説明

国際特許分類[G01T1/17]の内容

物理学 (1,541,580) | 測定;試験 (294,940) | 原子核放射線またはX線の測定 (7,738) | X線,ガンマ線,微粒子線または宇宙線の測定 (6,349) | 放射線強度の測定 (5,456) | 特殊な型式の検出器に適合しない回路構成 (533)

国際特許分類[G01T1/17]の下位に属する分類

国際特許分類[G01T1/17]に分類される特許

121 - 130 / 459


【課題】異なる撮影方向から撮影を行うことにより取得した複数の放射線画像のシェーディング補正を行うに際し、撮影時におけるグリッドの使用の有無に拘わらず、放射線画像のシェーディングを適切に補正できるようにする。
【解決手段】異なる撮影方向から被検体に放射線を照射して、立体視画像を表示するための2つの放射線画像G1,G2を撮影する。撮影時のグリッドの使用の有無に応じた第1および第2のシェーディング補正データを記憶しておく。補正部2dが、撮影時のグリッドの使用の有無に応じて、第1および第2のシェーディング補正データのいずれかを用いて、2つの放射線画像G1,G2のシェーディングを補正する。 (もっと読む)


【課題】放射線撮像装置の画素回路内の不定電位を固定化し、ノイズ成分を低減する。
【解決手段】放射線撮像装置は、電源と非動作時に電源との接続を遮断するスイッチ部910と、1画素分の信号を蓄積する蓄積部920と、信号からノイズを除去するための除去部930と、ノイズが除去された信号を保持し、出力する保持部940と、保持部で保持されている信号と、隣り合うa個(aは2以上の自然数)の他の画素回路の保持部で保持されている信号との加算処理を行う加算部950と、を有する画素回路202を配置して構成された撮像ユニットと、撮像ユニットを構成するそれぞれの画素回路202の動作を制御する撮像制御部201と、を備え、撮像前に、スイッチ部910を介して接続される電源の電圧で、蓄積部920、除去部930、保持部940、および加算部950の不定電位を固定する。 (もっと読む)


【課題】X線の照射を自己検出するとともに、照射されたX線によって得られる信号電荷を全てX線画像に反映させる。
【解決手段】電子カセッテはFPD21を備える。FPD21は、画素39がマトリクスに配列された撮像パネル21aと、TFT42をオンオフする駆動手段であり、TFT42をオンして暗電荷をリセットするリセット動作と、各画素39に信号電荷を蓄積させる蓄積動作と、各画素39から信号電荷を信号線38に読み出す読み出し動作の3つの動作を行わせるためのゲートドライバ51と、TFT42がオフされた状態で信号線38にリークするリーク電荷に基づいてX線の照射開始を検出する照射検出部59と、蓄積動作を開始する前に照射検出部59による照射検出動作を行わせ、前記放射線の照射開始が検出された後、TFT42をオフ状態のまま蓄積動作へ移行させる制御部52と、を備える。 (もっと読む)


【課題】簡易な構成で、高速且つ欠落のない一定周期での動画撮影及びデータ転送が可能とする。
【解決手段】フラットパネルセンサ制御部203は、フラットパネル107を分割した各領域から夫々画像データを読み出す。書き込みアクセス制御部205は、フラットパネルセンサ制御部203により読み出された画像データをフレームメモリ208に書き込む。読み出しアクセス制御部206は、フレームメモリ208に対する画像データの書き込みが所定の状態となることに応じて、フレームメモリ208からの画像データの読み出しを開始する。 (もっと読む)


【課題】互いに視差のある2つの放射線画像の撮影において、画素欠陥を補正する。
【解決手段】2つの撮影方向から放射線を被写体Mを通すことなく直接的に放射線検出器15に照射して2枚の欠陥検出用放射線画像を取得するとともに、この2枚の欠陥検出用放射線画像内の画素欠陥を予めそれぞれ検出する。この画素欠陥の画素位置を各撮影方向に対応させて予めそれぞれ記憶する。次に、2つの撮影方向から放射線を被写体Mを通して照射して2枚の診断用放射線画像を取得するとともに、この2枚の診断用放射線画像の前記記録された画素欠陥の画素位置における対象画素を補正する。 (もっと読む)


【課題】電界電子放出型の放射線源を用いて短いSIDで被写体の撮影を行う場合に、放射線の照射範囲を容易に拡大できると共に、被写体に最適な線量の放射線を照射する。
【解決手段】放射線撮影システム及び放射線撮影方法では、少なくとも2つの放射線源(18a〜18c)のうち、少なくとも一方の放射線源(18b)から被写体(14)に放射線(16b)を照射するプレ曝射を行うことによりプレ曝射画像を取得し、該プレ曝射画像に基づいて、少なくとも2つの放射線源(18a〜18c)から出力される各放射線(16a〜16c)の線量の重み付けを行い、該重み付けに従って少なくとも2つの放射線源(18a〜18c)から被写体(14)に放射線(16a〜16c)を照射する本曝射を行うことにより本曝射画像を取得する。 (もっと読む)


【課題】放射線発生装置との連携がとれない場合にも、オフセットデータの読み出し処理までの処理全体に要する時間を短縮することが可能な放射線画像撮影装置を提供する。
【解決手段】放射線画像撮影装置1の制御手段22は、放射線画像撮影前に、走査駆動手段15のゲートドライバ15bに接続されている全走査線5またはそのうちの一部の複数の走査線5にオン電圧をゲートドライバ15bから印加させて行う各放射線検出素子7のリセット処理と、各走査線5にオフ電圧を印加させた状態で各TFT8を介して各放射線検出素子7からリークする電荷qに対応して増幅回路18から出力されている値をサンプリング回路19でサンプリングしてリークデータdleakとして読み出すリークデータdleakの読み出し処理とを交互に行わせ、読み出したリークデータdleakに基づいて放射線の照射が開始されたことを検出する。 (もっと読む)


【課題】消滅γ線対の発生位置をマッピングする放射線断層撮影装置において、被検体に各種装置を装着した状態であっても被検体の体動に影響されずに鮮明な画像が取得できる放射線断層撮影装置を提供する。
【解決手段】本発明の放射線断層撮影装置は、被検体に付設される放射性のプローブホルダ6を備えている。位置情報補正部22は、消滅γ線対が検出されたときの検出器リング12に対する被検体の相対位置をプローブホルダ6の位置で認識して消滅γ線対の発生位置を示す位置情報を補正する。これにより、被検体の体動に影響されずに鮮明な画像が取得できる。また、本発明においては、放射線を利用していることから、プローブホルダ6が被検体に装着された各種装置によって視認できない場合であっても、確実に被検体の体動を監視することができる。 (もっと読む)


【課題】再撮影を行なうことなくPET画像の補正を行なうこと。
【解決手段】実施例の核医学イメージング装置において、ADC15は、各光検出器の出力データをデジタルデータに変換する。計数情報収集部16は、デジタルデータから計数結果を収集し、計数情報記憶部24は、計数結果をデジタルデータと対応付けて記憶する。同時計数情報生成部25は、同時計数情報を生成する。画像再構成部26は、同時計数情報に基づいて、PET画像を再構成する。時間補正データ27cは、光検出器ごとの補正時間を記憶する。システム制御部28は、補正時間を用いて、各計数情報に対応付けられたデジタルデータからガンマ線の検出時間を補正することで新たな同時計数情報を生成させる。システム制御部28は、同時計数情報生成部25が生成した新たな同時計数情報に基づいて、新たな核医学画像を再構成させる。 (もっと読む)


【課題】放射線管理が不要な法規制対象外の低放射能の線源を用いて、γ線を測定対象に含むサーベイメータなどの放射線量(率)測定器の確認校正を可能とする。
【解決手段】γ線を測定対象に含む放射線量(率)測定器の確認校正に際して、前記放射線量(率)測定器の放射線感知部(電離箱式サーベイメータ本体10、GM計数管プローブ20)がβ線を測定可能な所定位置に確認校正用のβ線線源32、33を配置し、該β線線源32、33から放射されるβ線を、γ線の代わりに前記放射線感知部(10、20)に入射させることにより、前記放射線量(率)測定器の指示値を変化させる。 (もっと読む)


121 - 130 / 459