説明

Fターム[5H026BB01]の内容

燃料電池(本体) (95,789) | 製造方法、処理方法 (13,294) | 熱処理(加熱、冷却、焼結、焼成) (2,349)

Fターム[5H026BB01]に分類される特許

221 - 240 / 2,349


【課題】基材表面に炭素層が密着性の高い状態で被覆しているチタン製燃料電池セパレータの製造方法を提供することにある。
【解決手段】本発明に係るチタン製燃料電池セパレータの製造方法は、純チタンまたはチタン合金からなる基材表面に炭素からなる炭素層が形成されているチタン製燃料電池セパレータの製造方法であって、前記基材表面に気相成膜法により前記炭素層を形成する炭素層形成工程S1と、前記炭素層形成工程S1の後に、前記炭素層が形成された前記基材を熱処理することによって、前記基材と前記炭素層との間にチタンカーバイドからなる中間層を形成する中間層形成工程S2とを、含むことを特徴とする。 (もっと読む)


【課題】導電率をほとんど変化させずに、相対密度の高い固体酸化物型燃料電池用空気極材料とその製造方法を提供する。
【解決手段】ぺロブスカイト構造を有し、一般式(I)A1-xCaxMnO3(ただし、AはLa、Srからなる群から選択される1種類以上の元素であり、0<x≦0.6である。)を有する固体酸化物型燃料電池用空気極材料粉末において、SiO2を微量に添加してなり、当該SiO2含有量が50ppm以上、1000ppm以下である。 (もっと読む)


【課題】金属粉末からなる多孔体の空孔部を流路に用いる燃料電池用セパレータにおいて、セパレータに必要な導電性を確保し、かつ、焼結工程の省略による製造プロセスの簡易化、形状の高精度化、および、流路設計の自由度向上を目的とし、導電性接着剤を用いる構造を特徴とする燃料電池用セパレータを提供する。
【解決手段】金属粉末からなる多孔体の空孔部を流路に用いる燃料電池用セパレータは、金属粉末同士の結合および金属粉末と導電性を有するセパレータ基材3の接合に、導電性接着剤2を用いる。 (もっと読む)


【課題】燃料電池セル内部の高温・酸性雰囲気下でも高い導電性を長時間維持できるとともに、加工性に優れる燃料電池セパレータの製造方法を提供することにある。
【解決手段】本発明に係る燃料電池セパレータの製造方法は、基材表面に混合層が形成されている燃料電池セパレータの製造方法であって、前記基材表面に金属粉と炭素粉とを含んだ前記混合層を形成する混合層形成工程S1と、前記混合層形成工程S1の後に、前記混合層が形成されている前記基材を圧延する圧延工程S2と、を含むことを特徴とする。 (もっと読む)


【課題】 金属粉末同士、基材と金属粉末、または、金属多孔体と基材の結合に、低温拡散接合を用いる構造とし、セパレータに必要な導電性を確保し、製造プロセスの簡易化と短時間化、及び形状寸法の高精度化を可能とする燃料電池セパレータおよびその製造方法を提供する。
【解決手段】 金属粉末からなる多孔体の空孔部を流路に用いる燃料電池用セパレータにおいて、金属粉末同士の接合、および、金属粉末と導電性を有するセパレータ基材の接合が低温拡散接合であることを特徴とする燃料電池用セパレータおよびその製造方法。 (もっと読む)


【課題】電極触媒層内の白金の利用効率が高い固体高分子形燃料電池電極触媒層の製造方法を提供する。
【解決手段】白金担持ケッチェンブラック触媒と純水、エタノール、第1のアイオノマー溶液が混合した触媒インクを200℃、20気圧、2時間の条件でオートクレーブ処理した混合物を、真空乾燥して得られたペーストを80℃で3時間乾燥して得た塊状体を再度、溶媒、第2のアイオノマーや溶媒を混合し、ボールミル攪拌してアイオノマ被覆白金/ケッチェンブラックからなる触媒層塗工用ペーストを得、PTFE基材上に塗工することにより電極触媒層を製造する。 (もっと読む)


【課題】 燃料電池における長期的な負荷変動においても高い耐久性を示し、かつ高活性な燃料電池用PtRu系合金触媒、その製造方法、並びに、前記PtRu系合金触媒を用いた燃料電池用膜電極接合体および燃料電池を提供する。
【解決手段】 少なくともPt、RuおよびPを含有するPtRu系合金触媒粒子が担体に担持されてなる燃料電池用PtRu系合金触媒であって、前記PtRu系合金触媒粒子は、担体に担持された状態で、非酸化雰囲気下で熱処理されて得られたものであり、前記PtRu系合金触媒粒子の平均粒子径は、10nmより大きく、20nm未満であり、前記PtRu系合金触媒粒子の比表面積は、30〜100m/gであり、触媒全体におけるPtとRuとの比率が、原子比で、30:70〜70:30である燃料電池用PtRu系合金触媒と、前記熱処理工程を有する燃料電池用PtRu系合金触媒の製造方法により、前記課題を解決する。 (もっと読む)


【課題】比較的安価で資源量も比較的多い材料を用いて得ることができ、また、酸性電解質中で高電位下においても使用することができる高活性な電極触媒を製造する方法を提供する。
【解決手段】以下の第一材料および以下の第二材料を含有する混合物を超臨界状態または亜臨界状態の水の存在下において水熱反応させて得られる反応物と、以下の第三材料とを混合して得られる電極触媒の前駆体を、1000℃以上の条件にて焼成する工程を含む電極触媒の製造方法:
第一材料は、4A族元素および5A族元素からなる群より選択される1種以上の金属元素と、水素、窒素、塩素、炭素、硼素、硫黄および酸素からなる群より選択される1種以上の非金属元素とで構成される金属化合物であり、
第二材料は、炭素材料前駆体であり、
第三材料は、導電性材料である。 (もっと読む)


【課題】「横縞型」の燃料電池の構造体であって、隣り合う発電素子部の間における段差が形成された表面を連続して覆う緻密膜にクラックが生じ難いものを提供すること。
【解決手段】隣り合う発電素子部A,A間における固体電解質膜40(緻密膜)と、発電素子部A内の固体電解質膜40とがディッピングにより連続して形成される。このディッピングは、隣り合う発電素子部A,Aのそれぞれの燃料極20が支持基板10の外側面から突出した状態にある支持基板10に対してなされる。即ち、「緻密膜」は、段差が形成された表面を連続して覆うように充填・形成される。「緻密膜」における隣り合う燃料極20,20の間の特定部分41の外側面Zの表面粗さが、算術平均粗さRaで0.01〜5μmである。ここで、算術平均粗さRaは、JIS B 0601−2001(ISO4287−1997に準拠)に基づく。 (もっと読む)


【課題】高出力化が可能な固体酸化物型燃料電池及びその製造方法を提供する。
【解決手段】実施形態の固体酸化物型燃料電池は、酸素イオン導電性を有する固体電解質層と、前記固体電解質層の一方の主面側に形成され、第1の電子−イオン混合導電性の材料からなる多孔質焼結体、及びこの多孔質焼結体の表面の少なくとも一部に形成されてなるとともに、第2の電子−イオン混合導電性の材料及び酸素イオン導電性の材料の少なくとも一方からなり、金属粒子を分散担持してなる酸化物膜が被覆されてなるセラミック粒子を含む燃料極と、前記固体電解質層の他方の主面側に形成された空気極と、を具えることを特徴とする。 (もっと読む)


【課題】「横縞型」の燃料電池の構造体であって、緻密膜又は緻密膜の周辺にクラックが発生し難いものを提供すること。
【解決手段】隣り合う発電素子部A,A間における固体電解質膜40(緻密膜)と、発電素子部A内の固体電解質膜40とがディッピングにより連続して形成される。隣り合う燃料極20,20の間の領域に固体電解質である「緻密膜」が充填される。隣り合う発電素子部A,Aの一方の燃料極20と他方の空気極50との間の領域の一部が、固体電解質である「緻密膜」を介して接続される。発電素子部内の固体電解質膜40の厚さtは、10〜100μmである。「隣り合う燃料極20,20における互いに向き合う両端の間の距離L」が0.1mm以上であると、「緻密膜」又は「緻密膜」の周辺にクラックが発生し難くなる。 (もっと読む)


【課題】シート強度が大きく、製造コストが低く、かつ十分なガス透気度および導電性を持った多孔質電極基材およびその製造方法を提供する。
【解決手段】炭素短繊維(A)と、1種類以上の酸化繊維前駆体短繊維(b)および/または1種類以上のフィブリル状酸化繊維前駆体繊維(b’)とを2次元平面内において分散させた前駆体シートを製造し、交絡処理して3次元交絡構造を形成した後、炭素粉とフッ素系樹脂とを含浸させて、さらに加熱加圧成型し、熱処理することで、多孔質電極基材を製造する。この多孔質電極基材は、3次元構造体中に分散された炭素短繊維(A)同士が、酸化繊維(B)によって接合され、さらに前記炭素短繊維(A)と前記酸化繊維(B)とが炭素粉とフッ素系樹脂とにより接合された3次元交絡構造体からなる。 (もっと読む)


【課題】優れた導電性を有する導電性構造体の製造方法を提供する。また、寸法精度が高く導電性に優れた燃料電池用セパレータの製造方法を提供する。
【解決手段】本発明の導電性構造体の製造方法は、結晶性熱可塑性樹脂と導電性充填材を少なくとも含有する結晶性熱可塑性樹脂複合材料からなる導電性構造体のモールド成形において、溶融した該複合材料が金型内で賦形された後、該複合材料の結晶化温度をTと規定したときに、(T±20)℃の温度範囲において、30℃/分以下の冷却速度で該複合材料を冷却することを特徴とする。 (もっと読む)


【課題】固体電解質層とバリア層との間の剥離の発生を抑制する。
【解決手段】燃料電池セル1は、燃料極11、空気極14、燃料極と空気極との間の電解質層15、電解質層と空気極14との間のバリア層13、及びバリア層13と電解質層15との間の緩衝層16を備える。バリア層13は、バリア層13と緩衝層16との界面17近傍に、気孔13cを備える。 (もっと読む)


【課題】燃料を効率的に電解質膜に供給することが可能であり、優れた電池性能を備えた触媒層−電解質膜積層体の製造方法を提供することを課題とする。
【解決手段】本発明の触媒層−電解質膜積層体の製造方法は、クラックを有する触媒層が電解質膜の片面又は両面に2層以上積層されてなり、かつ触媒層の少なくとも一部が電解質膜に埋没されている触媒層−電解質膜積層体の製造方法であって、(1)触媒担持炭素粒子の水分散液、(2)水素イオン伝導性高分子電解質及び(3)粘度調整用の溶剤を含む触媒層形成用ペースト組成物を用いて転写基材上に触媒層を形成させて触媒層転写シートを得る第1工程、第1工程で得られた触媒層転写シートを電解質膜に熱プレスすることにより触媒層を電解質膜に積層させる第2工程、及び第2工程で得られた積層体の触媒層上に、さらに上記触媒層転写シートを熱プレスすることにより触媒層を積層させる第3工程、を備えている。 (もっと読む)


【課題】固体酸化物型燃料電池及びその製造方法において、漏洩電流の発生を抑制して発電効率の向上を図る。
【解決手段】筒形状をなす基体管11の外面に、燃料極12、固体電解質13、空気極14を積層して燃料電池セル(発電素子)210を形成し、この発電素子210を基体管11の軸方向に所定間隔をあけて複数配置し、複数の燃料電池セル210をインターコネクタ15により直列に接続して構成し、燃料極12同士の間に1000Ω以上の電気抵抗値を設定する。 (もっと読む)


【課題】プロトン伝導率が高く、耐熱性と機械的強度を備えたプロトン伝導膜を提供する。
【解決手段】Si−O結合のネットワーク構造を有するプロトン伝導膜は、ネットワーク構造を構成するSi原子に結合されたアリーレン基を有すると共に、アリーレン基にはプロトン供与基が結合されており、あるいは又、ネットワーク構造を構成するSi原子に結合されたナフチル基を有すると共に、ナフチル基にはプロトン供与基が結合されている。 (もっと読む)


【課題】シート強度が大きく,製造コストが低く,かつ十分なガス透気度および導電性を持った多孔質電極基材およびその製造方法を提供する。
【解決手段】炭素短繊維(A)と,1種類以上の酸化繊維前駆体短繊維(b)および/または1種類以上のフィブリル状酸化繊維前駆体繊維(b’)とを2次元平面内において分散させた前駆体シートを製造し,交絡処理して3次元交絡構造を形成した後,炭素粉を含浸させて,続いてフッ素系樹脂とを含浸させて,さらに200℃未満の温度で加熱加圧成型し,150℃以上400℃未満の温度で熱処理することで,多孔質電極基材を製造する。この多孔質電極基材は,3次元構造体中に分散された炭素短繊維(A)と炭素粉が,酸化繊維(B)によって接合され,さらに前記炭素短繊維(A)と炭素粉と前記酸化繊維(B)とがフッ素系樹脂により被覆された3次元交絡構造体からなる。 (もっと読む)


【課題】熱硬化性樹脂の炭素化物が炭素短繊維に隙間や亀裂なく結着した多孔質炭素電極基材であって、ナトリウム、カリウム、カルシウム及び鉄の含有量が著しく少ない多孔質炭素電極基材を提供する。
【解決手段】(a)ナトリウム、カリウム、カルシウム及び鉄からなる群から選択される少なくとも1種の元素を含む熱硬化性樹脂を水溶性有機溶剤に溶解した熱硬化性樹脂溶液に対し、塩基性水溶液を添加し攪拌した後に静置する工程;(b)前記熱硬化性樹脂溶液から沈殿物を分離して熱硬化性樹脂組成物を得る工程;(c)前記熱硬化性樹脂組成物を、炭素短繊維が平面内に分散した炭素短繊維集合体に含浸させて中間基材を得る工程;(d)前記中間基材を加熱して前記熱硬化性樹脂組成物を炭素化する工程;を有する多孔質炭素電極基材の製造方法。 (もっと読む)


【課題】2つの導電性接続部材を電気的に接続するように接合する接合材(焼成体)の前駆体である、焼成前の成形体であって、焼成後において接合界面に剥離が生じ難いものを提供すること。
【解決手段】スピネル型結晶構造を有する遷移金属複合酸化物(MnCo)を構成する各金属元素(Mn,Co)の粉末が出発原料とされる。この粉末と有機成分とを含むペーストからなる成形体が2つの導電性接続部材の間に介在した状態で焼成されることにより、焼成体である遷移金属複合酸化物(接合材)によって2つの導電性接続部材が電気的に接続するように接合される。この成形体は、焼成によって膨張する。従って、焼成時にて成形体が厚さ(膜厚)方向に膨張しようとする。この結果、導電性接続部材と接合材との接合界面に圧縮応力が作用し、接合界面に上述した剥離が生じ難くなる。 (もっと読む)


221 - 240 / 2,349