説明

国際特許分類[H01L21/8238]の内容

国際特許分類[H01L21/8238]に分類される特許

61 - 70 / 2,944


【課題】良好な特性を維持しつつ、微細化を達成した、酸化物半導体を用いた半導体装置
を提供することを目的の一とする。
【解決手段】酸化物半導体層と、酸化物半導体層と電気的に接続するソース電極およびド
レイン電極と、酸化物半導体層、ソース電極およびドレイン電極を覆うゲート絶縁層と、
ゲート絶縁層上のゲート電極と、を有し、酸化物半導体層の厚さは1nm以上10nm以
下であり、ゲート絶縁層は、ゲート絶縁層に用いられる材料の比誘電率をε、ゲート絶
縁層の厚さをdとして、ε/dが、0.08(nm−1)以上7.9(nm−1)以下
の関係を満たし、ソース電極とドレイン電極との間隔は10nm以上1μm以下である半
導体装置である。 (もっと読む)


【課題】低電圧で動作するMISトランジスタと高電圧で動作するMISトランジスタや抵抗素子等の素子とを混載した半導体装置において、不純物の導入による素子の特性のばらつきを抑える。
【解決手段】半導体装置は、第1のゲート絶縁膜4aと、第1のゲート電極6aと、第1のゲート電極6aの両側方に形成された第1のLDD領域7aと、第1のLDD領域7aの外側に位置する第1のソース/ドレイン領域13aとを有する第1のトランジスタ30を備える。第1のトランジスタ30は、第1のゲート電極6aの上面上及び側面上から第1のLDD領域7aの少なくとも一方上に亘って設けられた絶縁膜を有しており、前記絶縁膜のうち前記第1のゲート電極の側面上に設けられた部分の膜厚は、前記絶縁膜のうち前記第1のLDD領域の少なくとも一方上で最も薄い部分の膜厚よりも大きい。 (もっと読む)


【課題】第1の領域のゲート絶縁膜への酸化剤の進入を防止しつつ、第2の領域の複数の第1の配線間に設けられた酸化アルミニウム膜を選択的に除去する。
【解決手段】第1の領域において第1の積層体の側壁を覆い、第2の領域において複数の第1の配線を覆うように形成した第1の絶縁膜をマスクとして、第1の領域に第1のイオン注入を施す。その後、第1の領域において第1の積層体の側壁を覆い、第2の領域において複数の第1の配線間を埋設するように形成した、酸化アルミニウムを主体とする第2の絶縁膜をマスクとして、第1の領域に第2のイオン注入を施す。第2の絶縁膜を、第1の絶縁膜に対して選択的に除去する。 (もっと読む)


【課題】エピタキシャル成長後に不純物を導入するためのイオン注入工程を省略する。また、エピタキシャル成長層の厚さがばらついた場合であっても、ピラー部にまで不純物が導入されることによるトランジスタ特性の変動を防止する。
【解決手段】基板の主面にシリコンピラーを形成した後、シリコンピラーの下の基板内に、シリコンピラーと逆導電型の第1の拡散層を形成する。シリコンピラーの側面にゲート絶縁膜を介してゲート電極を形成する。次に、シリコンピラーの上面上に不純物を含むシリコンをエピタキシャル成長させることで、シリコンピラーと逆導電型の第2の拡散層を形成する。 (もっと読む)


【課題】SRAMメモリセルを有する半導体装置において、その特性の向上を図る。
【解決手段】SRAMを構成するドライバトランジスタ(Dr1)が配置される活性領域(Ac)の下部に、絶縁層(BOX)を介して、素子分離領域(STI)により囲まれたn型のバックゲート領域(nBG)を設け、ドライバトランジスタ(Dr1)のゲート電極(G)と接続する。また、n型のバックゲート領域(nBG)の下部に配置され、少なくともその一部が、素子分離領域(STI)より深い位置に延在するp型ウエル領域(Pwell)を設け、接地電位(VSS)に固定する。かかる構成によれば、トランジスタの閾値電位(Vth)をトランジスタがオン状態の時には高く、逆に、オフ状態の時には低くなるように制御し、また、p型ウエル領域(Pwell)とn型のバックゲート領域(nBG)との間のPN接合も順バイアスさせないよう制御することができる。 (もっと読む)


【課題】ゲートラストプロセスの工程数を削減しつつ、所望の信頼性及び特性が得られるメタルゲート電極を備えたMISFETを実現できるようにする。
【解決手段】各ゲート溝の少なくとも底面上にゲート絶縁膜112及び保護膜113が順次形成されている。一方のゲート溝内の保護膜113の上には第1の金属含有膜114a及び第2の金属含有膜114bが順次形成されており、他方のゲート溝内の保護膜113の上には第2の金属含有膜114bが形成されている。一方のゲート溝内の保護膜113の厚さと比べて、他方のゲート溝内の保護膜113の厚さは薄い。 (もっと読む)


【課題】寄生抵抗が低く、接合リーク電流が抑制されたトランジスタを容易に形成することができる半導体装置の製造方法を提供する。
【解決手段】実施形態にかかる半導体装置の製造方法は、シリコン基板中のチャネル領域上にゲート絶縁膜を介してゲート電極を形成し、シリコン基板に所望の不純物を注入することにより、チャネル方向に沿ってチャネル領域を挟むようにシリコン基板中にソース領域とドレイン領域とを形成し、ソース領域及びドレイン領域の表面をアモルファス化することにより、それぞれの表面に不純物を含むアモルファス領域を形成し、アモルファス領域の上にニッケル膜を形成し、マイクロ波を照射して、アモルファス領域とニッケル膜とを反応させてニッケルシリサイド膜を形成しつつ、アモルファス領域を固相成長させてアモルファス領域に含まれる不純物を活性化し、未反応のニッケル膜を除去する。 (もっと読む)


【課題】フォトダイオードを有する半導体イメージセンサーにおいて、より高い光検出効率を実現し、光検出部以外の信号処理を行う画素トランジスタの特性を安定させることで、半導体装置の微細化を可能にする。
【解決手段】フォトダイオードPDを構成するP領域126およびN型領域111に炭素を共注入して炭素注入層128a、128bを形成することで、フォトダイオードPDの容量を増大させる。また、炭素注入層128bの形成によりN型領域111を含む転送トランジスタTrのチャネル内のホウ素の分布を均一化し、転送トランジスタTrの特性を安定させることで半導体装置内の素子の特性ばらつきの発生を防ぐ。 (もっと読む)


【課題】ゲート電極の一部にメタルゲート電極を有するMISEFTにおいて、メタルゲート電極を構成するグレインの配向性のばらつきに起因するMISFETのしきい値電圧のばらつきを小さくする。
【解決手段】メタルゲート電極4a、4bに炭素(C)を導入することにより、メタルゲート電極4a、4b内のグレインの粒径が大きくなることを防ぎ、メタルゲート電極4a、4bの中に多数の小さいグレインを形成することにより、グレインの配向性を均一化し、ゲート電極の仕事関数のばらつきを低減する。 (もっと読む)


【課題】チャネル形成領域に対しトランジスタの電流駆動能力を向上させる方向に応力をかけ、さらに電流駆動能力が向上し、性能が向上された半導体装置を提供する。
【解決手段】半導体基板1aの活性領域1cが素子分離絶縁膜2で区画され、チャネル形成領域、ゲート絶縁膜、ゲート電極8a、ソース・ドレイン領域及び被覆応力膜を有するNTrを有し、ソース・ドレイン領域の両側部に位置する素子分離絶縁膜2aの表面は、ソース・ドレイン領域の表面より低い位置に形成されており、ゲート電極8a、活性領域1c、及び表面がソース・ドレイン領域の表面より低い位置に形成された素子分離絶縁膜2aを被覆して、チャネル形成領域に対し引張応力を印加する被覆応力膜が形成されている構成とする。 (もっと読む)


61 - 70 / 2,944