説明

国際特許分類[C22C47/14]の内容

化学;冶金 (1,075,549) | 冶金;鉄または非鉄合金;合金の処理または非鉄金属の処理 (53,456) | 合金 (38,126) | 金属または非金属の繊維やフィラメントを含む合金の製造 (298) | 粉末冶金によるもの,すなわち,金属粉末と繊維またはフィラメントの混合物を処理することによるもの (83)

国際特許分類[C22C47/14]に分類される特許

11 - 20 / 83


【課題】繊維状材料が均一に複合された繊維強化Al複合材料及びその製造方法を提供する。
【解決手段】炭化アルミニウムを主成分として表面に酸素を含む繊維が表面に形成されたAl粉末を成型して成形体とする第一の工程と、該成形体をAlの融点以上で加熱する第二の工程と、続いてAlの溶融状態を保持したまま加圧して緻密化する第三の工程とを含むことを特徴とする繊維強化Al複合材料の製造方法により解決される。前記第三の工程を熱間鍛造で行うことが好ましい。 (もっと読む)


【課題】 アルミニウム粉末焼結板と繊維状炭素材料とを組み合わせた高熱伝導性複合材料において、素子搭載部を兼ねる素子冷却用熱拡散板として使用可能な機械的強度を確保する。優れた熱伝導性を維持しつつ、繊維状炭素材料の使用量を減らし、製造コストを下げる。
【解決手段】 純アルミニウム又はアルミニウム合金からなる板状母材22の板厚方向中間部で、且つ板厚方向に直角な平面領域の一部分に、板状高熱伝導部23を埋設する。板状高熱伝導部23は、アルミニウム粉末の焼結体層と、繊維状炭素材料がシート表面に平行な特定の一方向に配向した繊維配向シートとの積層体である。板状高熱伝導部23となる焼結前の積層体のアルミニウム粉末層部分にバインダーを使用した粉末シートを用い、板状母材22となる焼結前のアルミニウム粉末層の最上層にアルミニウムの板状バルク体を使用して焼結を行う。 (もっと読む)


【課題】 アルミニウム粉末焼結板と繊維状炭素材料とを組み合わせた高熱伝導性複合材料において、素子搭載部を兼ねる素子冷却用熱拡散板として使用可能な機械的強度を確保する。優れた熱伝導性を維持しつつ、繊維状炭素材料の使用量を減らし、製造コストを下げる。
【解決手段】 純アルミニウム又はアルミニウム合金の粉末焼結体からなる板状母材22の板厚方向中間部で、且つ板厚方向に直角な平面領域の一部分に、板状高熱伝導部23を埋設する。板状高熱伝導部23は、アルミニウム粉末の焼結体層と、繊維状炭素材料からなるシートで繊維の方向がシート表面に平行な特定の一方向に配向した繊維配向シートとの積層体である。板状高熱伝導部23を作製する第1焼結工程と、アルミニウム粉末中に、予め製造された板状複合材を埋設し、板厚方向に加圧してアルミニウム粉末を焼結する第2焼結工程の2段階焼結法により製造する。 (もっと読む)


【課題】放電プラズマ焼結法を利用することにより、製造過程での分散粒子のダメージを少なくし、高い熱伝導率を有する金属基複合材料を製造する方法を提供する。
【解決手段】本発明による金属基複合材料の製造方法は、融点が10 ℃〜200 ℃異なる2種類の金属粒子(低融点金属粒子と高融点金属粒子)と分散粒子との混合体を用い、該混合体を低融点金属粒子の状態図における固‐液共存領域の固相線に沿って昇温させて焼結することに特徴を有する。 (もっと読む)


金属およびナノ粒子、とりわけカーボンナノチューブを含む複合材料ならびにその製造方法が本明細書内に開示される。金属粉末およびナノ粒子は、1nmから100nmの範囲の平均サイズ、好ましくは、10nmから100nmの範囲の平均サイズ、または100nmより大きくかつ200nm以下の範囲の平均サイズを有し、前記ナノ粒子によって少なくとも部分的に互いに分離される金属結晶を含む複合材料を形成するよう、メカニカルアロイングによって処理される。 (もっと読む)


金属、とりわけAl、Mg、CuもしくはTiまたはそれらを1つ以上含む合金より作られる結合手段58が本明細書内に開示される。結合手段58は、ナノ粒子、とりわけCNTによって強化された前記金属の複合材料より作られ、強化された金属は、前記ナノ粒子によって少なくとも部分的に分離された金属結晶を含む微細構造を有する。 (もっと読む)


金属、とりわけAlもしくはMgまたはそれらを1つ以上含む合金より作られるエンジン52、とりわけ、燃焼エンジンもしくはジェットパワーユニットまたはエンジン部品54、56が本明細書内に開示される。エンジンまたはエンジン部品は、ナノ粒子、とりわけCNTによって強化された前記金属の複合材料より作られ、強化された金属は、前記ナノ粒子によって少なくとも部分的に分離された金属結晶を含む微細構造を有する。 (もっと読む)


【課題】熱膨張率が低い繊維複合材料の製造方法を提供する。
【解決手段】繊維複合材料の製造方法であって、炭素繊維のアスペクト比をx、繊維複合材料中の炭素繊維の体積比をyとした場合、下記式(1)を満たすように体積比yを調整して、炭素繊維と純銅または銅合金とを複合させる方法。
y≧0.253×x-0.145−0.03 ・・・ (1) (もっと読む)


【課題】 既存の問題点であるアルミニウムと炭素材料の接合に関する問題を解決し、電気アーク又は電気化学的方法を用いて、重さが軽く力学的強度に優れた炭素材料−アルミニウム複合体を製造した。
【解決手段】 本発明は、電気化学的方法を用いてアルミニウム−炭素材料のAl−C共有結合を形成する方法を提供する。上記方法は、陽極と、炭素材料の連結された陰極とで構成され、電解液で満たされた電気化学装置に電位を印加して、陰極に連結された炭素材料の表面をアルミニウムでメッキする段階を含むことができる。更に、本発明は、上記電気化学装置に電位を印加し炭素材料の表面をアルミニウムでメッキして共有結合を形成したアルミニウム−炭素材料複合体を製造する方法、及び上記方法により製造されたアルミニウム−炭素材料複合体を提供する。 (もっと読む)


【課題】カーボンナノファイバーの再凝集を防止することができる炭素繊維複合金属材料の製造方法及び炭素繊維複合金属材料を提供する。
【解決手段】本発明の炭素繊維複合材料の製造方法は、工程(a)と工程(b)と工程(c)とを含む。工程(a)は、エラストマーと、金属の粒子と、カーボンナノファイバーと、を混合し、かつ剪断力によってカーボンナノファイバーをエラストマー中に分散させて炭素繊維複合材料を得る。工程(b)は、炭素繊維複合材料を熱処理し、炭素繊維複合材料中に含まれるエラストマーを分解気化させて混合物を得る。工程(c)は、混合物を圧延し、カーボンナノファイバーの少なくとも一部を金属中に入り込ませて炭素繊維複合金属材料を得る。 (もっと読む)


11 - 20 / 83