説明

ガスタービンのリムシール構造

【課題】シール機能を確保し、主流高温ガスの侵入防止に必要となるパージ空気量を低減するガスタービンのリムシール構造を提供する。
【解決手段】燃焼部からの主流高温ガスが動翼20/静翼30間に形成されるディスクキャビティ11を通ってタービン本体内への侵入を防止するガスタービンのリムシール構造において、動翼のプラットフォーム静翼対向面から周方向内向き及び軸方向上流側に広がる肉ぬすみにより周方向外向きに突出する縦壁部23を形成した第1緩衝キャビティ22と、軸方向下流側に縦壁部23を介して形成した第2緩衝キャビティ14とを備え、第1緩衝キャビティは、主流高温ガスの流れが第2緩衝キャビティに到達する前の浸入経路に位置して縦壁部23の先端部と静翼リム31の端部内周面との間に第1段シール部13を形成し、かつ、第1緩衝キャビティ内に入り込んだ高温ガスの流れを周方向に速度成分を向ける形状を有している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ガスタービンのリムシール構造に関する。
【背景技術】
【0002】
従来、ガスタービンの静翼上流には、燃焼部(燃焼器)から供給されてタービンを駆動させる主流高温ガス(「燃焼ガス」または「ホットガス」ともいう)が動翼/静翼間の隙間からタービン本体内に侵入するのを防止する目的で、リムシールと呼ばれるシール機構を設置してある。このリムシールは、動翼/静翼間に形成されるディスクキャビティからシール流体のパージ空気を噴出させて主流高温ガスの侵入を防止するものである。
ここで使用するパージ空気は、圧縮機等の翼外冷却空気供給源から圧縮空気の一部を導入したものであり、翼外冷却空気供給源に接続された静翼内の翼内空気流路を通り、静翼先端部(軸中心)側にある静翼構成部材の壁面適所を貫通して設けたシール空気供給孔からディスクキャビティに噴射される。
なお、リムシール構造が必要となる主な理由は、運転中に大きな荷重を受ける動翼の翼根及びロータディスクが高温になることを防止することにある。
【0003】
上述した静翼上流のリムシールとしては、たとえば動翼シールフィンの上に、静翼リムが覆い被さるように配置された構成のシングルオーバーラップシール構造(たとえば、特許文献1参照)や、シールフィンが二重に配置されているダブルオーバーラップシール構造(たとえば、特許文献2、3,4参照)がある。
【特許文献1】特開平10−259703号公報(図2参照)
【特許文献2】特開平8−319803号公報(図5参照)
【特許文献3】米国特許第6506016号明細書(Fig.1参照)
【特許文献4】米国特許第6884028号明細書(Fig.1参照)
【特許文献5】特開2001−115801号公報
【特許文献6】特開2007−85340号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
ガスタービンのタービン部において、主流高温ガスが動翼/静翼間の隙間からタービン本体内に侵入するホットガス巻き込みを生じさせる要因は、ガスパスの周方向静圧分布によるところが大きい。このような周方向静圧分布は、上流側トレーリングエッジ(後縁)のウェイクや下流翼のポテンシャルによって生じるため、現状のガスタービンでは避けられない問題となっている。
このようなホットガスの巻き込みを防止するリムシール構造においては、ガスタービン性能に影響するパージ空気量の低減が望まれる。また、パージ空気は圧縮機から供給される圧縮空気の一部を使用するので、パージ空気量の低減は、燃焼器で燃焼に使用可能となる圧縮空気量の割合が増すことを意味しており、性能向上に寄与する。
【0005】
このような背景から、ガスタービンのリムシール構造においては、十分なシール機能を確保するとともに、ディスクキャビティに噴出させて主流高温ガスの侵入を防止するパージ空気量を低減することが望まれる。
本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、十分なシール機能を確保し、ディスクキャビティにおける主流高温ガスの侵入防止に必要となるパージ空気量を低減することができるガスタービンのリムシール構造を提供することにある。
【課題を解決するための手段】
【0006】
本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明に係るガスタービンのリムシール構造は、燃焼部から供給された主流高温ガスが動翼/静翼間に形成されるディスクキャビティへ侵入することを低減するガスタービンのリムシール構造において、前記動翼のプラットフォーム静翼対向面から周方向内向き及び軸方向上流側に広がる肉ぬすみにより周方向外向きに突出する縦壁部を形成した第1緩衝キャビティと、該第1緩衝キャビティより軸方向下流側に前記縦壁部を介して形成した第2緩衝キャビティとを備え、前記第1緩衝キャビティは、前記主流高温ガスの流れが前記第2緩衝キャビティに到達する前の浸入経路に位置して前記縦壁部の先端部と前記静翼側の端部内周面との間にシール部を形成し、かつ、前記第1緩衝キャビティ内に入り込んだ前記主流高温ガスの流れを周方向に速度成分を向ける形状を有している。
【0007】
このようなガスタービンのリムシール構造によれば、動翼のプラットフォーム静翼対向面から周方向内向き及び軸方向上流側に広がる肉ぬすみにより周方向外向きに突出する縦壁部を形成した第1緩衝キャビティと、第1緩衝キャビティより軸方向下流側に縦壁部を介して形成した第2緩衝キャビティとを備え、第1緩衝キャビティは、主流高温ガスの流れが第2緩衝キャビティに到達する前の浸入経路に位置して縦壁部の先端部と静翼側の端部内周面との間にシール部を形成し、かつ、第1緩衝キャビティ内に入り込んだ主流高温ガスの流れを周方向に速度成分を向ける形状を有しているので、縦壁部の高さ分だけ緩衝キャビティの容積を大きくすることができる。そして、ガスパスを流れる主流高温ガスの一部が周方向静圧分布の影響を受けて第1緩衝キャビティ内に流入すると、第2緩衝キャビティに到達する前の上流位置にある第1緩衝キャビティ内で周方向の静圧が均一に近づく。すなわち、動翼/静翼間に形成される隙間の浸入経路に流入した主流高温ガスは、肉ぬすみが形成する第1緩衝キャビティによって周方向に十分に混合され、リムシール部に向かう流れの周方向の圧力分布を緩和することができる。
このようなガスタービンのリムシール構造において、前記第1緩衝キャビティは、周方向に速度成分を向ける流れをスムーズに形成できる略円弧状の断面形状部を有していることが好ましい。
【0008】
本発明に係るガスタービンは、燃焼用空気を圧縮する圧縮部と、前記圧縮部から送られてきた高圧空気中に燃料を噴射して主流高温ガスを発生させる燃焼部と、前記燃焼部の下流側に位置し前記主流高温ガスにより駆動されるタービン部とを具備し、前記タービン部が請求項1または2に記載のリムシール構造を備えている。
【0009】
このようなガスタービンによれば、タービン部が請求項1または2に記載のリムシール構造を備えているので、動翼/静翼間に形成される隙間の浸入経路に流入した主流高温ガスは、肉ぬすみが形成するキャビティ空間によって周方向に十分に混合されるので、リムシール部に向かう流れの径方向の圧力分布を緩和することができる。
【発明の効果】
【0010】
上述した本発明のガスタービンのリムシール構造によれば、縦壁部の高さ分だけ容積の大きい第1緩衝キャビティを形成することができ、周方向静圧分布の影響を受けてガスパスを流れる主流高温ガスの一部が第1緩衝キャビティ内に流入すると、リムシール部に到達する前に第2緩衝キャビティより上流位置にある第1緩衝キャビティ内で周方向の静圧が均一に近づく。このため、リムシール部に向かう流れの流速及び圧力は、第1緩衝キャビティの容積が大きいほど減衰により低下し、ガスタービンのリムシール部においては、主流高温ガスのシールに必要となるシール流体の流量低減が可能となる。
従って、ガスタービンのリムシール部においては、十分なシール機能を確保するとともに、ディスクキャビティに噴出させて主流高温ガスの侵入を防止するシール流体の流量を低減することが可能になるので、ガスタービンの効率向上に顕著な効果を奏する。換言すれば、上述した本発明のリムシール構造を採用することにより、十分なシール機能の確保と、主流高温ガスの浸入防止に必要となるシール流体の流量低減とを両立させ、運転効率のよいガスタービンを提供することができる。
【発明を実施するための最良の形態】
【0011】
以下、本発明に係るガスタービンのリムシール構造について、その一実施形態を図面に基づいて説明する。
図4に示すように、ガスタービン1は、燃焼用空気を圧縮する圧縮部(圧縮機)2と、この圧縮部2から送られてきた高圧空気中に燃料を噴射して燃焼させ、高温燃焼ガスを発生させる燃焼部(燃焼器)3と、この燃焼部3の下流側に位置し、燃焼部3を出た高温燃焼ガス(主流高温ガス)により駆動されるタービン部(タービン)4とを主たる要素とするものである。
【0012】
図1及び図2は、ガスタービン1のタービン部4に設けられたリムシール構造の一実施形態を示す要部断面図である。
図示のリムシール10は、燃焼部3から供給された主流高温ガスが、動翼20と静翼30との間に形成される隙間(以下、「ディスクキャビティ」と呼ぶ)11を通ってタービン部4の本体内へ侵入することを低減する目的で、静翼30の上流側に設置されるシール構造である。この場合の上流側とは、図中に矢印Gで示す主流高温ガスの流れ方向を基準にしている。すなわち、リムシール10は、主流高温ガスが動翼20及び静翼30を配設したガスパス12を軸方向(図中に示す矢印Gを参照)へ流れているので、主流高温ガスから分流した一部(図中に示す矢印gを参照)がガスパス12からディスクキャビティ11に向かって巻き込まれ、動翼20の翼根やロータ付近まで侵入することを防止または抑制する。
なお、主流高温ガスに関する以下の説明では、ガスパス12を流れる主流高温ガス全体については「主流高温ガスG」と呼び、分流した一部の高温主流ガスについては「高温分流ガスg」と呼んで区別する。
【0013】
動翼20のプラットフォーム21は、図1から図3に示すように、静翼対向面から周方向内向き及び軸方向上流側に広がる肉ぬすみにより形成された凹部空間の第1緩衝キャビティ22を備えている。この第1緩衝キャビティ22は、周方向外向きに突出する縦壁部23を形成している。換言すれば、第1緩衝キャビティ22は、主流高温ガスGの流れ方向において動翼20の下流側となるプラットフォーム21の部材面、すなわち、下流側に位置する静翼30側に設けた静翼リム31の上流側端面31aと対向する面に形成された肉ぬすみの凹部である。
図示の第1緩衝キャビティ22は、周方向内向きに底面部を深くえぐった凹部形状としたので、縦壁部23が周方向外向きに高く突出して大きなキャビティ容積を確保することができる。また、図示の第1緩衝キャビティ22は、軸方向上流側に広がるように深くえぐられているので、大きなキャビティ容積の確保とともに、高温分流ガスgの流れを後述する第1段シール部13の入口部と逆方向へ導くことができる。
【0014】
第1緩衝キャビティ22は、ガスパス12に面しているプラットフォーム21の下流側端面21aより上流側となる領域に肉ぬすみの凹部空間を形成したものであり、タービン部4の回転軸中心側(紙面下側)となる底面部から外周方向へ向けて突出する縦壁部23が形成されている。この縦壁部23は、後述する第1段シール部13の動翼側シール部材として機能する。
従って、第1緩衝キャビティ22の凹部空間は、縦壁部23と静翼リム31との間に形成されるリムシール入口部より上流側に形成されたものとなり、ガスパス12から回転軸中心方向へ分流してディスクキャビティ11に侵入した高温分流ガスgの流れ方向と、回転軸と略平行な主流高温ガスGの流れ方向との両方向において、リムシール入口部より上流側に位置している。この場合のリムシール入口部は、後述する第1段シール部13の入口部となる。換言すれば、第1緩衝キャビティ22の凹部空間より軸方向下流側には、第1段シール部13の縦壁部23を介して、第2緩衝キャビティ14が形成されている。
【0015】
従って、第1緩衝キャビティ22の凹部空間は、主流高温ガスGの流れから分流した高温分流ガスgが第2緩衝キャビティ14に到達する前の侵入経路に位置し、縦壁部23の先端部と静翼30側の端部内周面との間に後述する第1段階のオーバーラップシール部(以下、「第1段シール部」と呼ぶ)13を形成し、かつ、第1緩衝キャビティ22内に入り込んだ高温分流ガスgの流れを周方向に速度成分を向ける形状を有したものとなる。図示の第1緩衝キャビティ22は、略円弧状の断面形状部を有しており、特に、底面部及び静翼リム31の上流側端面31aと対向する面が略円弧状の凹曲面になっている。
このような第1緩衝キャビティ22を備えた動翼20は、通常はプラットフォーム21と一体成形される鋳造部品であるから、緩衝キャビティ22の形成についても、鋳造時に肉ぬすみを設けて若干の機械加工を施すことで容易に製造可能となる。
【0016】
ガスパス12からディスクキャビティ11側へ分流する高温分流ガスgの侵入経路において、上述した第1緩衝キャビティ22は、分流直後の侵入経路入口部に形成された凹部空間である。そして、高温分流ガスgの侵入経路において第1緩衝キャビティ22の下流側となるディスクキャビティ11には、シールフィンが二重に配置されているダブルオーバーラップシール構造のリムシール部が形成されている。
第1段階のオーバーラップシール部である第1段シール部13は、流路断面積を狭めて回転軸中心側へ向かう流路抵抗を増すように、高温分流ガスgの流れ方向において第1緩衝キャビティ22の下流側となる位置に配設された縦壁部23及び静翼リム31の下面により構成されている。図示の第1段シール部13は、縦壁部23の先端部と、静翼30から動翼20側へ突出する静翼リム31の端部内周面とにより構成され、両部材間が周方向に所定の間隙を有する状態でオーバーラップするように配置されている。
【0017】
第1段シール部13よりさらに下流側となるディスクキャビティ11には、第1段シール部13を通過した高温分流ガスgの流れを淀ませる空間領域として形成した第2緩衝キャビティ14を通過した位置に、第2段階のオーバーラップシール部(以下、「第2段シール部」と呼ぶ)15が設けられている。
この第2段シール部15は、流路断面積を狭めて回転軸中心側へ向かう流路抵抗を増すように、高温分流ガスgの流れ方向において第2緩衝キャビティ14の下流側となる位置に配設された動翼内周シールフィン25及び静翼内周フィン32により構成されている。図示の動翼内周シールフィン25は、プラットフォーム21の第1緩衝キャビティ22より下方から静翼30側へ向けて突出し、先端部から周方向外向きに突出するフィンを備えたものである。この動翼内周シールフィン25は、静翼30から動翼20側へ突出する静翼内周フィン32と、周方向において所定の間隙を有する状態でオーバーラップするように配置されている。なお、図中の符号24は、動翼20側の後流シール板である。
【0018】
また、図中の符号35はバッファプレートであり、コイルバネ36の付勢を受けてシール部(不図示)をシールリング保持環33等の静翼構成部材に密着させ、後述する冷却空気の翼内流路38を形成している。この翼内流路38は、静翼30の内部に形成された図示しない翼内流路等を介して圧縮部2の吐出側に連通しているので、圧縮空気の一部を導入することができるようになっている。
【0019】
このように構成されたダブルオーバーラップシール構造のリムシール部では、静翼30内に形成された圧縮部2から、シール流体として圧縮空気の一部を導入している。以下の説明では、シール流体として圧縮部2から導入した圧縮空気の一部について、ディスクキャビティ11のパージ空気として使用するための「冷却空気」と呼ぶことにする。
静翼30内の翼内流路38に導入された冷却空気は、たとえば図示しないラビリンスシール取付用のシールリング保持環33のように、静翼30を構成する部材の壁面を貫通して設けたシール空気供給孔34からパージ空気として噴射される。この冷却空気は、シール空気供給孔34から流出した後に分流し、シール隙間11a内を図中に破線の矢印Caで示すように流れる。冷却空気は分流し、分流した一方の冷却空気はロータの内部側へ吸引されて流出し、他方の冷却空気はシール隙間11aを通って、ディスクキャビティ11内に流入してパージ空気となる。従って、静翼30からディスクキャビティ11内に噴射される冷却空気がパージされることにより、ディスクキャビティ11内は、パージ空気がない場合の周方向静圧分布よりも高い圧力に保持されており、かつ、温度の低い冷却空気による冷却も行われている。
【0020】
一方、ガスパス12を流れる主流高温ガスGは、径方向に部分的にパージ空気の圧力よりも高いことがあるため、周方向静圧分布の影響を受け、高温分流ガスgが分流して動翼20と静翼30との間に形成された入口開口11bからディスクキャビティ11内へ侵入する。このような高温分流ガスgの侵入は、ディスクキャビティ11内のパージ空気圧力を高く設定することで防止または抑制できる。しかし、ディスクキャビティ11内のパージ空気圧力を高く設定するためには、圧縮部2から導入する冷却空気量を増加させる必要があり、この結果、主流高温ガスGの温度低下や燃焼部3に供給可能な燃焼用圧縮空気量の減少等により、ガスタービン1の運転効率を低下させる要因となる。従って、パージ圧力の設定については、諸条件を考慮してガスタービン1の運転効率を優先させることが好ましい。
【0021】
入口開口11bからディスクキャビティ11に侵入した高温分流ガスgは、最初に第1緩衝キャビティ22へ流入し、第1緩衝キャビティ22内によって十分に撹拌混合され、周方向の圧力分布を緩和する。このような混合の促進は、第1緩衝キャビティ22が流路抵抗の高い第1段シール部13の上流側に位置し、さらに、壁面に沿った流れを形成しやすい略円弧状断面部を有し、かつ、比較的大きな容積の空間を有しているためである。
【0022】
このため、第1段シール部13へ向かう高温分流ガスgは、第1緩衝キャビティ22がないものと比較して径方向圧力分布が低減され、従って、同じシール性能を得るために必要となるディスクキャビティ11内のパージ空気圧力については、これを低下させることが可能になる。この結果、リムシール10のシール性能を維持し、パージ空気に必要となる冷却空気量を低減することが可能になる。
【0023】
従って、上述したダブルオーバーラップシール構造では、動翼20と静翼30との間に形成されるディスクキャビティ11の入口開口11bに到達した主流分流ガスgは、縦壁部23の存在により第1緩衝キャビティ22内に拡散d1(図3参照)され、第1段シール部13を通過する高温分流ガスgの速度は小さくなっている。さらに、この高温分流ガスgは、動翼内周シールフィン25の存在により第2緩衝キャビティ14内に拡散d2(図3参照)され、第2段シール部15を通過する高温分流ガスgの速度はより一層小さくなる。すなわち、動翼20と静翼30との間に形成されるディスクキャビティ11に到達した主流分流ガスgは、ロータ軸の周方向外側に設けられている第1緩衝キャビティ22に入った後、周方向に延びた壁面に導かれて流速成分が周方向に拡散され、高温分流ガスgの径方向に縦壁部23及び動翼内周シールフィン25を通過しようとする下向きの速度を低下させることができる。
【0024】
上述した本発明によれば、縦壁部23の突出高さ分だけ容積の大きい第1緩衝キャビティ22を形成することができ、周方向静圧分布の影響を受けてガスパス12を流れる主流高温ガスGから分流した高温分流ガスgが第1緩衝キャビティ22内に流入すると、リムシール10の第2緩衝キャビティ14に到達する前の上流位置にある第1緩衝キャビティ22内で周方向の静圧が均一に近づく。このため、リムシール部に向かう流れの流速及び圧力は、第1緩衝キャビティ22の容積が大きいほど減衰により低下し、ガスタービン1のリムシール部においては、主流高温ガスGから分流した一部をシールするのに必要となる冷却空気の流量低減が可能となる。
従って、ガスタービン1のリムシール部においては、十分なシール機能を確保するとともに、ディスクキャビティ11に噴出させて主流高温ガスの侵入を防止する冷却空気の流量を低減することが可能になるので、ガスタービン1の効率を向上させることができる。すなわち、上述した本発明のリムシール構造を採用することにより、十分なシール機能の確保と、主流高温ガスの浸入防止に必要となる冷却空気の流量低減とを両立させ、運転効率のよいガスタービン1を提供することができる。
なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
【図面の簡単な説明】
【0025】
【図1】本発明に係るガスタービンのリムシール構造について、一実施形態を示す要部断面図である。
【図2】図1の要部拡大図である。
【図3】第1緩衝キャビティ及び第2緩衝キャビティの全体的な位置関係を示すガスタービンの縦断面図である。
【図4】ガスタービンの概要を示す断面斜視図である。
【符号の説明】
【0026】
1 ガスタービン
2 圧縮部
3 燃焼部
4 タービン部
10 リムシール
11 ディスクキャビティ
12 ガスパス
13 第1段階のオーバーラップシール部(第1段シール部)
14 第2緩衝キャビティ
15 第2段階のオーバーラップシール部(第2段シール部)
20 動翼
21 プラットフォーム
22 第1緩衝キャビティ
23 縦壁部
30 静翼
31 静翼リム


【特許請求の範囲】
【請求項1】
燃焼部から供給された主流高温ガスが動翼/静翼間に形成されるディスクキャビティへ侵入することを低減するガスタービンのリムシール構造において、
前記動翼のプラットフォーム静翼対向面から周方向内向き及び軸方向上流側に広がる肉ぬすみにより周方向外向きに突出する縦壁部を形成した第1緩衝キャビティと、該第1緩衝キャビティより軸方向下流側に前記縦壁部を介して形成した第2緩衝キャビティとを備え、
前記第1緩衝キャビティは、前記主流高温ガスの流れが前記第2緩衝キャビティに到達する前の浸入経路に位置して前記縦壁部の先端部と前記静翼側の端部内周面との間にシール部を形成し、かつ、前記第1緩衝キャビティ内に入り込んだ前記主流高温ガスの流れを周方向に速度成分を向ける形状を有しているガスタービンのリムシール構造。
【請求項2】
前記第1緩衝キャビティが略円弧状の断面形状部を有している請求項1に記載のガスタービンのリムシール構造。
【請求項3】
燃焼用空気を圧縮する圧縮部と、前記圧縮部から送られてきた高圧空気中に燃料を噴射して主流高温ガスを発生させる燃焼部と、前記燃焼部の下流側に位置し前記主流高温ガスにより駆動されるタービン部とを具備し、請求項1または2に記載のリムシール構造を備えているガスタービン。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2010−77869(P2010−77869A)
【公開日】平成22年4月8日(2010.4.8)
【国際特許分類】
【出願番号】特願2008−246150(P2008−246150)
【出願日】平成20年9月25日(2008.9.25)
【出願人】(000006208)三菱重工業株式会社 (10,378)
【Fターム(参考)】