としてアルミニウム合金材料が用いられ、貴金属メッキ皮膜と同等の導電性に加えて優れた長期耐久性を有し、コスト性にも優れた軽量な燃料電池用セパレータ及びその製造方法を提供する。
【解決手段】表面に高さ0.5〜10μm及び単位面積当り個数5000個/mm2以上の第二相化合物が存在するアルミニウム合金製セパレータ基材と、黒鉛粉末等の炭素系材料とバインダー樹脂との質量比が所定の範囲である導電性塗料をセパレータ基材の表面に塗布し熱圧着して形成された導電層とを有し、第二相化合物が導電層内の黒鉛粉末と電気的に接続されている燃料電池用セパレータである。 (もっと読む)


【課題】ジルコニウム系酸化物からなる電解質をアノード側電極とカソード側電極で挟んで構成され、且つカソード側電極と固体電解質の間にセリウム系酸化物からなる中間層が介装される電解質・電極接合体(MEA)に優れた電気的特性を発現させる。
【解決手段】MEA10は、例えば、8YSZ等のジルコニウム系酸化物からなる固体電解質16を、アノード側電極12とカソード側電極14とで挟んで構成される。固体電解質16とカソード側電極14との間には、セリウム系酸化物からなる中間層18が介装される。この中間層18には、固体電解質16から拡散したZrが含まれることがあるが、その拡散量は、最大でも40原子%に抑制される。このような中間層18上に形成されるカソード側電極14は、例えば、中間層18に隣接する第1層22aと、該第1層22aに隣接する第2層22bとを有する。 (もっと読む)


【課題】電池のセルスタックの構築に好適で、接合作業性およびシール性に優れるフレームの接合構造を提供する。
【解決手段】フレームの接合構造1は、隣接するセルフレーム10A、10Bの各々が有するフレーム11A、11B同士を接合して、フレーム11A、11Bの内側にレドックスフロー電池のセルとなる領域を形成するためのフレームの接合構造で、フレーム11A、11Bの間に導電性部材12と融着層13とを具える。導電性部材12は、フレーム11A、11Bの間に、フレーム11A、11Bの周方向に沿って環状に配置される。融着層13は、導電性部材12に隣接し、フレーム11A、11Bの一部で構成される。上記融着層13により、隣接するフレーム11A、11Bを接合して各フレーム11A、11Bの内側領域を液密に封止する。 (もっと読む)


【課題】単セルの機械的強度によらないで全体としてSOFCとしての機械的強度を確保できるスタック構造を備える積層型SOFCを提供する。
【解決手段】固体電解質4を挟んで対向状に配置される燃料極7を含む燃料極層と空気極9を含む空気極層とを含んで積層される複数個の単セル2と、積層される前記単セル間に介在されて単セル間を分離するセパレータ14と、燃料極層及び前記空気極層の各層内にあって、少なくとも熱膨張収縮特性に関してセパレータ14又は固体電解質4と均等であって、燃料極の周縁部又は空気極の周縁部に一体化されるとともに隣接する前記セパレータ及び固体電解質に一体化される非多孔質部を含むシール部10aと、を備え、燃料極及び空気極にそれぞれ供給される燃料ガス及び空気ガスの流通が可能に形成されている、スタック構造体40を用いる。 (もっと読む)


【課題】 電解質の亀裂、剥離などを抑制することができる、燃料電池の製造方法を提供する。
【解決手段】 燃料電池(100)の製造方法は、金属支持体(10)上に配置されたセリア系電解質(31)を、大気よりも酸素分圧の低い雰囲気で焼成する焼成工程を含み、焼成工程において、膨張差=(金属支持体(10)の熱膨張率−セリア系電解質(31)の熱膨張率)×(焼成工程における焼成温度−室温)×100−焼成工程におけるセリア系電解質(31)の還元膨張率>0の条件を満たす。 (もっと読む)


【課題】シート強度が大きく、製造コストが低く、かつ十分なガス透気度及び導電性を持った多孔質電極基材及びその製造方法を提供する。
【解決手段】炭素短繊維(A)と、1種類以上の酸化繊維前駆体短繊維(b)及び/又は1種類以上のフィブリル状酸化繊維前駆体繊維(b’)とを2次元平面内において分散させた前駆体シートを製造し、交絡処理して3次元交絡構造を形成した後、炭素粉とフッ素系樹脂とを含浸させて、さらに150℃以上400℃未満の温度で熱処理することで、多孔質電極基材を製造する。この多孔質電極基材は、3次元構造体中に分散された炭素短繊維(A)同士が、酸化繊維(B)によって接合され、さらに前記炭素短繊維(A)と前記酸化繊維(B)とが炭素粉とフッ素系樹脂とにより接合された3次元交絡構造体からなる。 (もっと読む)


【課題】 固体電解質層をより薄膜化した場合でも、固体電解質層に穴があくことを防止し、燃料電池の発電効率を高めることができる固体電解質型燃料電池セル、固体電解質型燃料電池スタック、及び固体電解質型燃料電池セルの製造方法を提供すること。
【解決手段】 空気極7と、燃料極1と、固体電解質層5とを備えるとともに、燃料極1と固体電解質層5との間に活性層3を備え、燃料極1を支持基体とする支持膜型の固体電解質型燃料電池セルにおいて、 燃料極1の空孔の平均気孔径が、活性層3の空孔の平
均気孔径より大であることを特徴とする。 (もっと読む)


【課題】優れた発電性能を有する燃料電池用の発電層を得ることができる固体酸化物形燃料電池用の発電層の製造方法を提供する。
【解決手段】本発明に係る固体酸化物形燃料電池用の発電層の製造方法は、固体電解質層1と、酸化剤極層2と、燃料極層3とを少なくとも備える発電層の製造方法であって、固体電解質材料粒子を含む第1のスラリーと、酸化剤極材料粒子を含む第2のスラリー及び燃料極材料粒子を含む第3のスラリーの少なくとも1つとを重層塗布する重層塗布工程と、前記重層塗布工程を実施して得られる重層グリーンシート9を焼成する焼成工程とを有する。 (もっと読む)


【課題】アノード、カソード両極の触媒層に対し所望の保水性特性を保有させる。
【解決手段】膜電極接合体の製造方法は、(a)電解質膜の一方の面に第1のガラス転移温度を有する第1の触媒層を形成する工程と、(b)前記電解質膜の他方の面に、前記第1のガラス転移温度よりも低い第2のガラス転移温度を有する第2の触媒層を形成する工程と、(c)前記第2の触媒層に対し、前記第1のガラス転移温度よりも低い温度で熱処理を行う工程と、を備え、前記工程(c)において、前記第2の触媒層の面内の少なくとも一部の処理温度は前記第2のガラス転移温度以上の温度である。 (もっと読む)


【課題】 Ptを使用することなく高い触媒活性を示す燃料電池用触媒、およびその製造方法、並びに前記触媒を用いた膜電極接合体および燃料電池を提供する。
【解決手段】 樹脂由来の炭素系触媒と、担体とを有しており、前記炭素系触媒は、前記担体の表面の少なくとも一部を被覆しており、比表面積が100〜800m/gであることを特徴とする燃料電池用触媒により、前記課題を解決する。本発明の燃料電池用触媒は、炭素系触媒の原料となる樹脂と金属錯体と担体との混合物を非酸化性雰囲気中で、600〜1200℃で焼成し、その後に金属を除去する工程を有する本発明の製造方法によって製造できる。 (もっと読む)


【課題】電解液が染み込み・浸透しやすい性質を有し、熱収縮が低減され、取り扱い性に優れ、電解液中でも視認可能であるフィルムおよびその製造方法を提供する。
【解決手段】下記工程(1A)、工程(2A)、工程(3)および工程(4)を含む、または
工程(1B)、工程(3)および工程(4)を含む
ことを特徴とするフィルムの製造方法。
工程(1A):延伸ポリテトラフルオロエチレン膜と、無機粉体が含まれた溶液とを接触させる工程、
工程(2A):工程(1A)で得られた膜と、親水性基を有する樹脂が含まれた溶液とを接触させる工程、
工程(1B):延伸ポリテトラフルオロエチレン膜と、無機粉体および親水性基を有する樹脂が含まれた溶液とを接触させる工程、
工程(3):工程(2A)または工程(1B)で得られた膜に、シランカップリング剤を付着させる工程、
工程(4):工程(3)で得られた膜を、50〜200℃で加熱し、乾燥させる工程。 (もっと読む)


【課題】シートに発生するうねりの低減に適した、燃料電池用電解質シートの製造方法を提供する。
【解決手段】本発明の製造方法は、(I)セラミック多孔質スペーサとジルコニア系グリーンシートとを交互に積み重ねて、前記スペーサと前記グリーンシートとからなる第1の積層体を作製し、前記グリーンシートを所定の温度で焼成する工程と、(II)前記工程(I)によって得られた焼成シートを複数積み重ねて第2の積層体を作製し、前記第2の積層体に所定の荷重をかけて、前記工程(I)における焼成温度以下の温度で前記焼成シートを焼成する工程と、を含む。本発明の製造方法では、前記第2の積層体を、10〜100枚の前記焼成シートが互いに直接積み重ねられた焼成シート群を含む積層体とする、及び/又は、工程(II)の焼成において、最高温度から、前記最高温度よりも100℃低温までの降温速度を5℃/min以下とする。 (もっと読む)


161 - 180 / 2,349