説明

ガスブロア及びその内部異常検出方法

【課題】ガスブロアの内部異常を検出することにより、修理や交換の準備作業を事前に効率よく進めて、ガスブロアの修理・交換に伴う電力機器の停止期間を短縮化することが可能なガスブロア及びその内部異常検出方法を提供する。
【解決手段】ガスブロア20には、複数のブロード27を有する回転自在なインペラ21と、インペラ21を覆うケーシング23と、インペラ21を回転させるモータ26とが設けられている。また、インペラ21にはインペラ21に直流電圧を供給する直流電源22が接続され、ケーシング23近傍にはフロート電極24が配置されている。なお、インペラ21およびフロート電極24は電気的に絶縁されている。フロート電極24には電位測定端子25を介して電圧測定器28が接続され、さらに電圧測定器28には監視モニタ32が接続されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、主にガス絶縁電力機器にて絶縁ガスを強制的に循環させるために使用されるガスブロアの監視技術に係るものであり、特に、内部異常を検出可能なガスブロア及びその内部異常検出方法に関する。
【背景技術】
【0002】
一般的に、変圧器やリアクトルといったガス絶縁電力機器は、鉄心や巻線の損失により発熱する。そのため、機器本体タンク内に封入される絶縁ガスに対しては、絶縁媒体としての機能と共に、冷却媒体としての機能も要求される。特に、発熱量の大きい大容量電力機器に封入される絶縁ガスは、高い冷却能力を持つ必要がある。したがって、大容量電力機器では機器を冷却する方式として、絶縁ガスを自然に循環させる自冷方式ではなく、絶縁ガスを強制的に循環させる強制循環方式が採用されている。
【0003】
強制循環方式を採用するガス絶縁電力機器には、ガスブロアやガス冷却器が接続配管を介して機器本体タンクに取り付けられている。このうち、ガスブロアは、複数のブレードを有するインペラを回転させてガス流を発生させる送風機であって、絶縁ガスを強制的に機器本体タンク内に送り込み、これを循環させている。
【0004】
ところで、ガスブロアの内部に何らかの異常が起き、絶縁ガスの循環流量が所定量よりも少なくなると、機器内部の熱が十分に排出されなくなり、内部温度が上昇する。機器本体タンク内部にて高温状態が長く続くか、または短時間とはいえ温度が異常に高くなって局所的に異常過熱が生じた場合、周辺の絶縁物の変質や劣化が急速に進む。
【0005】
その結果、機器の寿命を著しく縮めてしまい、最悪の場合、絶縁破壊を起こして、機器の損傷に至る恐れがあった。このような最悪な事態を避けるために、強制循環方式のガス絶縁電力機器では、ガスブロアの故障を検出した時点で、機器の運転を緊急停止する制御を行い、機器の損傷を回避するようになっている。
【0006】
上記の緊急停止制御を行う電力機器では、ガスブロアの故障を確実に検出することが重要である。このため、ガスブロアの動作状態を監視する技術が、種々提案されている。例えば、特許文献1では、羽車発電機の発生電力を測定することで、ガスブロアの動作状態を監視している。より詳しくは、ガスブロアとガス冷却器の間の接続配管内に羽車発電機が配置されている。そして、絶縁ガスの流れが羽車発電機を動作させ、発生電力量が所定の基準値よりも小さくなれば、絶縁ガスの流量が低減したと判断することができる。
【0007】
また、ガス流量以外を監視対象とした従来技術としては、ガスブロア表面の振動の大きさを監視する技術や、ガスブロア駆動用のモータ電流値を監視する技術などが知られている。前者ではガスブロア外部からガスブロアの異常を感知することができ、後者ではガスブロアの電気的な故障を感知することができる。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開平9−199337号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
上記の従来技術は、ガスブロアの不具合が電力機器に深刻な影響を与えることがないよう、ガスブロアの故障を検知した時点で、電力機器を緊急停止させている。つまり、電力機器を停止させた時にはガスブロアは完全に故障しており、運転不能に陥っているケースが殆どである。したがって、停止させた電力機器を復旧させる際には、ガスブロアの修理あるいは交換を行うことが不可欠であった。
【0010】
このようなガスブロアの修理・交換作業は、その準備作業も含めると、時間がかかることが多い。具体的には、ガスブロアの修理・交換作業に要する期間、つまりガス絶縁電力機器の停止を余儀なくされる期間は、数週間から数ヶ月にも及ぶことがあった。
【0011】
中でも、ガスブロアの修理・交換作業に含まれる作業のうち、その準備作業は長期化する傾向にある。これは、準備作業には、破損状況を確認する内部点検から始まり、故障原因の究明、修理部品あるいは代替ブロアの手配、さらには機器を停止させた後の機器本体タンク内の絶縁ガスの処理など複数の作業が含まれるためである。
【0012】
しかも、これらの準備作業は、故障原因を判明させてから、それに対応した修理部品あるいは代替ブロアを手配するというように、段階的に進めなくてはならない作業が大半を占める。したがって、ガスブロアの修理・交換に関する準備作業では、複数の作業を同時並行的に進めることが難しく、作業効率が低かった。
【0013】
そこで、ガスブロアの修理・交換の準備作業に関しては、ガスブロアが完全に故障してから準備作業を始めるのではなく、準備し得る作業に取ついては、できる限り早い段階で取りかかることが望まれていた。この要望に応えるためには、ガスブロア内部に異変が起きた時点でこれを高感度に検出し、早期に故障の予兆を察知することが有効である。
【0014】
しかしながら、従来技術では、ガスブロアが完全に故障したことを想定した上で、電力機器の緊急停止制御を行っている。すなわち、従来のガスブロア監視技術は、ガスブロアの故障具合が十分に進行したことを判定するものであって、仮にガスブロア内部に機械的な異常が発生したとしても、ガスブロアの運転が続行可能であれば、そのような内部異常を検知していなかった。
【0015】
なお、ガスブロアの故障原因になる可能性があるものの、とりあえずはガスブロアの運転が継続可能である内部異常としては、インペラの持つ多数のブレードのうち数枚程度が喪失することなどが代表的である。従来のガスブロアの監視技術では、このような内部異常をいちいち検出することはなく、上述したようにガスブロアが完全に故障したことを検出するだけであった。
【0016】
このように、従来技術においては、即座に故障に結びつくことのないガスブロアの内部異常については、検出しないでいた。このため、ガスブロアが完全に故障してから準備作業に取りかかるほかなく、準備作業の作業効率は低かった。したがって、ガスブロアの修理・交換作業を実施する際のガス絶縁電力機器の停止期間は、長引かざるを得なかった。
【0017】
本発明は、このような状況を鑑みて提案されたものであり、ガスブロアの故障を検出するのではなく、故障の予兆となるガスブロアの内部異常を検出することにより、修理や交換の準備作業を事前に効率よく進めることができ、ガスブロアの修理・交換に伴う電力機器の停止期間を短縮化することが可能なガスブロア及びその内部異常検出方法を提供することを目的とする。
【課題を解決するための手段】
【0018】
上記目的を達成するために、本発明は、電力機器に対し絶縁ガスを強制的に循環させるガスブロアにおいて、ケーシング内にはモータが収納され、前記モータには該モータに交流電圧を供給する交流電圧供給手段が接続され、前記モータの回転軸には電気的に絶縁した状態でインペラが取り付けられ、前記インペラには該インペラに直流電圧を供給する直流電圧供給手段が接続され、前記ケーシング近傍には電気的に絶縁した状態でフロート電極が取り付けられ、前記フロート電極には当該フロート電極の電位を外部に引き出す電位測定端子が設置され、前記電位測定端子には前記フロート電極に誘起される電圧を測定する電圧測定手段が接続され、さらに前記電圧測定手段には当該電圧測定手段にて測定した電圧を監視する電圧監視手段が接続され、前記電圧監視手段は、前記電圧測定手段の測定した電圧について、直流電圧に重畳された交流電圧成分の変動幅を監視するように構成されたことを特徴としている。
【0019】
また、本発明は、ケーシング内の駆動モータの回転軸には電気的に絶縁した状態でインペラが取り付けられると共に、前記ケーシング近傍には電気的に絶縁した状態でフロート電極が取り付けられたガスブロアの内部異常を検出する方法において、ガスブロアの運転中、前記インペラに直流電圧を供給する直流電圧供給ステップと、前記フロート電極に誘起される電圧を測定する電圧測定ステップと、前記電圧測定ステップにて測定した電圧を監視する電圧監視ステップを含み、前記電圧監視ステップでは、前記電圧測定ステップにて測定した電圧について、直流電圧に重畳された交流電圧成分の変動幅を監視することを特徴としている。
【発明の効果】
【0020】
本発明のガスブロア及びその内部異常検出方法によれば、本来は無電圧であるインペラに直流電圧を印加した状態でガスブロアを運転し、インペラが正常に回転する時はインペラ近傍に位置するフロート電極の誘起電圧は周期的に変動することを利用して、フロート電極に誘起された電圧に関して、直流電圧に重畳された交流電圧成分の変動幅を監視することにより、この変動幅がインペラ正常時の所定範囲を越えた場合に、ガスブロア内部の異常を検出することができ、故障の予兆を早期に察知してガスブロアの修理・交換の準備作業を効率よく進めることが可能であり、これによりガスブロアの修理・交換に伴う電力機器の停止期間を短縮化することができる。
【図面の簡単な説明】
【0021】
【図1】本発明のガスブロアの第1の実施形態の構成図。
【図2】第1の実施形態の正常動作を上面より模式的に示す模式図。
【図3】第1の実施形態の異常時動作を上面より模式的に示す模式図。
【図4】正常時のフロート電極電圧波形を示すグラフ。
【図5】インペラが1枚喪失されたときのフロート電極電圧波形を示すグラフ。
【図6】本発明の第2の実施形態の構成図。
【図7】本発明の第3の実施形態の構成図。
【発明を実施するための形態】
【0022】
(1)第1の実施形態
(1−1)構成
以下、本発明に係る第1の実施形態の構成について、図1〜図5を参照して説明する。図1は本発明の第1の実施形態の概要を示す構成図、図2、図3は、図1に示したガスブロア20を上面より見た模式図であって、図2は正常動作時の状態、図3は異常動作時の状態を示している。図4はインペラ21が正常に運転されている時のフロート電極24の電圧波形を示すグラフ、図5はインペラ21に取付けられた1枚のブレード27が喪失した上で運転された時のフロート電極24の電圧波形を示すグラフである。
【0023】
図1に示すように、ガスブロア20は、電力機器に絶縁ガスを強制的に循環させるかご型形状となっている。ガスブロア20にはケーシング23が設けられている。ケーシング23は、径の異なる2つの円筒形を繋げた形状から構成され、径の大きい上部側には導電性のインペラ21が、径の小さい下部側にはインペラ21駆動用のモータ26が、それぞれ収納されている。
【0024】
インペラ21は回転軸を上下方向にして回転自在に配置され、モータ26の回転軸に対して電気的に絶縁した状態で取り付けられている。また、インペラ21はケーシング23に覆われて周囲構造物より電気的に絶縁されている。さらに、インペラ21の外周部には円周部分に沿って複数枚のブレード27が取り付けられている。
【0025】
モータ26には交流電源端子31を設けられている。交流電源端子31には交流電源30が接続されている。交流電源30はモータ26に交流電圧を供給するものである。また、交流電源端子31近傍には直流電圧印加端子29が設置されている。直流電圧印加端子29には直流電源22が接続されている。直流電源22はインペラ21に直流電圧を供給するものである。
【0026】
さらに、ケーシング23近傍にはフロート電極24が固定されている。フロート電極24は接地から電気的に絶縁されており、電位測定端子25が接続されている。電位測定端子25は、フロート電極24の電位をケーシング23の外部に引き出すためのものであって、電圧測定器28が接続されている。
【0027】
電圧測定器28はフロート電極24に誘起される電圧を測定する機器であって、監視モニタ32が接続されている。監視モニタ32は電圧測定器28の測定結果を表示する表示モニタを有しており、電圧測定器28の測定した電圧について、直流電圧に重畳された交流電圧成分の変動幅を監視するようになっている。
【0028】
(1−2)ガスブロアの内部異常検出方法
以上の構成を有するガスブロア20では、監視モニタ32による監視により、次のようにして、ガスブロア20の内部異常を検出する。まず、ガスブロア20の内部異常の検出に先だって、電位測定端子25に電圧測定器28を接続する。そして、ガスブロア20を動作させた状態で直流電圧印加端子29を介して直流電源22からインペラ21に直流電圧を供給しておく(直流電圧供給ステップ)。
【0029】
図2および図3に示すように、インペラ21に直流電圧が供給されたことで、各ブレード27は正電荷41を持ち、インペラ21全体は一様の電位を持つことになる。このとき、ブレード27とフロート電極24間には静電容量42が、フロート電極24とケーシング23間には静電容量43が、それぞれ存在する。ここで、インペラ21に印加された直流電圧は、ブレード27とフロート電極24間の静電容量42と、フロート電極24とケーシング23間の静電容量43とで分圧されるため、フロート電極24には電圧が誘起される。
【0030】
この電圧誘起現象は、モータ26の駆動力によりインペラ21が回転するガスブロア20の運転状態であっても成立する。したがって、ガスブロア20を運転した状態で、電圧測定器28によりフロート電極24に誘起される電圧を測定し(電圧測定ステップ)、さらに監視モニタ32にて電圧測定器28の測定結果を常時監視する(電圧監視ステップ)。
【0031】
今、運転中のガスブロア20のインペラ21に直流電源22から直流電圧41を供給したとき、インペラ21にN枚取り付けられたi番目のブレード27について考察する。このときのフロート電極24の発生電圧をベクトルVi、i番目のブレード27とフロート電極24間の静電容量42をC1i、フロート電極24とケーシング23間の静電容量43をC2、直流電源22からインペラ21に供給した直流電圧をEとすると、フロート電極24に発生する電圧のベクトルViの大きさは、次の式1で表すことができる。
【数1】

【0032】
ここで、フロート電極24はケーシング23近傍に固定されているので、フロート電極24とケーシング23間の距離は変化することがない。したがって、フロート電極24とケーシング23間の静電容量43のC2は変化しない。一方、ガスブロア20は運転中であり、インペラ21のブレード27は円周上を一定速度で移動しているので、ブレード27およびフロート電極24間の距離は一定周期で変化する。
【0033】
インペラ21の半径をr、インペラ21の角周波数をω、円周率をπ、ブレード27とフロート電極24の最短距離をa、インペラ21に取付けられたブレード27の枚数をN、ブレード27の番号をi(i=0、…N−1)として、上記i番目のブレード27とフロート電極24間の距離を、複素数表記にてベクトルliで表すと、以下の式2になる。
【数2】

【0034】
また、対向する平板間の静電容量は両者の距離に反比例する。このことから、ブレード27とフロート電極24との距離が最短距離a時の静電容量をCmとすれば、i番目のブレード27とフロート電極24間の静電容量C1iは、下記の式3で表すことができる。
【数3】

【0035】
ここで、i番目のブレード27とフロート電極24間の距離、つまりベクトルliの大きさは次の式4から導くことができる。
【数4】

そのときのi番目のブレード27からフロート電極24に誘起される電圧Viは、上記式4により、次の式5のベクトルとして表される。
【数5】

【0036】
上記の式5から鑑みると、このi番目のブレード27からフロート電極24に誘起される電圧Viは、インペラ21の角周波数で周期的に変動することになる。式5は、インペラ21に取り付けられたN枚のブレード27内の1枚に対して考慮した場合なので、全ブレード数N枚から誘起される電圧ベクトルVは、次の式6となる。
【数6】

【0037】
(1−3)ガスブロア20が正常な場合
上記の式6より、インペラ21に取付けられたブレード27の枚数が、例えば51枚(N=51)とすると、この場合におけるフロート電極24の誘起電圧の時間変化を図4のグラフに示す。このグラフは監視モニタ32にて表示される。
【0038】
図4に示したグラフから明らかなように、フロート電極24の誘起電圧は、直流電圧に小さな交流電圧が重畳しているのが分かる。監視モニタ32では、電圧測定器28の測定した電圧について、直流電圧に重畳された交流電圧成分の変動幅を監視しており、図4のグラフでは、前記変動幅は所定の範囲内に収まっていることになる。
【0039】
つまり、フロート電極24の誘起電圧における周期的な波形には乱れが生じていない。したがって、各ブレード27およびフロート電極24間の距離は一定周期で変化している。これは、インペラ21が正常に回転していることを示しており、ガスブロア20は正常に動作していると見なすことができる。
【0040】
(1−4)ガスブロア20に内部異常が生じた場合
一方、インペラ21に取り付けられているブレード27の内、1枚が喪失した場合、ブレード27から誘起される電圧ベクトルVは、次の式7にて計算することができる。
【数7】

【0041】
この式7より、インペラ21に取付けられたブレード27の枚数が例えば51枚から50枚に減った場合におけるフロート電極24の誘起電圧の時間変化は図5のグラフのようになる。このグラフも監視モニタ32にて表示可能である。図5のグラフにおいても、上記図4のグラフと同じく、直流電圧に交流電圧が重畳しているのが見てとれる。
【0042】
ただし、喪失したブレード27の位置では、フロート電極24の前を通過する際に対地静電容量C1iが大きくならない。このため、前記式1に基づき、フロート電極24の誘起電圧は小さくなり、喪失したブレード27の位置がフロート電極24の前を通過するタイミングで、大きな電圧の落ち込みが起きる。
【0043】
ここで、監視モニタ32では、電圧測定器28の測定した電圧について、直流電圧に重畳された交流電圧成分の変動幅を監視しているが、その変動幅が所定の範囲を越えたことになり、フロート電極24の誘起電圧における周期的な波形に乱れが生じている。この監視結果を受けて、インペラ21では1枚のブレード27が喪失していると判断することができ、ガスブロア20の内部異常を検出することが可能である。
【0044】
(1−5)他のガスブロア20の内部異常の例
なお、上記の説明では、ガスブロア20内部に生じる異常として、ブレード27の喪失を一例として挙げたが、本実施形態ではインペラ21の軸受異常や、インペラ21のアンバランスによる回転異常についても、ガスブロア20の内部異常として検出可能である。
【0045】
すなわち、フロート電極24の誘起電圧は、フロート電極24とブレード27間の距離の変化に応じて変動する。そのため、ベアリング破損などによりインペラ21の軸受がぶれた場合や、インペラ21のアンバランスにより回転軸が偏心した場合も、フロート電極24とブレード27間の距離が、周期的な変化から外れることになる。
【0046】
そこで、インペラ21の軸受や回転軸に関して、インペラ21が正常である場合のフロート電極24の周期的な電圧変動を予め測定しておく。そして、フロート電極24の電圧変動に関して、直流電圧に重畳された交流電圧成分の変動幅が正常な範囲を越えた場合には、インペラ21の軸受異常、あるいはインペラ21のアンバランスによる回転異常を、内部異常として検出することができる。
【0047】
(1−6)作用効果
上述した第1の実施形態の作用効果は次の通りである。すなわち、第1の実施形態では、電気的に絶縁状態にあるインペラ21に対し直流電源22が直流電圧を印加した状態でガスブロア20を運転する。そしてケーシング23近傍に固定したフロート電極24に発生する誘起電圧を、監視モニタ32にて監視する。
【0048】
その際、所定変動幅を超えた振幅を持つ交流電圧成分が、直流電圧に重畳された誘導電圧波形が観測された場合には、ブレード27とフロート電極24と間の距離に異常が生じていることになる。このようにして、ガスブロア20の内部異常の発生を高感度に検出することができる。
【0049】
上記のガスブロア20の内部異常は、それが生じたことで即座にガスブロア20が運転不能となるような重大な故障となるものではなく、とりあえずはガスブロア20の継続運転が可能である。このため、ガスブロア20が完全な故障に至るまでには時間的な猶予ができる。
【0050】
したがって、このような内部異常は、故障の予兆として察知することにより、これを検出した時点から、ガスブロア20の修理・交換に関する準備作業を進めることができる。より具体的には、修理が予想される部品あるいは代替ブロアの手配や、機器本体タンク内の絶縁ガスを処理するための準備作業など、いわば修理・交換の準備作業のための準備作業を、可能な範囲で進めておくことができる。
【0051】
その結果、ガスブロア20の内部異常を検出してから相応の時間が経過した後、ガスブロア20が完全に故障したことでガス絶縁電力機器を緊急停止させたとしても、十分な準備が整っており、ガスブロア20の修理・交換作業を非常にスムーズに行うことができる。これにより、数週間から数ヶ月にわたるような長期の電力機器停止期間を、大幅に短縮化することができ、経済性の向上に寄与することが可能である。
【0052】
(2)第2の実施形態
(2−1)構成
続いて、本発明の第2の実施形態に係るガスブロアについて図6を参照して説明する。図6は第2の実施形態の概要を示す構成図である。
【0053】
図6に示すように、第2の実施形態に係るガスブロア20Aには、モータ26の駆動用である交流電源端子31と電気的に並列に、整流器51が設置されている。つまり、モータ26への電力供給と整流器51への電力供給は同時に行えるように構成されている。このような第2の実施形態では直流電源22の代替として、交流電圧を整流する整流器51がガスブロア20A内に取り付けられていることになる。
【0054】
(2−2)作用効果
以上の第2の実施形態では、整流器51より得られた直流電圧をインペラ21に供給することが可能であり、第1の実施形態と比べて、直流電圧印加端子29および直流電源22を省くことができる。したがって、前記第1の実施形態の持つ作用効果に加えて、構成の簡略化をより進めることができるといった作用効果がある。
【0055】
(3)第3の実施形態
(3−1)構成
続いて、本発明の第3の実施形態に係るガスブロアについて図7を参照して説明する。図7は、第3の実施形態の概要を示す構成図である。
【0056】
図7に示すガスブロア20Bにおいて、インペラ21を覆う部分のケーシング23の下面と、インペラ21下面とは、互いに対向しており、一方には高帯電体61が(図7ではケーシング23側に)、他方には低帯電体62が(図7ではインペラ21側に)、それぞれ貼り付けられている。
【0057】
高帯電体61はナイロン等の帯電列位の高い物質からなり、低帯電体62は塩化ビニル等の帯電列位の低い物質からなる。これらの帯電体61、62は、互いに常時接触し、インペラ21の回転時に、両者の摩擦により静電気を発生させてインペラ21に直流電圧を供給するように構成されている。
【0058】
(3−2)作用効果
このような第3の実施形態では、帯電体61、62から静電気を発生させることで、インペラ21に対し直流電圧を印加することができる。そのため、第1および第2の実施形態と比べて、直流電圧印加端子29、直流電源22さらには整流器51といった部材を省略することが可能である。これにより、第2の実施形態と比較して、構成の簡略化をいっそう進めることが可能である。
【0059】
(4)他の実施形態
本発明は、以上の実施形態に限定されるものではなく、各部材の構成や配置箇所などは適宜変更可能である。具体的にはフロート電極24はケーシング23側面近傍ではなく、ケーシング23上面に固定するようにしても構わない。このような実施形態では、ガスブロア20の振動はケーシング23の上面が最も顕著であるため、インペラ21の異常振動の検出に有利である。また、フロート電極24の誘起電圧を測定、監視するだけではなく、電源の電圧や電流、周波数なども合わせて測定、監視することで、より正確にガスブロア20の内部異常を検出することも可能となる。
【符号の説明】
【0060】
20、20A、20B…ガスブロア
21…インペラ
22…直流電源
23…ケーシング
24…フロート電極
25…電位測定端子
26…モータ
27…ブレード
28…電圧測定器
29…直流電圧印加端子
30…交流電源
31…交流電源端子
32…監視モニタ
41…ブレードの正電荷
42…ブレードとフロート電極間の静電容量
43…フロート電極とケーシング間の静電容量
51…整流器
61…高帯電体
62…低帯電体

【特許請求の範囲】
【請求項1】
電力機器に対し絶縁ガスを強制的に循環させるガスブロアにおいて、
ケーシング内にはモータが収納され、
前記モータには該モータに交流電圧を供給する交流電圧供給手段が接続され、
前記モータの回転軸には電気的に絶縁した状態でインペラが取り付けられ、
前記インペラには該インペラに直流電圧を供給する直流電圧供給手段が接続され、
前記ケーシング近傍には電気的に絶縁した状態でフロート電極が取り付けられ、
前記フロート電極には当該フロート電極の電位を外部に引き出す電位測定端子が設置され、
前記電位測定端子には前記フロート電極に誘起される電圧を測定する電圧測定手段が接続され、
さらに前記電圧測定手段には当該電圧測定手段にて測定した電圧を監視する電圧監視手段が接続され、
前記電圧監視手段は、前記電圧測定手段の測定した電圧について、直流電圧に重畳された交流電圧成分の変動幅を監視するように構成されたことを特徴とするガスブロア。
【請求項2】
前記直流電圧供給手段として、交流電圧を整流する整流器が、前記交流電圧供給手段と電気的に並列に設置されたことを特徴とする請求項1記載のガスブロア。
【請求項3】
前記インペラおよび前記ケーシングの互いに対向する面のうち、一方には帯電列位の高い高帯電体が、他方には帯電列位の低い物質からなる低帯電体が、互いに常時接触するように貼り付けられ、
これら高帯電体および低帯電体は、前記インペラが回転する時、摩擦により静電気を発生させて前記インペラに直流電圧を供給するように構成されたことを特徴とする請求項1記載のガスブロア。
【請求項4】
ケーシング内の駆動モータの回転軸には電気的に絶縁した状態でインペラが取り付けられると共に、前記ケーシング近傍には電気的に絶縁した状態でフロート電極が取り付けられたガスブロアの内部異常を検出する方法において、
ガスブロアの運転中、前記インペラに直流電圧を供給する直流電圧供給ステップと、
前記フロート電極に誘起される電圧を測定する電圧測定ステップと、
前記電圧測定ステップにて測定した電圧を監視する電圧監視ステップを含み、
前記電圧監視ステップでは、前記電圧測定ステップにて測定した電圧について、直流電圧に重畳された交流電圧成分の変動幅を監視することを特徴とするガスブロアの内部異常検出方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−87654(P2012−87654A)
【公開日】平成24年5月10日(2012.5.10)
【国際特許分類】
【出願番号】特願2010−233931(P2010−233931)
【出願日】平成22年10月18日(2010.10.18)
【出願人】(000003078)株式会社東芝 (54,554)
【Fターム(参考)】