説明

国際特許分類[G01T1/18]の内容

物理学 (1,541,580) | 測定;試験 (294,940) | 原子核放射線またはX線の測定 (7,738) | X線,ガンマ線,微粒子線または宇宙線の測定 (6,349) | 放射線強度の測定 (5,456) | 計数管をもつもの,例.ガイガー計数管をもつもの (80)

国際特許分類[G01T1/18]に分類される特許

31 - 40 / 80


【課題】測定時間が短く、且つ、バックグラウンドの変動に起因した誤差が生じないα線の測定が可能な荷電粒子測定装置を提供する。
【解決手段】荷電粒子測定装置は、試料から放出されるα線とバックグラウンドの双方を測定するための試料測定用α線検出器と、バックグラウンドを測定するためのバックグラウンド測定用α線検出器と、試料から放出されるα線がバックグラウンド測定用α線検出器に入射されることを阻止するように構成されたα線遮蔽板と、前記試料測定用α線検出器と前記バックグラウンド測定用α線検出器から同時刻にて測定した測定値を入力してα線の正味測定値を演算するα線測定装置と、を有する。 (もっと読む)


本発明は、標的ボリューム(23)に与えられる粒子線(22)の貫通深さを検出する、少なくとも1つの検出手段(25,52)を備える検出器デバイスに関する。検出デバイス(100,150)は、標的ボリューム内で生成された光子、特にガンマ量子、を検出するように構成及び設計されている。本発明はさらに、物体(24)、特に物体(24)の標的ボリューム(23)に与えられる粒子線(22)の貫通深さを判定する方法に関し、粒子線(22)の相互作用によって物体(24)内で生成された光子、特にガンマ量子、が検出器デバイス検出される。
(もっと読む)


本発明は、ハドロンビームの線量測定モニタリング用のデバイスに関する。本デバイスは、ガス充填ギャップによって互いに分離されたn+1個の平行な検出器プレートの組又は積層体によって得られたn個の連続的なイオン化チャンバiを備える。各検出器プレートは、バイアス電圧側面を備えたバイアス電圧部分から絶縁された収集側面を備えた収集部分を有し、収集側面が次の検出器プレートのバイアス電圧側面と向き合うように又はその逆になるように配置される。各検出器プレートは、m個の物質層Lを備える。これら検出器プレートの結果物のアセンブリは、複数のイオン化チャンバセルを形成する。各検出器プレートを構成する各層Lの厚さl及び物質の選択並びにイオン化チャンバセルiのギャップは、各イオン化チャンバセルiに対して本願明細書で定義される(式2)を満たすように選択されることを特徴とする。
(もっと読む)


アバランシェ粒子検出器の読み出し電極アセンブリは、読み出しパッドの上側の誘電体カバー層中に形成される複数のレジスタパッドにより、スパークおよび放電から効果的に防御することができる。レジスタパッドは、読み出しパッドに直接に接続されてもよく、あるいは、誘電体カバー層に埋め込まれる電荷拡散パッドにより容量結合されて、読み出しパッドから空間的に分離されてもよい。電荷拡散パッドは、隣接する読み出しパッドへ電荷を分配でき、そのため、検出装置の空間分解能を高めることができる。 (もっと読む)


従来技術の位置感知検出器システムの前記位置計算は、個別の電極の既知の幾何学的パターンと前記電荷部分の前記分布に基づいている。ヒューリステック評価は照射の初期座標を計算するために作られた。対照的に、前記本発明は、位置座標検出器表面への測定された検出器の応答の直接マッピングに関して入射粒子の前記位置を計算できるようにする。検出器への照射位置の前記空間座標を推定する前記装置は、位置感知検出器と、照射源と、照射源による照射によって発生した前記検出器の応答を測定する手段と、人工ニューラルネットワーク構造とを備えており、測定された前記検出器の前記応答が前記人工ニューラルネットワーク構造への入力となり、かつ照射の初期空間座標が前記人工ニューラルネットワーク構造の出力となるように設けられている。
(もっと読む)


検出器の外部のβ放射体により放射されるβ線を検出するためのガスフロー比例検出器(60)と、検出器に充填ガスを供給するように構成された充填ガス供給源(51)であって、充填ガスは窒素を含む、供給源と、温度を測定するための温度センサ(72)と、測定温度に従い、モニタの動作パラメータを調節するために、温度センサと連絡された制御装置(64)と、を備えるβ線モニタ(70、90)。動作パラメータは、サーミスタ制御され得る、充填ガスを横切って印加される電圧、または検出器のβ線検出しきい値を含んでもよい。充填ガスは窒素発生器により供給される。ガスフロー比例検出器は大面積検出器としてもよい。 (もっと読む)


【課題】本発明は、放射線測定装置に係り、特にラドン及びトロンと、その崩壊によって生成する放射性核種をより正確にリアルタイムでしかも簡便に測定することが可能な放射線測定装置を提供する。
【解決手段】筒状の被測定空気導入タンク1の周囲に外周電極2を配し、前記被測定空気導入タンクの一端11にフィルター3を介した被測定空気導入孔4を配し、前記被測定空気導入タンク1の他端13に半導体検出器5と被測定空気排出孔6を配し、前記半導体検出器5のP層71がマイナス電位に、前記外周電極2がプラス電位になるように前記P層71と外周電極2との間に捕集電圧を印加しておくことによって、前記タンク1内に導入された被測定空気中の放射性元素の崩壊に伴いプラスイオン化した娘核種を前記P層71に捕集し、前記娘核種の崩壊に伴うα線を前記半導体検出器5により信号として検出する。 (もっと読む)


本発明は、真空チャンバと、前記真空チャンバ内に配置された、光子を一次電子に変換するように設計された光電陰極と、加速された一次電子のエネルギーの少なくとも一部を複数の検出セルによって収集される二次電荷に変換する変換器と、前記検出セルによって収集された電荷を、単位時間あたりおよび単一電子程度のセルの単位面積あたりで衝突密度を得ることを可能にする集積時間と共に、読み出すように構成された取得回路と、少なくともそのうちの1つが閾値よりも大きな収集電荷量を持ついわゆるメインセルである近接する検出セルのクラスターを特定する手段と、前記クラスターの少なくとも1つの特性を決定する手段と、一次電子の変換に起因する参照クラスターの少なくとも1つの特性を記憶する手段と、前記クラスターが一次電子の変換に起因するかどうかを証明するために、前記クラスターの決定された特性を前記参照クラスターの記憶された特性と比較する手段と、を含むセンサを備えた光子検出装置に関する。
(もっと読む)


【課題】エネルギー分解能の経時劣化が十分に抑制され、しかも安価なガス封入型比例計数管を提供する。
【解決手段】X線を入射させる窓2が設けられたケース1内に、芯線3が絶縁されて収納され、検出ガスが封入されたガス封入型比例計数管であって、ケース1内に、活性炭、活性アルミナ、ゼオライト、シリカゲルおよび酸化カルシウムの一群から選ばれた少なくとも1つからなる吸着剤5を備えている。本発明のガス封入型比例計数管によれば、従来のような対策を行わなくても、ケース1内に吸着剤5を備えるという簡単な構成により、ケース1の内面1aから放出される不純ガス等を吸着し、検出ガスには影響を及ぼさないので、エネルギー分解能の経時劣化が十分に抑制され、しかもコスト高にならない。 (もっと読む)


【課題】十分高い検出感度を有する新規なピクセル型の放射線検出器、及びその製造方法を提供する。
【解決方法】絶縁部材の第1の面上に形成されるとともに、円形状の複数の開口部を有する第1の電極パターンと、前記絶縁部材の前記第1の面と相対向する第2の面上に形成されるとともに、前記絶縁部材を貫通し、前記第1の電極パターンの前記開口部の略中心部に先端が露出してなる凸状部を有する第2の電極パターンとを具え、前記第1の電極パターンと前記第2の電極パターンとは所定の電位差を有するように設定され、前記第1の電極パターンの前記開口部に露出した端部は、第1のはんだ材が被覆されて連続した第1の曲面を呈するようにして放射線検出器を構成する。 (もっと読む)


31 - 40 / 80