説明

Fターム[5H750DD14]の内容

交流ー交流変換 (2,847) | 変換の態様 (824) | 相数変換 (421) | 入力相数 (215) | 3相 (144)

Fターム[5H750DD14]に分類される特許

1 - 20 / 144


【課題】マトリックスコンバータにおける各スイッチを適切に制御することにより、当該スイッチに並列接続されたダイオードに起因するスイッチの不具合を防ぐことが可能な電力変換装置を提供する。
【解決手段】電力変換装置101において、マトリックスコンバータ1は、複数のスイッチSa1〜Sc3と、スイッチに対応して設けられ、対応のスイッチと並列に接続された複数のダイオードとを含む。制御部5は、複数のスイッチSa1〜Sc3を所定の順序に従って択一的にオンし、負荷LA,LB,LCに供給すべき交流電力の目標値に基づいてスイッチのオン時間を算出し、算出したスイッチのオン時間が対応のダイオードの順回復時間未満となる場合には、スイッチのオン時間が順回復時間以上となるように、スイッチのオン時間を補正する。 (もっと読む)


【課題】電力変換機器間の配線長を極力均等に設定することで電力変換効率を高めることができる充電装置を提供する。
【解決手段】商用電力を直流電力に変換する電力変換機器11,81,3,4,5,7,9を実装した充電装置1Aであって、前記電力変換機器は、入力交流電力を入切する電源ブレーカ11、前記入力交流電力を所定の交流電力に変換する電力変換回路3、前記所定の交流電力を所定の電圧に変換する電圧変換回路4、及び前記所定の電圧に変換された交流電力を直流電力に変換する整流回路5を含み、前記電力変換機器を実装するコアフレーム14と、前記コアフレームを覆うように当該コアフレームに装着されるアウタハウジング15a,15bと、を備え、前記電源ブレーカ、前記電力変換回路、前記整流回路、及び前記電圧変換回路が、この順序で前記コアフレームに実装されている。 (もっと読む)


【課題】転流失敗を防止することができる電力変換装置を提供する。
【解決手段】マトリクスコンバータ4は、2つのスイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnを直列に接続した3対の回路と交流電源1の三相出力部とがそれぞれ電気的に接続されたブリッジ回路とされ、出力をトランス51の一次側に接続して三相交流電圧を単相交流電圧に変換している。コントローラは、電圧ベクトル出力時間とゼロベクトル出力時間とを用いてスイッチング素子Srp、Srn、Ssp、Ssn、Stp、StnをPWM制御し、電圧ベクトル出力時間からゼロベクトル出力時間に遷移する場合に、オン状態のスイッチング素子のうち、上アーム回路または下アーム回路のいずれか一方のアーム回路のスイッチング素子をターンオフにし、他方のアーム回路のスイッチング素子のオン状態を維持する。 (もっと読む)


【課題】転流失敗を防止することができる電力変換装置を提供する。
【解決手段】マトリクスコンバータ4は、2つのスイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stnを直列に接続した3対の回路がトランス51の一次側に並列に接続され、各対のスイッチング素子Srp、Srn、Ssp、Ssn、Stp、Stn間と交流電源1の三相出力部とがそれぞれ電気的に接続されたブリッジ回路により構成され、三相交流電圧をを単相交流電圧に変換している。コントローラは、電圧ベクトルを出力する出力時間とゼロベクトルを出力する出力時間とを用いてスイッチング素子Srp、Srn、Ssp、Ssn、Stp、StnをPWM制御し、キャリアの前半の半周期に含まれるゼロベクトル出力時間と、キャリアの前半の半周期に含まれるゼロベクトル出力時間とを等しくする。 (もっと読む)


【課題】高品質な電力に変換できる電力変換装置およびその制御方法を提供すること。
【解決手段】電力変換装置は、複数のスイッチング素子を有する電力変換部10と、3相交流電源2から電力変換部10へ入力される電流を制御する入力電流指令Ir*,Is*,It*を生成する入力電流指令生成部23と、入力電流指令Ir*,Is*,It*に基づき前記複数のスイッチング素子を駆動するゲート信号Sgを出力するゲート信号演算器24とを備える。入力電流指令生成部23は、3相交流電源2の電圧に含まれる振動成分を検出する。入力電流指令生成部23は、検出した振動成分に基づき、振動成分の正相成分を抑制する正相振動補償成分と、振動成分の逆相成分を抑制する逆相振動補償成分とを生成する。そして、入力電流指令生成部23は、正相振動補償成分および逆相振動補償成分を含む入力電流指令Ir*,Is*,It*を出力する。 (もっと読む)


【課題】フィルタコンデンサとスイッチング手段との配線距離を短縮できる電力変換装置を提供する。
【解決手段】多相交流電力を交流電力に直接変換する電力変換装置3であって、前記多相交流電力の各相R,S,Tに接続されて双方向への通電を切り換え可能にする複数のスイッチング手段311,313,315,312,314,316を有する変換回路と、前記変換回路に接続された少なくとも3つのコンデンサ821〜826と、を備え、前記3つのコンデンサは、前記スイッチング手段の実装面に平行な面内において三角形の各頂点に配置されている。 (もっと読む)


【課題】フィルタコンデンサとスイッチング手段との配線距離を短縮できる電力変換装置を提供する。
【解決手段】多相交流電力を交流電力に直接変換する電力変換装置3であって、前記多相交流電力の各相R,S,Tに接続されて双方向への通電を切り換え可能にする複数の第1スイッチング手段311,313,315と、前記各相に接続されて双方向への通電を切り換え可能にする複数の第2スイッチング手段312,314,316とを有する変換回路と、前記変換回路に接続された複数のコンデンサ821〜826と、を備え、前記第1スイッチング手段及び前記第2スイッチング手段のそれぞれに対応する多相交流電力の各相の間に、少なくとも一つの前記コンデンサが設けられている。 (もっと読む)


【課題】出力線を短縮できる電力変換装置を提供する。
【解決手段】多相交流電力を交流電力に直接変換する電力変換装置3であって、前記多相交流電力の各相R,S,Tに接続されて双方向への通電を切り換え可能にする複数の第1スイッチング手段311,313,315と、前記各相に接続されて双方向への通電を切り換え可能にする複数の第2スイッチング手段312,314,316とを有する変換回路と、前記複数の第1スイッチング手段と前記複数の第2スイッチング手段のそれぞれの入力端子にそれぞれ接続された入力線R,S,Tと、前記複数の第1スイッチング手段と前記複数の第2スイッチング手段のそれぞれの出力端子にそれぞれ接続された出力線P,Nと、を備え、前記複数の第1スイッチング手段と前記複数の第2スイッチング手段は、それぞれの出力端子がそれぞれ一列に配列され、かつ当該配列方向に対して並列に配置され、前記出力線は、前記入力線より上下方向において下側に配置されている。 (もっと読む)


【課題】フィルタコンデンサとスイッチング手段との配線距離を短縮できる電力変換装置を提供する。
【解決手段】多相交流電力を交流電力に直接変換する電力変換装置3であって、前記多相交流電力の各相R,S,Tに接続されて双方向への通電を切り換え可能にする複数の第1スイッチング手段311,313,315と、前記各相に接続されて双方向への通電を切り換え可能にする複数の第2スイッチング手段312,314,316とを有する変換回路と、前記変換回路に接続された複数のコンデンサ821〜826と、を備え、前記第1スイッチング手段と前記第2スイッチング手段は、それぞれの端子がそれぞれ一列に配列され、前記複数のコンデンサは、前記各相の間において前記第1スイッチング手段及び前記第2スイッチング手段のそれぞれに設けられ、前記複数のコンデンサのうちの一部のコンデンサは、前記端子の配列方向に対して傾斜して設けられている。 (もっと読む)


【課題】出力線を短縮できる電力変換装置を提供する。
【解決手段】多相交流電力を交流電力に直接変換する電力変換装置3であって、前記多相交流電力の各相R,S,Tに接続されて双方向への通電を切り換え可能にする複数の第1スイッチング手段311,313,315と、前記各相に接続されて双方向への通電を切り換え可能にする複数の第2スイッチング手段312,314,316とを有する変換回路と、前記変換回路に接続された出力線331,332と、を備え、前記複数の第1スイッチング手段と前記複数の第2スイッチング手段は、それぞれの出力端子がそれぞれ一列に並んで配置され、前記出力線は、前記出力端子に接続されて一方向に引き出されている。 (もっと読む)


【課題】保護回路とスイッチング手段との配線距離を短縮できる電力変換装置を提供する。
【解決手段】多相交流電力を交流電力に直接変換する電力変換装置3であって、前記多相交流電力の各相R,S,Tに接続されて双方向への通電を切り換え可能にする複数の第1スイッチング手段311,313,315と、前記各相に接続されて双方向への通電を切り換え可能にする複数の第2スイッチング手段312,314,316とを有する変換回路と、前記複数の第1スイッチング手段と前記複数の第2スイッチング手段のそれぞれの入力端子にそれぞれ接続された入力線R,S,Tと、前記複数の第1スイッチング手段と前記複数の第2スイッチング手段のそれぞれの出力端子にそれぞれ接続された出力線P,Nと、前記第1スイッチング手段及び前記第2スイッチング手段にそれぞれ接続された保護回路32と、を備え、前記保護回路の配線の一部347,348が、前記出力線の間に配置されている。 (もっと読む)


【課題】マトリックスコンバータを適切に制御することにより、複数相の電源からそれぞれ受けた入力交流電力を複数相の出力交流電力に変換して負荷へ出力し、かつ複数相の電源から受けた入力交流電圧を昇圧して負荷へ出力することが可能な電力変換装置を提供する。
【解決手段】電力変換装置101において、MC(マトリックスコンバータ)1は、複数相の電源Pa,Pb,Pcからそれぞれ受けた入力交流電力を複数相の出力交流電力に変換して負荷へ出力する。制御部4は、MC1から負荷に供給される負荷交流電力に基づいて、複数相の電源Pa,Pb,PcがMC1へ出力する電源交流電圧とMC1が複数相の電源Pa,Pb,Pcから受ける入力交流電圧との位相差である入力電圧位相を算出し、算出した入力電圧位相に基づいてMC1を制御することにより、入力交流電圧を昇圧して負荷へ出力する昇圧動作を行なう。 (もっと読む)


【課題】バスバーを用いた三相交流電力から単相交流電力への変換について、省スペース化を図ると共に、送電方式の違いに容易に対応する。
【解決手段】電子装置1−1は、三相交流電力が供給される5本の入力側バスバー11〜15と、これら5本の入力側バスバーに接続されて単相交流電力が供給される3つのユニットP,Q,Rとを備える。3つのユニットP,Q,Rは、第1,第2の端子P1,P2を有する第1のユニットPと、第3,第4の端子Q1,Q2を有する第2のユニットQと、第5,第6の端子R1,R2を有する第3のユニットRとである。上記5本の入力側バスバーは、第1,第3の端子P1,Q1に接続される第1の入力側バスバー11と、第5の端子R1に接続される第2の入力側バスバー12と、第2の端子P2に接続される第3の入力側バスバー13と、第4の端子Q2に接続される第4の入力側バスバー14と、第6の端子R2に接続される第5の入力側バスバー15とである。 (もっと読む)


【課題】過電流保護を行いつつも電力変換を継続して行うことができる直列多重電力変換装置を提供すること。
【解決手段】直列多重電力変換装置1は、直列に複数段接続した電力変換セル21a〜21c,21d〜21f,21g〜21iによってそれぞれ構成されるU相、V相およびW相を備える。電力変換セル21a〜21iのそれぞれは、電流を検出する電流検出部を備える。かかる電流検出部による検出結果に基づいて、電力変換セル単位で電力変換動作を停止する。 (もっと読む)


【課題】3相交流電力を直流電力に変換する際に、電源の高調波成分(電圧リップル)が低減され、3相交流電源の力率が改善される電力変換装置を提供する。
【解決手段】3相交流電力から直流電力を生成する電力変換装置であって、複数台の3相全波整流器を備え、当該3相全波整流器のそれぞれの入力端子から前記3相交流電力の異なる位相の組の3相交流電圧を入力し、前記複数台の3相全波整流器のそれぞれの出力電圧が合成されて出力する。 (もっと読む)


【解決課題】降圧受電システムの実際の運用状態において、このシステムの利用によりどの程度の省電力効果が得られているのが随時確認することができれば、ユーザーにとって有益である。
【解決手段】電力需要家に引き込まれた交流電源を変圧器に入力し、当該変圧器の出力電圧が前記交流電源の定格電圧より低く設定された目標電圧に近づくように当該変圧器の変圧比を自動切り替えし、当該変圧器の出力を負荷設備に供給する降圧受電システムにおいて、効果検証モードに設定された際、前記変圧器の出力電圧が前記目標電圧に近づくように前記変圧比を自動切り替えする降圧動作と、前記交流電源を降圧することなく前記負荷設備に供給する等圧動作とを交互に繰り返し実行させ、前記降圧動作中の消費電力量および前記等圧動作中の消費電力量をモニタ可能とした効果検証モードを備える。 (もっと読む)


【課題】導通損失が大きくなるのを抑制することが可能な電力変換装置を提供する。
【解決手段】この電力変換装置100は、片方向スイッチ11〜28と、入力側端子と複数の片方向スイッチ11〜28との間に設けられる直流インダクタ31〜36とをそれぞれ含む3個の電流形インバータ回路1〜3を備え、電流形インバータ回路1〜3の入力側端子を短絡するとともに、3個の電流形インバータ回路1〜3の出力側端子同士を並列接続し、3個の電流形インバータ回路1〜3にそれぞれ設けられる直流インダクタ31、33および35(32、34および36)同士を結合させて、片方向スイッチ11〜28のオンオフに基づいて、結合された直流インダクタ31〜36の巻線間において電流が移動する動作が行われるように構成されている。 (もっと読む)


【課題】車載バッテリから電磁給電部を経て車輪内蔵モータへ電力を供給する場合において、車体側のDC/ACコンバータを駆動輪数よりも少なくし得るようになす。
【解決手段】強電バッテリ21から電磁給電部21L,21Rを経て左右駆動輪内蔵モータ4L,4Rへ電力を供給する給電システムにおいて、電磁給電部21L,21Rの第1コイル14L,14Rは、相互に接続した後、共通な給電回路25により強電バッテリ21に接続し、共通な給電回路25中に、共通な車体側のDC/ACコンバータ26を挿入する。よって、車体側のDC/ACコンバータ26を駆動輪数よりも少なくし得て、コスト高および重量増の問題を回避することができる。 (もっと読む)


【課題】直接形電力変換装置と商用電源との間にチョークインプット形のローパスフィルタが設けられている場合であっても、直接形電力変換装置の出力電圧の精度を向上させる。
【解決手段】バッファ回路5aのコンデンサCbを充電する電流iLのピークを電圧形インバータ6が導通する期間の中央とする。これによりフィルタ2のコンデンサCfの両端電圧vcの波形の非対称性が緩和され、引いては電圧形インバータ6の波形の非対称性を緩和する。 (もっと読む)


【課題】リンク電圧を、スイッチングノイズに対する耐性と応答性とを高めて測定する。
【解決手段】期間drt・T0は期間dst・T0よりも長い。期間drt・T0において単位電圧ベクトルV4が採用される二つの区間を、第1区間及び第2区間として採用する。第1区間、第2区間のそれぞれの中央でリンク電圧Vdcの第1測定値Vmax1及び第2測定値Vmax2を測定する。そして期間drt・T0を含む一周期T0におけるリンク電圧Vdcの代表値Vmaxを、第1測定値Vmax1と第2測定値Vmax2との内挿補間によって求める。これをcosθで除してリンク電圧Vdcの最大値が求められる。 (もっと読む)


1 - 20 / 144