説明

Fターム[5H560AA08]の内容

無整流子電動機の制御 (40,007) | 用途 (2,430) | 電動車両 (821)

Fターム[5H560AA08]に分類される特許

101 - 120 / 821


【課題】同期機の回転子が回転した状態から始動制御を開始するときに、過電流が発生することを防ぐことができる同期機の制御装置等を提供する。
【解決手段】同期発電機から与えられる交流電力をコンバータ回路によって整流して、整流後の直流電圧を負荷に出力する同期発電機の制御装置において、上記コンバータ回路のためのゲート信号を発生して上記同期発電機から発電される交流電力の整流を制御する。ここで、上記同期発電機から上記コンバータ回路に流れ込む電流を検出し、上記直流電圧が所定値以上となるまでに、上記検出された電流に基づいて、上記同期発電機の磁極の角度を粗推定し、上記粗推定された磁極の角度に基づいてコンバータ回路の出力電圧の初期値を決定した後、上記コンバータ回路のセンサレス制御を始動する。 (もっと読む)


【課題】コンパクト化、軽量化及びコストダウンを図った上で電流検出可能となるDuty範囲を最大限とした、単一の電流センサで構成されるモータ制御装置、及びそれを用いた電動パワーステアリング装置を提供する。
【解決手段】制御演算によりモータの電流を制御するための各相Duty指令値を算出し、各相Duty指令値に応じたPWM波形を形成し、PWM波形に基づいてインバータによりモータを駆動するモータ制御装置において、インバータの電源入力側又は電源出力側に単一の電流検出器を接続し、各相Duty指令値の差を保持したまま一律増減させるDutyシフト機能と、各相PWM信号の出力位置を決定するPWM出力位置変更機能を備え、1相のみ、又は2相同時に、PWM信号がONとなるタイミングをPWM周期の固定位置に発生させ、モータ電流を検出する。 (もっと読む)


【課題】電動アクチュエータにより発生させるブレーキ力の応答性を、簡単な構成で、より一層高める。
【解決手段】ホイールシリンダにブレーキ液圧を与えるモータ駆動シリンダ13を、ブレーキ操作量に応じて求められた目標モータ角θtと実モータ角θmとの偏差Δθが大きい場合に弱め界磁制御を行って駆動制御する。電動アクチュエータの作動量として例えばモータ角(回転量)を用いる場合には公知の簡単かつ安価な回転センサ等で高精度な検出が可能であり、モータ角の変動レンジが広くなり、制動応答性を容易に高めることができる。また、負荷剛性の変動による影響を受けることが無く、弱め界磁制御の開始直後の過渡状態においてモータ角の偏差は生じており、弱め界磁制御を継続して実行することができ、モータの応答特性の変動が低減され、安定した応答特性が得られる。 (もっと読む)


【課題】弱め磁束制御の実行時に発生しうるトルク誤差を低減する。
【解決手段】軸誤差推定部は、dq座標系と異なる制御座標系との位相差である軸誤差を推定する。qm軸は、最大トルク制御の実現時における出力電流ベクトルの向きと向きが一致する回転軸である。弱め磁束制御の実行時において、モータの出力電流ベクトルがトルク指令値に従った定トルク曲線311に沿うように、弱め磁束用の電流に応じて軸誤差の目標値θを設定する。軸誤差を目標値θに一致させるPLLを形成することで、モータの出力電流ベクトルV323の終点は定トルク曲線311上にのる(即ち、出力トルク及びトルク指令値間のトルク誤差がゼロになる)。 (もっと読む)


【課題】弱め磁束制御の実行時に発生しうるトルク誤差を低減する。
【解決手段】モータ制御装置3は、dmqm座標系をγδ座標系として推定し、モータ1への供給電流を磁束発生に関与するγ軸電流iγ及びトルク発生に関与するδ軸電流iδに分解してベクトル制御を行う。dmqm座標系を形成するqm軸は、最大トルク制御の実現時における出力電流ベクトルの向きと向きが一致する回転軸であり、dm軸はqm軸に直交する。弱め磁束制御の実行時において、磁束制御部17は負のγ軸電流指令値iγを出力し、補正量算出部21はγ軸電流値iγに基づき補正量Δiδを算出する。トルク指令値Trqに基づくδ軸電流指令値iδに補正量Δiδを加算することによって、負のγ軸電流を供給したことによって発生しうるトルク誤差を低減する。 (もっと読む)


【課題】インバータをスイッチング制御する際のノイズの発生の低減と素子の温度上昇の抑制とを両立させる。
【解決手段】インバータのPWM制御に用いるキャリアの周波数(キャリア周波数F)を、モータの電気角θeが電気角周期Tの1/4周期進む度に(ステップS120)、高周波数範囲内からランダムに抽出した高周波数の設定と低周波数範囲内からランダムに抽出した低周波数の設定とに交互に切り替える(ステップS150〜S170)。これにより、モータMGの電気信号(変調波)の山や谷(T/2周期)に対して高周波数の設定期間と低周波数の設定期間とを同期間割り当てることができ、特定のトランジスタに対して熱集中が生じるのを抑制することができる。また、キャリア周波数Fを拡散させるから、ノイズの発生を低減することができる。 (もっと読む)


【課題】変調率が閾値以下の正弦波領域と、変調率が閾値を超える過変調領域とが切り替わっても、電圧指令と出力電圧1次成分とを線形に維持できるようにする。
【解決手段】インバータ制御装置60は、インバータ20に対して電圧制御信号Vcを出力する電圧変換制御部66aと、電圧変換制御部66aが出力する電圧制御信号Vcの変調率が閾値を超えると、変調率,同期数k,位相等のような電圧制御信号Vcを制御する変数のうちで二以上の変数を引数とする補正用マップを用いて、電圧指令と出力電圧とが線形となるように補正する電圧振幅補正部65a(線形補正部)とを有する。変調率が閾値以下の正弦波制御も当然に線形にできるので、正弦波制御と過変調制御との間における制御モードの切り替えをシームレスに行うことができる。すなわち、電圧指令と出力電圧1次成分とを線形に維持することができる。 (もっと読む)


【課題】負荷急変のような過渡変化が生じた場合でも、制御不能に陥ることの無い回転センサレス制御装置を提供する。
【解決手段】実施形態に係る回転センサレス制御装置は、直流電力と交流電力を相互に変換して同期機2を駆動するインバータ1と、前記同期機1に流れる電流を検出する電流検出手段3と、前記電流検出手段3によって得られる電流情報を用いて、前記同期機2の回転位相角の誤差推定値に対応する軸誤差指標を推定する回転位相角誤差推定手段5と、前記回転位相角誤差推定手段5によって得られる軸誤差指標を入力として、センサレス制御ゲインを用いて前記軸誤差指標が零になるように角速度を推定する角速度推定手段7と、前記角速度推定手段7で推定された角速度を用いて回転位相角を推定する回転位相角推定手段8と、前記センサレス制御ゲインを前記軸誤差指標に基づいて変化させるゲイン可変手段6とを備える。 (もっと読む)


【課題】検出される回転角度θを補正する補正値Δθの正常値を利用して制御を行うことができなくなることで、トルクフィードバック制御部20による制御が破綻する懸念があること。
【解決手段】推定トルクTeを要求トルクTrにフィードバック制御するための操作量としての位相δと、電気角速度ωおよび要求トルクTrに応じて開ループ制御によって定まるノルムVnと、回転角度θの検出値に基づき、操作信号生成部25では、インバータの操作信号を生成する。ここで、回転角度θとしては、上記補正値Δθによって補正されたものが用いられる。ただし、補正値Δθを利用不可能となる場合、電流フィードバック制御部30による制御に切り替える。 (もっと読む)


【課題】高精度で高調波を測定する手段を利用して、リソース変更および追加を最小限に抑え同期モータの電気角を測定可能な技術を提供する。
【解決手段】本発明にかかる電気角測定装置100は、サンプリングクロックに基づいてアナログ入力信号を変換するADC112、114と、アナログ入力信号のゼロクロスを検出するゼロクロス検出器116と、アナログ入力信号の基本周波数の整数倍の周波数のFFTタイミングを求め、同期モータ102のZ相パルスのタイミングを基準としてFFTタイミングのパルスを発生するFFTタイミング生成部140と、このタイミングにおける値をFFT演算するFFT演算処理部144と、FFT演算の結果からアナログ入力信号の基本波成分と高調波成分とを演算する高調波解析処理部146と、同期モータ102の電気角を導出する処理部(CPU126)とを有することを特徴とする。 (もっと読む)


【課題】交流モータを駆動する3相電圧型のインバータの1つのスイッチング素子の短絡故障が発生した場合でも、交流モータのトルクを制御できるようにする。
【解決手段】インバータ19の各相のスイッチング素子35〜40のうちの1つのスイッチング素子の短絡故障が発生したときに、短絡故障の発生時に使用可能な有効電圧ベクトルに対応する電気角区間(2相変調可能な電気角区間)では、短絡故障が発生した相以外の残りの2相のスイッチング素子のオン/オフを制御する2相変調で電圧制御して交流モータ12のトルクを制御するようにインバータ19を制御し、2相変調可能な電気角区間以外の電気角区間(1相変調可能な電気角区間)では、短絡故障が発生した相以外の残りの2相のうちのいずれか1相のスイッチング素子のオン/オフを制御する1相変調で電圧制御するようにインバータ19を制御する「2相及び1相変調制御」を実行する。 (もっと読む)


【課題】力行状態と回生状態とが切り替わる零クロス時において、各走行モードに応じた電動機の制御が可能な電動車両用制御装置を提供する。
【解決手段】電動車両10用の制御装置34では、電動機12の目標駆動力について、回生側の零近傍値である第1零クロス閾値と、力行側の零近傍値である第2零クロス閾値とを設定し、第1零クロス閾値と第2零クロス閾値との間の零クロス域70の幅を、電動車両10の出力応答性を優先する第1走行モードのときよりも、電費を優先する第2走行モードのときに広くする。また、電動機12の駆動力の変化を、目標駆動力が零クロス域70外であるときよりも、前記目標駆動力が零クロス域70内にあるときに緩やかにして電動機12を制御する。 (もっと読む)


【課題】PWM制御を行う場合、スイッチング素子のスイッチング状態の切替回数が多くなり、スイッチング状態の切り替えに伴う損失が問題となりやすいこと。
【解決手段】位相設定部32では、推定トルクTeを要求トルクTrにフィードバック制御するための操作量として位相δを算出する。一方、ノルム設定部33では、要求トルクTrおよび電気角速度ωを入力としてノルムVnを設定する。そして、デッドタイム算出部34では、電源電圧VDCとノルムVnとに基づき、矩形波制御におけるデッドタイムDTを電気角度間隔として算出する。位相補正部35では、位相設定部32による位相δを「DT/2」によって補正する。矩形波信号生成部36では、補正された位相δとデッドタイムDTと回転角度θとに基づき、操作信号g*#(*=u,v,w;#=p,n)を生成する。 (もっと読む)


【課題】可変磁石であることによるトルク精度の劣化の抑制や磁化処理に伴う過渡トルクの抑制を図り、システム全体の効率を向上し広い速度範囲に対応できる可変磁束ドライブシステムを提供することである。
【解決手段】磁化要求生成部29は、インバータの変調率に応じて可変磁石を磁化させる要求を可変磁束制御部13に対して発生し、可変磁束制御部13は、その磁化要求を入力すると、インバータ1からの磁化電流によって磁束を可変させて可変磁石を磁化させる。切替器37は、トルク指令生成部38からのトルク指令に基づくDQ軸電流基準と可変磁束制御部13からのDQ軸磁化電流指令とを切り替え、ゲート指令生成部15は、切替器37からのトルク指令に基づくDQ軸電流基準またはDQ軸磁化電流指令に基づいてインバータ1を制御するためのゲート指令を生成する。 (もっと読む)


【課題】モータ制御システムにおいて、矩形波制御方式からPWM制御方式への切替えを適時に行ってモータ過電流の発生を抑制する。
【解決手段】モータ制御システムは、バッテリ電圧をコンバータ35で必要に応じて昇圧してインバータ38に供給し、交流モータ14の運転条件に応じて、インバータ38の制御方式を矩形波制御、過変調PWM制御、正弦波PWM制御の間で選択的に設定する制御装置を備える。制御装置は、モータ電流の電流位相をdq平面上における閾値ラインと比較して矩形波制御方式からPWM制御方式への切り替えを行う制御方式切替部と、矩形波制御方式の実行中で且つインバータ入力電圧であるシステム電圧VHが所定閾値Vthrよりも小さいときにdq平面上における閾値ラインを進角側または低q軸電流側に変更する閾値変更部とを含む。 (もっと読む)


【課題】モータ駆動制御システムにおいて、矩形波制御からPWM制御への切換えの際に、制御モードの切換え遅れに起因して発生する電流乱れを抑制する。
【解決手段】モータ駆動制御システム100を制御するECU300は、矩形波制御モードおよびPWM制御モードのいずれかによってインバータ140を制御して交流電動機200を駆動する。ECU300は、制御モード選択部330と、交流電動機200のモータ電流をA/D変換するA/D変換部340とを備える。A/D変換部340は、矩形波制御モードの場合に、交流電動機200の回転速度が急激に低下したときは、交流電動機200の電気角に基づく実行周期よりも速い実行周期に従って動作する。制御モード選択部330は、矩形波制御モードの場合に、モータ電流の電流乱れが発生したことに応じて、矩形波制御モードからPWM制御モードへ切換える。 (もっと読む)


【課題】永久磁石を備えるモータジェネレータ10の減磁の有無を判断するための処理手段を適合するに際し、その工数が多くなること。
【解決手段】モータジェネレータ10は、クラッチC1を介して駆動輪14に機械的に連結されて且つクラッチC2を介してエンジン16に機械的に連結されている。車両の起動スイッチがオンされた直後、クラッチC1,C2を解除した状態において、電流フィードバック制御によってモータジェネレータ10のトルクを制御し、この際の実際のトルクが要求トルクを下回ることに基づき、永久磁石の磁束が減少したと判断する。 (もっと読む)


【課題】可変磁束型回転電機を備えた駆動装置を制御する制御装置の規模を増大させることなく、誘起電圧をインバータの耐圧の限度内に収めることができる技術を提供する。
【解決手段】永久磁石を備えたロータとコイルを備えたステータとを有する回転電機と、ロータから供給される界磁束を変化させる界磁調整機構と、コイルに接続されたインバータとを備えた駆動装置を制御する駆動装置の制御装置は、コイルに誘起される誘起電圧がインバータの耐圧Vmaxを越えない範囲内でロータの回転速度に応じて設定された界磁制限値Blmtを上限として、少なくとも回転速度に基づいて界磁調整機構により調整される界磁束の目標となる界磁指令値を決定する。 (もっと読む)


【課題】過変調制御が行われる場合において、信号伝達経路等の異常診断頻度の低下を回避するためのスイッチング素子の操作信号を適切に生成することのできる電力変換装置を提供する。
【解決手段】第2セレクタSL2から出力されるスイッチング素子Sjkの操作信号gjkの立ち下がりを入力とし、駆動回路DUから出力される駆動信号djkの変化に基づき、第2セレクタSL2からスイッチング素子Sjkまでの信号伝達経路に異常が生じていないか否かを診断する構成において、過変調制御又は矩形波制御によってモータジェネレータの制御が行われる場合、第2セレクタSLから操作信号gjkとしてオン操作信号が出力される期間に、出力されるオン操作信号をオフ操作信号に強制的に変更する。 (もっと読む)


【課題】モータに所定以上の負荷が作用したまま負荷保持動作に移行している間、各相コイルの発熱温度を均一化するように駆動制御する電動機の駆動制御方法を提供する。
【解決手段】制御回路7はモータコイル3に通電状態で、かつモータ負荷が所定負荷以上で負荷保持状態に移行し、当該負荷保持状態に移行している間、任意のロータ回転位置から所定電気角±((180/n)°;nは相数)だけ正逆回転する動作を繰り返す。 (もっと読む)


101 - 120 / 821