説明

Fターム[5H730AS05]の内容

DC−DCコンバータ (106,849) | 用途 (11,272) | 降圧電源 (1,328)

Fターム[5H730AS05]に分類される特許

41 - 60 / 1,328


【課題】リセット信号の生成に関連する手段が故障したり誤動作したりしてもスイッチング素子の過熱による故障を抑えられ、入力電圧が急激に上昇しても出力電圧の上昇を抑えられる電力変換装置を提供する。
【解決手段】リセット信号の生成に関連する、マイクロコンピュータ170内のブロック等が故障したり誤動作したりしても、制限信号生成部170lと信号選択回路173が駆動信号のパルス幅を制限する。そのため、IGBT10をオフできる。従って、過電流に伴って発生するIGBT10の過熱による故障を抑えられる。また、制限信号生成部170lと信号選択回路173は駆動信号のパルス幅を入力電圧に基づいて制限する。そのため、入力電圧が上昇しても、マイクロコンピュータ170内のブロック等やコンパレータ171の応答遅れの影響を受けることなく駆動信号を即座に調整できる。従って、入力電圧が急激に上昇しても出力電圧の上昇を抑えられる。 (もっと読む)


【課題】高耐圧の能動素子を含む回路と低電圧で動作するロジック回路とが同一基板上に混載された半導体装置を低コストで実現する。
【解決手段】半導体装置が、ロジック回路50と、能動素子回路とを具備している。ロジック回路50は、半導体基板1に形成された半導体素子2を備えている。該能動素子回路は、半導体基板1の上方に形成された拡散絶縁膜7−1の上に形成された半導体層8−1、8−2を用いて形成されたトランジスタ21−1、21−2を備えている。この能動素子回路がロジック回路50により制御される。 (もっと読む)


【課題】小型化、高効率化、および、低コスト化が可能な電源ユニット19を提供する。
【解決手段】電源ユニット19は、直流電源21からの出力を平滑する平滑コンデンサC1を有する。電源ユニット19は、光源16に対して給電する電源回路22を有する。電源回路22は、平滑コンデンサC1の正極側に接続したスイッチング素子Q1、および、スイッチング素子Q1をスイッチングする制御端子回路26を備える。電源ユニット19は、直流電源21と平滑コンデンサC1との間に、電源回路22への突入電流を抑制する抵抗器R1を有する。電源ユニット19は、電源回路22のスイッチング素子Q1の制御端子回路26と接続したダイオードD2を有する。電源ユニット19は、ダイオードD2と接続したゲートG2を備え、抵抗器R1と並列に接続したサイリスタSCRを有する。 (もっと読む)


【課題】サージ発生時にもMOSFETの保護が可能な電源入力部の回路構成を提供する。
【解決手段】pチャネルMOSFET1、nチャネルMOSFET2、ツェナーダイオード3、ツェナーダイオード4、電流の逆流を抑制するコイル5、pチャネルMOSFET1のソースとnチャネルMOSFET2のドレイン間電圧差を保持する抵抗6、pチャネルMOSFET1のショート破壊時に回路を保護する抵抗7、nチャネルMOSFET2のショート破壊時に回路を保護する抵抗8、電源ICへの入力電圧の変動を抑制する電解コンデンサ9、ECUへ電圧を供給するバッテリー10、ECU内部のICを動作させる電圧を生成する電源IC11から構成される。 (もっと読む)


【課題】フィードバック制御に伴う消費電力を削減する。
【解決手段】直流電源回路110は、光源回路830(負荷回路)に供給する直流電力を生成する。負荷電流検出回路140は、光源回路830を流れる負荷電流を検出して、負荷電流検出電圧を生成する。目標電圧生成回路170は、光源回路830を流れる負荷電流の目標値に基づいて、目標電圧を生成する。帰還信号生成回路180は、負荷電流検出電圧と目標電圧とを比較して、帰還信号を生成する。直流電源回路110は、制御電源回路160が供給した制御電力により動作し、目標電圧生成回路170は、制御電源回路160が供給した制御電力から、目標電圧を生成する。制御電源回路160は、負荷電流の目標値が0である場合に、直流電源回路110と目標電圧生成回路170とに対して制御電源を供給しない。 (もっと読む)


【課題】インダクタを備える昇降圧スイッチング回路の昇降圧動作によって、インダクタで発生する電磁ノイズが撮影画像に影響を与えないようにする。
【解決手段】撮像素子モジュールの電源回路5-4であって、スイッチングトランジスタ22,23及びインダクタ6により入力直流電圧を降圧して出力する降圧回路部20と、降圧回路部20と並列に設けられトランジスタ31のリニア定電圧動作によって入力直流電圧を降圧して出力するリニアレギュレータ回路部30と、降圧回路部20の前段又は後段に直列に接続され入力直流電圧をチャージポンプ動作又はチャージポンプ動作と昇圧スイッチング動作の切替によって昇圧して出力する昇圧回路部40と、撮像素子モジュールの撮影記録モード時に降圧回路部20の動作を停止させると共にリニアレギュレータ回路部30を動作させて撮像素子の駆動に必要な定電圧を供給させる制御コントロール部56とを備える。 (もっと読む)


【課題】出力電圧の変動を抑圧するようにDC/DCコンバータを制御する。
【解決手段】帰還電圧生成回路14及び合成回路16は、インダクタ電流ILの直流成分を表す第1の帰還電圧VFB1を生成する。リップル信号生成回路15は、入力電圧及び出力電圧に基づいて、インダクタ電流ILの交流成分を表す第2の帰還電圧VFB2を生成する。合成回路15は、第1及び第2の帰還電圧を合成して第3の帰還電圧VFB3を生成する。コンパレータ12は、基準電圧VREFと第3の帰還電圧VFB3とを比較し、ハイレベル又はローレベルの制御信号HYSOを出力する。ドライバ回路13は、スイッチング素子M1,M2を制御する。リップル信号生成回路15は、制御信号HYSOがローレベルであるとき、入力電圧と出力電圧との差に基づいて第2の帰還電圧を生成し、制御信号HYSOがハイレベルであるとき、出力電圧に基づいて第2の帰還電圧を生成する。 (もっと読む)


【課題】ノイズ耐性が高く、且つ、製造プロセス、電源、及び電源電圧が変動するような場合においても精度が高い、出力トランジスタに対する電流制限回路を提供する。
【解決手段】電流制限回路が、基準トランジスタと、基準トランジスタに所定の電流を流す電流源と、出力トランジスタがオンした時の両端の第1の電位差と基準トランジスタの両端の第2の電位差を比較する比較器であって、第1の電位差が第2の電位差よりも大きくなった場合に、出力トランジスタをオフするように制御する電流制限信号を出力する、比較器とを備える。基準トランジスタは、出力トランジスタとは素子サイズの異なる同型のトランジスタであり、基準トランジスタがオンした時のオン抵抗は、出力トランジスタがオンした時のオン抵抗の1/Nの大きさ(Nは1より大きい数)であり、更に、基準トランジスタがオンするように基準トランジスタのゲートにバイアスがかけられている。 (もっと読む)


【課題】出力電圧の変動を抑圧するようにDC/DCコンバータを制御する。
【解決手段】帰還電圧生成回路14及び合成回路16は、インダクタ電流ILの直流成分を表す第1の帰還電圧VFB1を生成する。リップル信号生成回路15は、入力及び出力電圧に基づいて、インダクタ電流ILの交流成分を表す第2の帰還電圧VFB2を生成する。合成回路15は、第1及び第2の帰還電圧を合成して第3の帰還電圧VFB3を生成する。オン時間調整回路17は、基準電圧VREFと第3の帰還電圧VFB3の比較結果に応じてハイレベル又はローレベルの制御信号HYSOを出力する。ドライバ回路13は、スイッチング素子M1,M2を制御する。リップル信号生成回路15は、制御信号HYSOがローレベルであるとき、入力電圧と出力電圧との差に基づいて第2の帰還電圧を生成し、制御信号HYSOがハイレベルであるとき、出力電圧に基づいて第2の帰還電圧を生成する。 (もっと読む)


【課題】スイッチ端子の短絡状態をより速く検出することが可能な短絡保護回路を提供する。
【解決手段】DC−DCコンバータ100は、第1導電型の第1MOSトランジスタM1と、第2導電型の第2MOSトランジスタM2と、第1ドライバ回路3と、第2ドライバ回路6と、コントローラ7と、短絡保護回路101と、スイッチ端子SWとを備える。短絡保護回路101は、電源電位VDDとの短絡を検出する第1論理回路1と、第1検出回路2と、第1抵抗R1と、第1導電型の第3MOSトランジスタM3と、第1導電型の第4MOSトランジスタM4と、を有すると共に、接地電位VSSとの短絡を検出する第2抵抗R2と、第2導電型の第5MOSトランジスタM5と、第2導電型の第6MOSトランジスタM6と、第2論理回路4と、第2検出回路5とを有し、検出結果に基づいた第1、第2検出信号Sd1、Sd2をコントローラ7に出力する。 (もっと読む)


【課題】 DSPを備えるデジタル制御回路を用いた電源装置において、急激な負荷変動に対しても適切に応答することが可能な技術を開示する。
【解決手段】 本明細書が開示する電源装置は、ヒステリシスコンパレータを備えるアナログ制御回路と、デジタル信号処理装置(DSP)を備えるデジタル制御回路と、アナログ制御回路またはデジタル制御回路からの指令信号に従い動作するスイッチング電源回路を備えている。その電源装置は、スイッチング電源回路の出力電圧が急変する場合は、アナログ制御回路によってスイッチング電源回路をヒステリシス制御する。その電源装置は、スイッチング電源回路の出力電圧が急変しない場合は、デジタル制御回路によってスイッチング電源回路をPWM制御する。 (もっと読む)


【課題】追加する電子部品の部品点数を低減でき、製造コストを低減できるスイッチング電源装置を提供する。
【解決手段】スイッチング電源装置1は、一対の電力ライン10,11と、直流負荷2と、コンデンサCと、スナバ用トランスTsと、パルス電流発生回路5と、直列体12とを備える。直列体12は、スナバ用トランスTsの二次コイル42とスナバ用ダイオードDsとを直列接続してなる。直列体12はコンデンサCに並列接続されている。スナバ用ダイオードDsのアノード端子は二次コイル42に接続している。また、スナバ用ダイオードDsのカソード端子はコンデンサCの高電位側の電極端子に接続している。パルス電流発生回路5によって発生したパルス電流Ipは一次コイル41に流れる。一次コイル41は、パルス電流Ipを平滑化する平滑リアクトルである。一次コイル41には、整流ダイオード53が直列接続している。 (もっと読む)


【課題】標高の高い場所においてモータに供給することのできる最大電圧を高める電気自動車を提供する。
【解決手段】電気自動車100は、車輪駆動用のモータMGへ電力を供給するメインバッテリMBと、補機類へ電力を供給するサブバッテリSBと、電圧コンバータ40と、YコンデンサYC1、YC2を備える。サブバッテリSBの出力電圧はメインバッテリMBの出力電圧よりも低く、電圧コンバータ40が、メインバッテリMBの出力電圧あるいはモータMGの回生電力の電圧をサブバッテリSBの充電に適した電圧まで降圧する。YコンデンサYC1、YC2は、電圧コンバータ40の入力側あるいは出力側に接続される。電気自動車100は、車両が位置する標高が標高閾値を上回った場合に、Yコンデンサの容量を小さくする。 (もっと読む)


【課題】従来よりも良好な性能を有するバックブースト(ステップダウン・ステップアップ)型のスイッチングレギュレータを提供する。
【解決手段】第1スイッチSW1、第1ダイオードD2、インダクタL、第2スイッチSW3、第2ダイオードD4、ならびに第1スイッチSW1および第2スイッチSW3を制御するコントローラ100を有し、このコントローラ100は、インダクタLに流れるインダクタ電流ILを表す電流信号を受け、インダクタLに流れる平均電流を表す信号を生成し、この平均電流は、第1スイッチSW1および第2スイッチSW3を制御するために用いられ、このコントローラ100は、電圧エラー信号を出力する第1補償回路20、電流エラー信号を出力する第2補償回路30、第1スイッチを制御する第1制御信号、および第2スイッチを制御する第2制御信号を出力する変調器回路40、を含む。 (もっと読む)


【課題】 煩雑な制御を必要とせずに、ボルテージレギュレータの入出力電位差を最適化できる電源回路及びその制御方法を提供する。
【解決手段】 電源回路304は、バッテリ300の出力電圧を昇圧しまたは降圧するDCDCコンバータ301と、前記DCDCコンバータ301の出力電圧を降圧するボルテージレギュレータ302と、前記ボルテージレギュレータ302の出力電圧に相関する値に応じて前記DCDCコンバータ301の出力電圧の昇圧値または降圧値を設定する電圧設定手段303とを備える。 (もっと読む)


【課題】高い放熱性を有する電源制御回路モジュールを実現する。
【解決手段】電源制御回路モジュール1を構成する積層体900の表面には、電源制御ICが実装されている。電源制御ICのスイッチングレギュレータ用素子101と、インダクタ素子21とを接続する第1の内層電極421、インダクタ素子21とキャパシタ素子31とを接続する第1の内層電極422、スイッチングレギュレータ用素子101とキャパシタ素子31とを接続する第1の内層電極441は、積層体900の上層領域に形成されており、電源制御ICの実装領域と、積層体900の外周壁との間で引き回されている。第1の内層電極421,422,441は、積層体900の中央領域に形成された、制御信号が伝送される第2の内層電極451よりも幅広に形成されている。 (もっと読む)


【課題】コストを抑えながらも正負の直流成分に対応可能であり、電流の流れる経路に回路素子を追加せずにトランスの偏磁を抑止(低減を含む)できる電力変換装置および電源システムを提供する。
【解決手段】電源システム10に含まれる電力変換装置20は、トランスTr1の二次端子から出力される二次電圧Vs1,Vs2(交流電力)を整流するダイオードD11,D12と、ダイオードD11,D12(二以上の整流部)によって整流される直流電圧(直流電力)を個別かつ経時的に積分して求められる電圧時間積を出力する積分部22,23と、二以上の電圧時間積にかかる偏差量ΔTPを検出する偏差量検出部24と、偏差量検出部24によって検出される偏差量ΔTPに基づいて、当該偏差量ΔTPがゼロになるように操作信号を変化させる制御を行う操作信号制御部21とを有する。 (もっと読む)


【課題】従来よりも高速な過渡応答を実現するリップル制御のDC−DCコンバータ回路を提供する。
【解決手段】DC−DCコンバータ回路は、トランジスタP1及びN1と、トランジスタP1及びN1とDC−DCコンバータ回路の出力端子6との間に接続されたインダクタL1と、インダクタ電流のリップルに応じて変化するリップル電圧を生成するリップル生成回路1と、帰還電圧を生成するフィードバック回路5と、帰還電圧が所定の電圧範囲内にあるか否かを検出する検出器と、基準電圧を生成する基準電圧源と、基準電圧と帰還電圧とを比較する比較器3と、トランジスタP1及びN1を制御するドライバ駆動回路4とを備える。帰還電圧が電圧範囲内にあるとき、比較器3によって比較される帰還電圧にリップル電圧が重畳され、帰還電圧が電圧範囲外にあるとき、比較器3によって比較される帰還電圧にリップル電圧が重畳されない。 (もっと読む)


【課題】低負荷状態での効率を改善したDC−DCコンバータを提供すること。
【解決手段】DC−DCコンバータ1のDC−DCコントローラ10は、PFMコンパレータ11とPWMコンパレータ12を備える。低負荷状態となり負荷電流が小さくなるとPFMコンパレータ11により20Hz以下の周波数でスイッチング素子を動作させ、負荷が増加して20Hz以上の周波数でスイッチング素子を動作させる状況になると、20kHz以上の周波数で主としてPWMコンパレータ12によりスイッチング素子を動作させる。 (もっと読む)


【課題】等価直列抵抗の小さな出力キャパシタを使用した場合でも安定動作するコンパレータ制御方式のDC−DCコンバータ回路を提供する。
【解決手段】DC−DCコンバータ回路は、PMOSトランジスタと、NMOSトランジスタと、各トランジスタのドレインとDC−DCコンバータ回路の出力端子との間に接続されたインダクタと、基準電圧と、DC−DCコンバータ回路の出力端子における出力電圧に比例した帰還電圧とを比較する比較器と、各トランジスタを制御するドライバ制御回路と、インダクタを流れる電流を検出して電流の大きさに対応する電圧に変換する電流−電圧変換回路と、電流−電圧変換回路によって変換された電圧からインダクタを流れる電流の交流成分と相似な電圧を抽出して生成する重畳電圧生成回路とを備える。DC−DCコンバータ回路は、重畳電圧生成回路によって抽出された電圧を、比較器によって比較される帰還電圧に重畳させる。 (もっと読む)


41 - 60 / 1,328