説明

国際特許分類[B01J19/00]の内容

処理操作;運輸 (1,245,546) | 物理的または化学的方法または装置一般 (124,790) | 化学的または物理的方法,例.触媒,コロイド化学;それらの関連装置 (50,456) | 化学的,物理的,または物理化学的プロセス一般 (4,849)

国際特許分類[B01J19/00]の下位に属する分類

国際特許分類[B01J19/00]に分類される特許

1,001 - 1,010 / 2,327


【課題】塩素の含有量が種々相違するPCB、不純物や他成分を含有しているPCBであっても、安定して、連続的に無害化する。
【解決手段】有機ハロゲン化合物を無害化するに先立ち、有機ハロゲン化合物のハロゲン濃度を一定に調整しておく濃度調整ステップを有していることを特徴とする有機ハロゲン化合物の無害化方法。前記有機ハロゲン化合物はPCBであり、前記濃度調整ステップは塩素濃度を調整することを特徴とする有機ハロゲン化合物の無害化方法。前記濃度調整ステップは、前記有機ハロゲン化合物を絶縁油で希釈してハロゲン濃度を一定にするものであることを特徴とする有機ハロゲン化合物の無害化方法。前記濃度調整ステップは、ハロゲン濃度を20±10重量%内の一定値にするものであることを特徴とする有機ハロゲン化合物の無害化方法。 (もっと読む)


【課題】 送液の効率を向上させた送液方法および送液手段を提供する。
【解決手段】 マイクロ流体デバイス内の流路に存在する液体を制御する装置システムにおいて、送液のために超音波振動子を設け、その超音波振動子は振幅変調による発振を行う。また、超音波振動子上にはマイクロ流体デバイスを保持するための保持部を設け、マイクロ流体デバイスを着脱可能とする。 (もっと読む)


【課題】マイクロリアクタデバイスの入力側または/及び出力側で流体の複数種類の状態量を計測する場合において、正確に流体の状態量を計測することが可能なセンサユニットを提供する。
【解決手段】マイクロリアクタデバイス用のセンサユニットであって、内部に流路を有し、当該流路内の流体計測位置における流路壁面の周方向に、前記流路に連通する複数のセンサ設置孔と、前記流路壁面の周方向において互いに対向する位置に配置された光入力孔及び光出力孔とが設けられた流路形成部材と、前記複数のセンサ設置孔の各々に、感応部を前記流路側に向けて設置され、前記流体計測位置における流体の状態量を検出する複数種類のセンサと、光出射端を前記光入力孔の流路側に向けて設置された第1の光伝送手段と、光入射端を前記光出力孔の流路側に向けて設置された第2の光伝送手段とを具備する。 (もっと読む)


【課題】 化学分野において、少量の材料を用いた試験や実験或いは実生産に対応可能な、汎用性の高い非常にコンパクトな反応装置を提供する。
【解決手段】 複数の、材料等を攪拌、拡散、混合或いは化学反応させる反応器などを積層するマイクロ化学プラントであって、ベースプレートと、少なくとも2本の支柱と、支柱に挿入される弾性部材と、前記支柱に摺動可能にベースプレートとの間に前記弾性部材を挟んで組み込まれる支承板と、前記支柱に摺動可能に組み込まれる押圧板と、前記支柱に摺動可能に組み込まれ前記支柱に固定させる手段をもち、かつ前記押圧板に付勢力を与える圧力印加手段を持つ固定板と、前記支承板と前記押圧板で複数の反応器を挟持する (もっと読む)


【課題】微小粒子の生成を可能とすると共に、工業的な量産にも対応でき、また、生成した微小粒子の形状を崩さずに微小粒子を生成した直後に微小粒子を硬化させ、微小粒子を媒体から分離することができる微小流路構造体及び微小流路構造体による溶媒抽出方法を提供する。
【解決の手段】分散相を導入するための導入口及び導入流路と、連続相を導入するための導入口及び導入流路と、分散相及び連続相により生成された微小粒子を排出させるための排出流路及び排出口とを備えた微小流路からなることを特徴とする微小流路構造体であって、分散相を導入するための導入流路と連続相を導入するための導入流路とが任意の角度で交わると共に、2つの導入流路が任意の角度で排出流路へと繋がる構造である微小流路構造体及び微小流路構造体による溶媒抽出方法を用いる。 (もっと読む)


【課題】小型で効率の高い液体混合器を提供する。
【解決手段】表面にジグザグ形状の溝11を刻設し、溝の一端に貫通孔12を穿設した部材を2つ(A、B)用意し、溝11が刻設された面同士を接合する。溝と部材に囲われた空間が流路となり、流路両端の貫通孔が流入口・流出口となり、混合器10が構成される。混合器10内に混合液を流通させると、流路が交差する点で混合液が互いに渦流れを生じさせ合う。流路の交差点を多数設けることで、混合器の混合効率を向上させる。 (もっと読む)


第1多孔性領域および第1多孔性領域と異なる第2多孔性領域を含む粒子を提供する。ウェットエッチングされた多孔性領域を有し、それがウェットエッチングと関係する核形成層を有する粒子も提供する。多孔性粒子を作る方法も提供する。 (もっと読む)


マイクロ流体デバイス(10)は、互いに結合された第1と第2のガラス基板(12、42)を含む。第1のガラス基板(12)は、第1及び第2の対向面(14、16)を有する。第1の対向面(14)にダイポケット(18)が形成され、ダイポケット(18)から第2の対向面(16)まで貫通スロット(22)が延在する。第2のガラス基板(42)は、第1のガラス基板(12)の第2の対向面(16)に結合され、それにより第2のガラス基板(42)に形成されたチャネル(48)の出口(O)が、貫通スロット(22)と実質的に位置が合う。第2のガラス基板(42)のチャネル(48)は、出口(O)より大きい入口(I)を有する。 (もっと読む)


【課題】触媒層の剥離を防止して更に反応効率を高める。
【解決手段】何れの触媒分散液A〜Cも水、Pd/ZnOの粉末、アルミナゾル、ヒドロキシエチルセルロース、ポリエチレングリコールを混合させたものである。アルミナゾルの組成比(質量%)については、触媒分散液A、触媒分散液B、触媒分散液Cの順に高い。基材1に触媒分散液Aをディップコート法によりコーティングし、基材1に付着した触媒分散液Aの自然乾燥を行う。続いて、触媒分散液Aの場合と同様に、触媒分散液B、触媒分散液Cの順に基材1に対してコーティング処理・自然乾燥処理した後、焼成処理を行う。 (もっと読む)


【課題】磁性超微粒子の表面に無機酸化膜を作製する方法及び分散方法を提案するともに、広い範囲で使用できる複合磁性超微粒子を作製する。その磁性超微粒子では磁気光学及び薬物輸送磁性材料への応用が可能である。複合磁性超微粒子を媒体に分散することによって磁性流体を作製、高周波電磁波の吸収特性や磁気光学特性などの特性を向上させる。また、医療DDSへの応用が可能になる。
【解決手段】無機化学反応を用いて磁性超微粒子の表面に無機酸化膜をコーティングすることによって複合磁性超微粒子を作製する。超音波により合成された磁性超微粒子をバインダ中に分散させ磁性超微粒子の分散媒体を形成する。 (もっと読む)


1,001 - 1,010 / 2,327