説明

スイッチング素子

【課題】より単純な構造で構成されるとともに、安定的にスイッチング動作を行うことができる3端子のスイッチング素子を提供する。
【解決手段】絶縁性基板10と、絶縁性基板に設けられた第1電極20及び第2電極30と、第1電極と第2電極との間に設けられ、第1電極と第2電極との間への所定電圧の印加により抵抗のスイッチング現象が生じるナノメートルオーダーの間隙を有する電極間間隙部40と、電極間間隙部に気体の酸素が満たされた状態で少なくとも電極間間隙部を密封する封止部材50とによりスイッチング素子100を構成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ナノギャップ電極を用いたスイッチング素子に関する。
【背景技術】
【0002】
現在、電子素子の小型化、高密度化に伴い、電気素子の一層の微細化が望まれているが、各種の電子素子は、その微細化の限界が近づきつつある。例えば、現在の主要なメモリ素子であるCMOSの場合、その機能を発現するチャネル長の最小値は6nmであると予想されている。そして、この限界を超えるために、種々の新技術研究開発が推し進められている。
その一例として、微細な間隙を隔てた2つの電極(ナノギャップ電極)を用い、その間隙を機能性有機分子にて橋架けした素子が注目されている。この種の素子では、例えば、白金を用いて形成されたナノギャップ電極の間隙に、カテナン系分子を配置したものが知られている(例えば、非特許文献1参照)。当該電極に電圧を印加することにより、カテナン系分子は酸化還元反応を受け、スイッチング動作が可能となっている。
【0003】
また、ナノギャップ電極としては、その間隙をナノ微粒子にて橋架けした素子も注目されている。例えば、硫化銀及び白金を用いてナノギャップ電極を作成し、その間隙に銀粒子を配置したものが知られている(例えば、非特許文献2参照)。当該電極に電圧を印加することにより、電気化学反応が起きて銀粒子が伸縮することで、電極間を架橋・切断でき、スイッチング動作が可能となっている。
【0004】
ところが、上記の何れのスイッチング素子にあっても、ナノギャップ電極間に特殊な合成分子や複雑な金属の複合系が必要となっている。また、スイッチング動作に化学反応を利用するため、素子の劣化が起こりやすいという問題がある。
そこで、絶縁基板上に第1と第2の電極を形成すると共に、各電極間に空間的なギャップを形成し、当該ギャップを減圧状態に維持し又は乾燥空気、窒素、希ガス等の不活性ガスの雰囲気で封止するスイッチング素子も案出されている(例えば、特許文献1,2参照)。また、このような空間的なギャップは、絶縁基板上の第1電極の端部段差を利用して第2の電極を斜め蒸着により形成することで、微細加工技術を不要とする形成方法が採用されている(例えば、非特許文献3参照)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2007−123828号公報
【特許文献2】特開2008−235816号公報
【非特許文献】
【0006】
【非特許文献1】Science,289(2000)1172−1175
【非特許文献2】Nature,433(2005)47−50
【非特許文献3】Y.Naitoh, M.Horikawa, H.Abe, and T.Shimizu: Nanotechnology Vol.17,pp.5669〜5674(2006)
【発明の概要】
【発明が解決しようとする課題】
【0007】
上記各スイッチング素子は、所定の電圧印加により抵抗値が切り替わる特性を有しており、その特性を利用して不揮発性メモリなどのエレクトロニクスデバイスとしての利用が望まれている。
しかしながら、上述したスイッチング素子は、動作電圧が3V、動作電流が1mA程度であり、エレクトロニクスデバイスとして利用するには、その消費電力が高過ぎるという問題を生じていた。
【0008】
そこで、本発明は、消費電力の低減が図られたスイッチング素子を提供することをその目的とする。
【課題を解決するための手段】
【0009】
請求項1記載の発明は、絶縁性基板と、前記絶縁性基板に設けられた第1電極及び第2電極と、前記第1電極と前記第2電極との間に設けられ、前記第1電極と前記第2電極との間への所定電圧の印加により抵抗のスイッチング現象が生じるナノメートルオーダーの間隙を有する電極間間隙部と、前記電極間間隙部に気体の酸素が満たされた状態で少なくとも前記電極間間隙部を密封する封止部材と、を備えることを特徴とする。
【0010】
請求項2記載の発明は、請求項1記載の発明と同様の構成を備えると共に、前記第1電極及び第2電極を金、白金又はこれらの合金のいずれかにより形成したことを特徴とする。
【0011】
請求項3記載の発明は、請求項1又は2記載の発明と同様の構成を備えると共に、前記封止部材は少なくとも102[Pa]以上の圧力で酸素を封止することを特徴とする。
【0012】
請求項4記載の発明は、請求項1から3のいずれか一項に記載の発明と同様の構成を備えると共に、前記絶縁性基板は段部を有し、前記第1電極と前記第2電極とは前記段部の段差により高低差をもって配置され、前記段部の高さ方向に沿って前記電極間間隙部が形成されたことを特徴とする。
【0013】
請求項5記載の発明は、請求項1から3のいずれか一項に記載の発明と同様の構成を備えると共に、前記絶縁性基板は、前記第1電極から前記第2電極に通じる孔部を有し、当該孔部内に前記電極間間隙部が形成されると共に、前記封止部材は、当該孔部を密封することを特徴とする。
【発明の効果】
【0014】
本願発明は、第1電極と第2電極との間にナノメートルオーダーの空間的な間隙を有する電極間間隙部を形成し、当該電極間間隙部に酸素を封入することで、所定電圧の印加により電極間での抵抗値の切り替えが行われるというスイッチング動作を実現したので、当該スイッチング素子を有機分子や無機粒子などが不要で、より単純な構造で構成することができる。
また、当該スイッチング素子は電極間に劣化する物質を含まないため、スイッチング動作を安定的に繰り返すことができる。
加えて、スイッチング素子は不揮発性を有し、スイッチング動作後に外部入力がなくとも、当該スイッチング素子100の動作状態を維持することができる。
【0015】
さらに、封止部材によって電極間間隙部を酸素雰囲気で封止することにより、例えば、従前から使用される窒素のような不活性ガスを封止した場合に比べて、電極間間隙部における電流電圧特性のピーク電圧を低減することが可能である(図7〜図10参照)。また、ピーク電流についても窒素封入の場合と比べて上昇を生じるものではないことから、スイッチング素子をエレクトロニクスデバイスとして使用する場合でも、その消費電力の低減を図ることが可能となる。
また、ピーク電圧とピーク電流とは、封止される酸素ガスの圧力の増加に応じて低減する特性を示すことから、酸素ガス圧力を適宜調整することにより、ピーク電圧及びピーク電流を任意に設定することが可能となる。
【図面の簡単な説明】
【0016】
【図1】本発明を適用した一実施形態として例示するスイッチング素子の要部を模式的に示す断面図である。
【図2】図1の構成に封止部材を設けたスイッチング素子の模式図である。
【図3】図1のスイッチング素子の製造工程における第1の蒸着工程を模式的に示す断面図である。
【図4】図1のスイッチング素子の要部を模式的に示す要部拡大断面図である。
【図5】ナノギャップ電極を有するスイッチング素子の電流−電圧曲線の一例を示す線図である。
【図6】スイッチング素子のナノギャップ電極間に印加される電圧と経過時間との対応関係を示す図6(a)及びナノギャップ電極間を流れる電流と経過時間との対応関係を示す図6(b)である。
【図7】酸素雰囲気下で気体圧力を10Pa、1.5KPa、20KPaの三段階とした場合の電流電圧特性を示す線図である。
【図8】1.0〜10Paまでの範囲で酸素ガスの圧力を変化させた場合のピーク電圧の変化を示す線図である。
【図9】1.0〜10Paまでの範囲で酸素ガスの圧力を変化させた場合のピーク電流の変化を示す線図である。
【図10】各電極を金により形成したスイッチング素子について0.1Pa〜2×10Paまでの範囲で酸素ガスの圧力を変化させた場合のピーク電圧(図5におけるA点の電圧に相当)の変化を示す線図である。
【図11】スイッチング素子内を窒素ガスで満たした比較例について気体圧力を1KPa、10KPa、100KPaの三段階とした場合の電流電圧特性を示す線図である。
【図12】スイッチング素子の変形例1の断面図である。
【図13】スイッチング素子の変形例2の断面図である。
【発明を実施するための形態】
【0017】
以下に、本発明について、図面を用いて具体的な態様を説明する。ただし、発明の範囲は、図示例に限定されない。
ここで、図1は、本発明を適用した一実施形態として例示するスイッチング素子100の要部を模式的に示す断面図である。また、図2は図1の構成に封止部材50を加えた例を示す模式図である。
【0018】
本実施形態にかかるスイッチング素子100は、例えば、図1及び図2に示すように、絶縁性基板10と、絶縁性基板10の上面(一面)に設けられた第1電極20及び第2電極30と、第1電極20と第2電極30との間に設けられた電極間間隙部40と、絶縁性基板10の電極形成面側が酸素ガスで満たされた状態で封止する封止部材50とを有している。
【0019】
絶縁性基板10は、例えば、スイッチング素子100の2つの電極20,30を隔てて設けるための保持体を構成している。また、この絶縁性基板10は、第1電極20と第2電極30のそれぞれに対して絶縁されている。
絶縁性基板10の構造及び材質は、特に限定されるものではない。具体的には、例えば、絶縁性基板10の表面の形状は、平面であってもよいし、凹凸を有していてもよい。また、絶縁性基板10は、例えば、Si等の半導体基板の表面に酸化膜等を設けたものであっても良いし、基板そのものが絶縁性とされたものであってもよい。また、絶縁性基板10の材質としては、例えば、ガラス、酸化珪素(SiO)などの酸化物、窒化珪素(Si)などの窒化物等が好ましく、このうち、酸化珪素(SiO)が、後述の電極20、30との密着性と、その製造において自由度が大きい点で好適となっている。
【0020】
第1電極20は、例えば、第2電極30と対になって当該スイッチング素子100のスイッチング動作を行うためのものである。
第1電極20の形状は、特に限定されるものではなく、適宜任意に変更することができる。
第1電極20の材質は、特に限定されるものではないが、後述するようにスイッチング素子内部は酸素雰囲気で満たされるので、酸化を生じにくい材質、例えば、金、銀、白金、銅等イオン化傾向が小さいもの或いはこれらの合金から選ばれる少なくとも1つであることが好ましく、特に、金、白金を用いることが特に好ましい。ここで、絶縁性基板10との接着性を強化するために、例えば、異なる金属を2層以上重ねて用いても良い。なお、図1及び図2にあっては、後述の工程説明の便宜上、第1電極20は第1電極下部21と第1電極上部22とをあわせたものとして表している。
【0021】
第2電極30は、例えば、第1電極20と対になって当該スイッチング素子100のスイッチング動作を可能にする。
第2電極30の形状は、特に限定されるものではなく、適宜任意に変更することができる。
第2電極30の材質は、特に限定されるものではないが、後述するようにスイッチング素子内部は酸素雰囲気で満たされるでの、酸化を生じにくい材質、例えば、金、銀、白金、銅等イオン化傾向が小さいもの或いはこれらの合金から選ばれる少なくとも1つであることが好ましく、特に、金、白金を用いることが特に好ましい。ここで、絶縁性基板10との接着性を強化するために、例えば、異なる金属を2層以上重ねて用いても良い。
【0022】
電極間間隙部40は、例えば、第1電極20と第2電極30間にナノメートルオーダーの間隙を有するものであり、当該スイッチング素子100の後述するスイッチング現象を発現する役割を具備している。
第1電極20と第2電極30間(ナノギャップ電極間)の距離(間隔)Gは、例えば、0nm<G≦13nmであるのが好ましく、0.8nm<G<2.2nmであるのがより好ましい。
ここで、距離Gの上限値を13nmとしたのは、例えば、二回の斜め蒸着で作成する場合には、ギャップ間隔が13nmより大きくなるとスイッチングが起きなくなるためである。
一方、距離Gの下限値は、0nmとすると第1電極20と第2電極30とが短絡していることになるが、後述する実施例1のグラフ(図5参照)は0V付近で変化しており、0nmより大きいギャップが存在することが明らかである。なお、下限値を顕微鏡測定によって決定することは困難であるが、トンネル電流が生じうる最小距離であるということができる。即ち、下限値は、素子が動作したときに、電流−電圧特性がオームの法則に従わずに量子力学的なトンネル効果が観測される距離の理論値である。
ここで、トンネル電流の理論式に抵抗値を代入すると、ギャップ幅の計算結果として0.8nm<G<2.2nmの範囲が求められる。
【0023】
また、電極間間隙部40(第1電極20と第2電極30との間)の直流電気抵抗は、例えば、1kΩより大きく10TΩ未満であるのが好ましく、100kΩより大きいのがより好ましい。
ここで、抵抗の上限値を10TΩとしたのは、10TΩ以上とすると、スイッチングが起きなくなるためである。一方、抵抗の下限値を1kΩとしたのは、現状では1kΩ以下に下がったことがないため、これを下限としている。
なお、スイッチとして使用する場合には、OFF状態での抵抗は高いほど良いため、上限値はより高い値となるのが好ましいが、ON状態での抵抗が1kΩであると、mAオーダーの電流が簡単に流れてしまい、他の素子を破壊する可能性があるため、下限値は100kΩ程度とするのが好ましい。
【0024】
なお、第1電極20と第2電極30間の最近接部位は、例えば、第1電極20と第2電極30とが対向する領域に1若しくは複数箇所形成されていても良い。
また、第1電極20と第2電極30間には、例えば、当該第1電極20及び第2電極30の構成材料等からなる島部分(中州部分)が形成されていても良い。この場合には、例えば、第1電極20と島部分間、第2電極30と島部分間に所定の間隙が形成されて、第1電極20と第2電極30が短絡していなければ良い。
また、第1電極20及び第2電極30の各々には、リード線L1,L2が接続されており、当該リード線L1,L2は封止部材50の外側に延出されている(図2参照)。
【0025】
封止部材50は、例えば、電極間間隙部40を大気に接触させず、酸素雰囲気で満たした状態として、当該スイッチング素子100をさらに安定に動作させるためのものである。なお、この封止部材50は、少なくとも電極間間隙部40が酸素ガスのみに暴露されるよう封止行う構造であれば足りるが、図示の例では絶縁性基板10の電極形成面側全体を封止する構造を例示している。また、当該スイッチング素子100全体が酸素雰囲気で封止されるよう構成しても良い。
封止部材50の形状及び材質は、電極間間隙部40を大気に接触しないようにし、酸素ガスが漏洩しないよう密封する機能を具備する限り、適宜任意に変更することができる。封止部材50の材質は、例えば、絶縁性基板10と同じ材質を採用しても良いし、公知の半導体封止材料を用いることもでき、必要に応じて、公知の物質からなる気体バリヤ層等を設けても良い。
【0026】
ここで、圧力Pは、10−6Pa以上であって10Pa以下の範囲を逸脱すると取り扱いが難しいため、少なくとも当該範囲を逸脱しないようにすることが望ましい。より具体的には、封止部材50の内部の圧力Pは、例えば、10Pa以上とするのが好ましく、さらには、1.5×10Pa以上、より望ましくは2×10Paとする。
なお、電極間間隙部40の周囲を酸素で満たすことにより効果については、上述する実施例の記載において実測データに基づいて説明する。
【0027】
次に、スイッチング素子100の製造方法について説明する。
スイッチング素子100は、例えば、(1)絶縁性基板10の準備工程、(2)第1のレジストパターン形成工程、(3)第1の蒸着工程、(4)第1のリフトオフ工程、(5)第2のレジストパターン形成工程、(6)第2の蒸着工程、(7)第2のリフトオフ工程、(8)電界破断工程、及び(9)封止工程を行うことにより製造される。
【0028】
(1)絶縁性基板10の準備工程
絶縁性基板10としては、例えば、酸化膜付きSi基板、その他表面が絶縁性の基板等が用いられる。具体的には、例えば、Si等の導電性の基板を用いる場合には、その表面に所望の絶縁膜を、熱処理、酸化処理、蒸着、スパッタ等の公知の方法によって設け、絶縁膜を絶縁性基板10とする。また、例えば、ガラス等の絶縁性の基板を絶縁性基板10として用いる場合は絶縁膜の形成は不要である。
【0029】
(2)第1のレジストパターン形成工程
第1のレジストパターン形成工程は、例えば、フォトリソグラフィー等を用いて行われ、絶縁性基板10に第1電極下部21を形成するためのレジストパターン60を形成する(図3参照)。
なお、レジストパターン60の厚さは、例えば、適宜任意に変更することができ、具体的には、1μmとされている。
【0030】
(3)第1の蒸着工程
第1の蒸着工程は、例えば、所定の蒸着装置を用いて行われ、第1電極下部21を形成する。
絶縁性基板10の被蒸着面は、例えば、蒸着源から被蒸着面を臨むとき傾斜するように配置される。即ち、絶縁性基板10は、例えば、図3に示すように、被蒸着面と、蒸着源から蒸散する粒子の飛来方向とのなす角をθ1としたとき、0°<θ1<90°となるように配置される(当該蒸着方法を、以下、「傾斜蒸着」と言う)。この結果、第1電極下部21は、その先端部が絶縁性基板10(被蒸着面)に対して傾斜した形状に形成される。
なお、第1電極下部21の先端部の傾斜方向と、絶縁性基板10表面とのなす角をθ1’は、例えば、レジストパターン60の形状、絶縁性基板10表面の金属が堆積する特性及び角度θ1の大きさなどによって変更することができる。
【0031】
また、第1の蒸着工程は、例えば、金、銀、白金、銅或いはそれらの合金から選ばれる少なくとも何れか一つの物質を1回又は複数回蒸着するようになっている。具体的には、複数回の蒸着としては、例えば、一回の蒸着ごとに金属を替えて蒸着することにより、2層構造の第1電極下部21を形成するようにしても良い。
第1電極下部21の厚さは、例えば、適宜任意に変更することができ、ここでは5nm以上としている。
【0032】
(4)第1のリフトオフ工程
第1のリフトオフ工程は、例えば、レジストパターン60の材質に適合する剥離液を用い行われ、当該工程の結果、第1電極下部21が形成されるとともに、レジストパターン60上に形成された犠牲電極21aが除去される。
【0033】
(5)第2のレジストパターン形成工程
第2のレジストパターン形成方法は、例えば、フォトリソグラフィー等を用いて行われ、第2電極30及び第1電極上部22を形成するためのレジストパターン(図示略)を形成する。
【0034】
(6)第2の蒸着工程
第2の蒸着工程は、例えば、所定の蒸着装置を用いて行われ、第2電極30を形成するとともに、付随的に第1電極上部22を形成する(図4参照)。
また、第2の蒸着工程は、例えば、傾斜蒸着により行われ、例えば、図4に示すように、被蒸着面と、蒸着源から蒸散する粒子の飛来方向とのなす角をθ2としたとき、θ1’<90°のときは、0°<θ2<θ1’<90°となるように、また、90°≦θ1’のときは、0°<θ2<90°となるように絶縁性基板10が配置される。
さらに、第2の蒸着工程は、例えば、金、銀、白金、銅或いはそれらの合金から選ばれる少なくとも何れか一つの物質を1回又は複数回蒸着するようになっている。
【0035】
また、第2の蒸着工程により、第1電極20と第2電極30間にナノメートルオーダーの間隙を有する電極間間隙部40が形成される。
即ち、電極間間隙部40の形成は、例えば、第2の蒸着工程の傾斜蒸着における、蒸着粒子により形成される第1電極下部21の影を利用している。従って、第1電極下部21の厚さ及び第2の蒸着工程における傾斜蒸着の角度θ2のうち、少なくとも何れか一方を調整することにより、所望の電極間距離Gを有する電極間間隙部40を得ることができる。
【0036】
(7)第2のリフトオフ工程
第2のリフトオフ工程は、例えば、レジストパターンの材質に適合する剥離液を用い行われ、当該工程の結果、第1電極20及び第2電極30が形成され、ナノギャップ電極が得られる。
【0037】
(8)電界破断工程
ナノギャップ電極は短絡している場合があるため、必要に応じて、当該電界破断工程を行うことが好ましい。
電界破断工程は、例えば、短絡している電極と直列に可変抵抗、固定抵抗及び電源(何れも図示略)を接続して電圧を印加する。そして、可変抵抗の抵抗値を初期値(抵抗大)からゆっくり抵抗が小さくなるように調節して、電流が流れなくなる時点で止めることにより、所望の電極間距離Gを有するナノギャップ電極を得ることができる。
【0038】
(9)封止工程
封止工程は、例えば、所定の気密封止技術を利用して行われ、酸素雰囲気中で、セラミック封止、ガラス封止、プラスチツク封止又は金属キャップによる封止等により行われる。
【0039】
なお、上記のスイッチング素子100の製造方法は、一例であって、これに限られるものではない。
【0040】
次に、本実施形態のスイッチング素子100の動作の一例を以下に説明する。図5は、スイッチング素子100の電流−電圧曲線の一例を模式的に示す。図5の横軸は、スイッチング素子100のナノギャップ電極間に印加される電圧に対応し、縦軸は、電流に対応する。図5には、説明のため、AからHおよび0の符号を付した。
【0041】
図5に示すように、スイッチング素子100の電流−電圧曲線は、0点について、点対称となっているため、スイッチング素子100に印加する電圧および電流は、スイッチング素子100の極性に依存しない。このため、以下の説明では、図5は右半分すなわち電圧が正の部分について説明し、電圧が負の部分についての説明を省略する。電圧が負の部分についてのスイッチング動作は、以下の説明の極性を適宜反対にして読みかえることとする。図5のB点を通るA点(抵抗最小値の電圧)とC点との間の領域では、スイッチング素子100は、印加電圧を高くするにしたがって抵抗が大きくなる負性抵抗効果を示す。この領域では印加電圧に依存してスイッチング素子100の状態が変化する。以下、この電圧領域を遷移領域と呼ぶ。この遷移領域における電圧を、素子に印加した状態から瞬時に電圧を0点付近の値(実用的には、A点付近とE点付近との間の値)に変化させる(以下このような瞬時に電圧値を0点付近に変化させる操作を「電圧のカット」と呼ぶ。)と、電圧をカットする直前に印加していた電圧値に対応する抵抗値を得ることができる。このときの抵抗値を決定する遷移状態の電圧が、A点に近く設定されているほど、素子の抵抗値は小さくなり、またA点より高い電圧に設定すればするほど、抵抗値は大きくなる。ここで遷移領域のB点は、電圧をカットした後の、抵抗の小さい状態(以下、「ON状態」という。)と、抵抗の大きい状態(以下、「OFF状態」という。)との中間の状態を得られる点をあらわしている。そして、遷移領域の低電圧側の端、すなわちA点付近の電圧をしきい値電圧と呼ぶ。ここでしきい値をA点付近の値と定義しているのは、動作電圧や測定環境などによって、遷移領域の中で最小の素子抵抗を得られる電圧であるしきい値が、図5のA点と必ずしも一致せず、場合によっては多少ずれてしまうためである。
【0042】
図6(a)は、ナノギャップ電極間に印加される電圧と経過時間との対応関係を模式的に示す図であり、図6(b)は、ナノギャップ電極間を流れる電流と経過時間との対応関係を模式的に示す図である。
まず、ナノギャップ電極間に矩形パルスIのON電圧(図5におけるA−B間でAに近い大きさの電圧)を印加して、その後、読出電圧R1を印加すると(図6(a)参照)、ナノギャップ電極間に大きな電流が流れ、スイッチング素子100がON状態になったことが確認される(図6(b)参照)。
次に、ナノギャップ電極間に矩形パルスJのOFF電圧(図5におけるB−C間でCに近い大きさの電圧)を印加して、その後、読出電圧R2を印加すると(図6(a)参照)、ナノギャップ電極間には電流が流れず、スイッチング素子100がOFF状態になったことが確認される(図6(b)参照)。
【0043】
なお、これ以降は、同様にON電圧K、OFF電圧Lを繰り返して印加すると、スイッチング素子100は、ON状態、OFF状態のスイッチング動作を同様に繰り返すようになっているため、説明を省略するものとする。
【0044】
(実施例)
実施例としてのスイッチング素子100は、その絶縁性基板10として、厚さ300nmの酸化シリコン層で被覆されたシリコン基板を用いた。第1のレジストパターンの厚みは、1μmとした。第1電極下部22の水平方向の幅は、100μmとなるように第1のレジストパターンを形成した。第1電極下部22は、白金を蒸着し、その厚みが25nmとなるようにした。第1の蒸着工程の傾斜蒸着時の角度θ1は、75°とした。第2のレジストパターンの厚みは、1μmとした。第2電極30の水平方向の幅は、2μmとなるように第2のレジストパターンを形成した。第2電極30は、白金を蒸着し、その厚みが15nmとなるようにした。したがって、第1電極20の全体の厚みは、約40nmとなった。第2の蒸着工程の傾斜蒸着時の角度θ2は、60°とした。次いで、第2のリフトオフ工程をおこなった。前記の状態でスイッチング素子100は、第1電極20と第2電極30が短絡しているものを含んでいたため、電界破断工程を実施し、短絡部の除去をおこなった。電界破断の条件は、付加電圧は、1V、抵抗Rc値は、100Ωとし、可変抵抗Rvを100kΩから0Ωへ向かって、徐々に下げ、電流量を徐々に増加させた。電界破断を起こした時の、電流量は約4mAであった。以上のようにしてスイッチング素子100を得た。
そして、上記スイッチング素子100を真空プローバー内に入れ、真空ポンプで0.1Paまで減圧し、内部に酸素ガスを導入することで、任意の真空圧力を維持しつつ酸素雰囲気を実現した。かかる酸素雰囲気下のスイッチング素子の電流電圧特性を半導体パラメータアナライザー(Keithley4200)により測定した。なお、酸素の圧力を任意に変更して上記測定を行うため、このスイッチング素子100は便宜上、封止部材50を設けていないが、電極間間隙部40を含むスイッチング素子100全体を酸素雰囲気中に暴露し、外気を遮断しているので、封止部材により酸素を封入したスイッチング素子と同等に見なすことができる。
【0045】
図7は上記酸素雰囲気下で気体圧力を10Pa、1.5KPa、20KPaの三段階とした場合の電流電圧特性を示す線図であり、図8は1.0〜10Paまでの範囲で酸素ガスの圧力を変化させた場合にピーク電圧(図5における電流値が最大となるA点の電圧に相当)の変化を示す線図、図9は1.0〜10Paまでの範囲で酸素ガスの圧力を変化させた場合のピーク電流(図5におけるA点の電流に相当)の変化を示す線図である。また、図11には比較のために、上述したスイッチング素子を窒素雰囲気下で気体圧力を1KPa、10KPa、100KPaの三段階とした場合の電流電圧特性を示した。
【0046】
図7〜9によれば、実施例1のスイッチング素子は、1KPa、10KPa、100KPaにおいてピーク電圧はおよそ2Vから1.5Vの間で変化し、ピーク電流はおよそ0.7mAから1.0mAの間で変化している。一方、比較例では図11に示すように、1KPa、10KPa、100KPaにおいてピーク電圧はおよそ3.0Vから3.4Vの間で変化し、ピーク電流はおよそ0.6mAから0.9mAの間で変化している。
これらの比較によれば、スイッチング素子に酸素封入により、従来の窒素封入のスイッチング素子に比べてピーク電圧を低減する効果が得られることが観測された。
さらに、図8によれば、封入される酸素ガスの圧力が高くなるにつれてピーク電圧が低減することが観測された。また、図9によれば、封入される酸素ガスの圧力が10Paを超えると一部上昇するが、それよりも低圧の範囲では酸素ガスの圧力が高くなるにつれてピーク電圧が低減することが観測された。
【0047】
また、酸素ガスの圧力は、図8に示すように、10Pa以上とすることにより、ピーク電圧を大きく低減することが可能である。即ち、窒素ガスの雰囲気下の場合には図11に示すように、各圧力下でピーク電圧はせいぜい3V程度までしか下がらないが、酸素ガスの雰囲気下では、圧力を10Pa以上とした範囲では3Vを大きく下回り、2V台までピーク電圧を低減することが可能である。なお、図10に示すように、電極は白金に限らず、金で形成した場合も同様である。なお、計測試験は圧力を10Pa(≒大気圧)までしか行っていないが、スイッチング素子100の内部圧力としては酸素ガスの漏洩を生じないよう、大気圧程度までが上限と考えて良い。
【0048】
なお、上記実施例のスイッチング素子は各電極を白金で形成したものを例示したが、電極を金により形成した場合にも同様にピーク電圧の低減等を図ることが可能である。図10は各電極を金により形成したスイッチング素子について0.1Pa〜2×10Paまでの範囲で酸素ガスの圧力を変化させた場合のピーク電圧(図5におけるA点の電圧に相当)の変化を示す線図である。この図のように、電極を金で形成した場合には、白金で形成した場合と比べてもピーク電圧が同等或いはそれ以下にまで低減することが可能であることが観測された。
【0049】
(スイッチング素子における技術的効果)
以上のように、本実施形態のスイッチング素子100によれば、当該スイッチング素子100の構造をより単純なものとすることができ、スイッチング動作を安定的に繰り返すことができる。即ち、ナノメートルオーダーの空間的な間隙を空けて配設されたナノギャップ電極(第1電極20及び第2電極30)と封止部材50とによって構成されているので、有機分子や無機粒子などが不要で、より単純な構造で構成することができる。
さらに、当該スイッチング素子100は劣化する物質を含まないため、スイッチング動作を安定的に繰り返すことができる。
加えて、スイッチング素子100は不揮発性を有し、スイッチング動作後に外部入力がなくとも、当該スイッチング素子100の動作状態を維持することができる。
【0050】
また、封止部材50によってナノギャップ電極間を含む絶縁性基板10の片側を酸素雰囲気で封止することにより、例えば、従前から使用される窒素のような不活性ガスを封止した場合に比べて、ピーク電圧を低減することが可能である。また、ピーク電流についても窒素封入の場合と比べて上昇を生じるものではないことから、スイッチング素子をエレクトロニクスデバイスとして使用する場合でも、その消費電力の低減を図ることが可能となる。
また、ピーク電圧とピーク電流とは、封止される酸素ガスの圧力の増加に応じて低減する特性を示すことから、酸素ガス圧力を適宜調整することにより、ピーク電圧及びピーク電流を任意に設定することが可能となる。
【0051】
また、スイッチング素子100では、第1電極20及び第2電極30を酸化しにくい材質、特に、金、白金又はこれらの合金のいずれかにより形成することにより、電極間間隙部40が酸素雰囲気で封止された場合でも、各電極20,30の酸化をより効果的に抑制し、電極間のスイッチング動作を良好に行うことを可能とする。また、酸化防止により耐久性を向上し、良好な動作を長期間維持することが可能となる。
【0052】
(スイッチング素子の変形例[1])
なお、本発明は、上記実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲において、種々の改良並びに設計の変更を行っても良い。
以下に、本発明に係るスイッチング素子の変形例について説明する。なお、以下に説明する複数の変形例について、前述したスイッチング素子100と共通する構成については同符号を付して説明を省略するものとする。
【0053】
変形例1のスイッチング素子200は、例えば、図12に示すように、絶縁性基板10と、絶縁性基板10の上面に設けられた絶縁体260と、絶縁性基板10の上面に設けられた第1電極220と、第1電極220の上方に設けられた第2電極230と、第1電極220と第2電極230との間に設けられた電極間間隙部240と、絶縁性基板10の電極形成面側が酸素ガスで満たされた状態で封止する封止部材50とを主に備えている。
具体的には、絶縁体260が絶縁性基板10の上面に設けられることにより段部を構成しており、当該絶縁体260により、第一電極220と台に電極230とが高低差をもって基板10上に配置されている。そして、第1電極220は、絶縁性基板10の上面と絶縁体260の側面261の下側部分とに接して設けられており、第2電極230は、絶縁体260の上面と絶縁体260の側面261上側部分とに接して設けられている。そして、電極間間隙部240は、絶縁体260の側面261下側部分に設けられた第1電極220と、絶縁体260の側面261上側部分に設けられた第2電極230との間に設けられている。つまり、電極間間隙部240は絶縁体260により形成される段部の高さ方向に沿ってギャップGが形成されている。
【0054】
なお、第1電極220及び第2電極230の材質は、前述した第1電極20及び第2電極30と同様のものを選択することが望ましい。
また、絶縁体260は、電極間間隙部240を構成する第1電極220の対向部位と第2電極230の対向部位とが基板10の平面に対する高さ方向に沿って並ぶように配置するためのものである。従って、上記機能を具備する限り、他の構造を採っても良い。
また、絶縁体260は、例えば、絶縁性基板10の一部に酸化膜等を設けたものであってもよいし、絶縁性基板10全面に酸化膜等を設け、その一部を取り去ることで形成されるものであってもよい。また、絶縁体260の材質としては、例えば、ガラス、酸化珪素(SiO)などの酸化物、窒化珪素(Si)などの窒化物等が好ましく、このうち、酸化珪素(SiO)が、第1電極220及び第2電極230との密着性と、その製造における自由度と、が大きい点で好適となっている。
【0055】
また、電極間間隙部240は、前述した電極間間隙部40に比して形成される平面の向きが異なる点を除けば、実体的な構造はほぼ同一である。従って、電極間間隙部240の寸法などの設計条件やその動作方法は前述した電極間間隙部40の場合と同様である。
【0056】
かかる変形例1のスイッチング素子200は、前述したスイッチング素子100と同様の技術的効果を具備すると共に、
絶縁性基板10の上面に対して絶縁体260により形成される段部により第1電極220及び第2電極230が高低差をもって配置され、その高さ方向に沿って電極間間隙部240が形成されているため、第1電極220、第2電極230及び電極間間隙部240を同一平面上に並べて配置する場合に比べて当該電極間間隙部240が絶縁性基板10の平面視での占有面積を低減することが可能となる。これにより、例えば、単一の絶縁性基板10を共有して多数のスイッチング素子200を集積化することでメモリ素子を形成する場合に、集積化に有利であり、メモリ素子の小型化を図ることが可能となる。
【0057】
(スイッチング素子の変形例[2])
本発明に係るスイッチング素子の変形例2について説明する。なお、以下に説明する複数の変形例について、前述したスイッチング素子100と共通する構成については同符号を付して説明を省略するものとする。
【0058】
変形例2のスイッチング素子300は、例えば、図13に示すように、絶縁性基板10と、絶縁性基板10の上面に接して設けられた第1電極320と、第1電極320の上面に接して設けられた絶縁体360と、第1電極320の上方に配置され、絶縁体360の上面に接して設けられた第2電極330と、第1電極320と第2電極330との間に設けられた電極間間隙部340と、第2電極330の上面に接して設けられた封止部材350とを主に備えて構成される。
【0059】
このスイッチング素子300は、基板10の平面に対して直交する方向(上下方向)に沿って並んで第1電極320及び第2電極330が配置され、電極間間隙部340を構成する第1電極320と第2電極330の相互の対向部位も上下方向に沿って並んで配置する点で前述したスイッチング素子200と共通している。
具体的には、スイッチング素子300は、第1電極320と第2電極330の間に絶縁体360が介在し、第1電極320から第2電極330にかけて貫通する孔部としてのホール361を絶縁体360に形成し、当該ホール361の内部空間に電極間間隙部340を形成するという構造を採っている。
そして、電極間間隙部340は、第1電極320からホール361の内面に沿って第2電極330に向かって延出された延出端部321と、第2電極330からホール361の内面に沿って第1電極320に向かって延出された延出端部331とから構成されている。また、当該各延出端部の先端に所定のギャップGが形成される点は前述したスイッチング素子100と同様である。
【0060】
また、第2電極330は、ホール361の内部空間を上方に向けて開放する開口部332が形成されており、封止部材350は開口部332を塞ぐように第2電極330の上面に形成されることでホール361内部に酸素ガスを封入している。
【0061】
かかるスイッチング素子300では、第1電極320及び第2電極330の材質は、前述した第1電極20及び第2電極30と同様のものを選択することが望ましい。
また、絶縁体360は、第1電極320と第2電極330とが基板10の平面に対して直交する方向(上下方向)に並んで配置されるように支持するためのものであり、当該配置を実現するための支持構造であれば他の構造を採用しても良い。
また、この絶縁体360は、絶縁性基板10と共に各電極320及び330を保持する機能を果たすものであり、機能的には絶縁性基板10の一部と見なすことができる。
また、絶縁体360は、例えば、絶縁性基板10の一部に酸化膜等を設けたものであってもよいし、絶縁性基板10全面に酸化膜等を設け、その一部を取り去ることで形成されるものであってもよい。また、絶縁体360の材質としては、例えば、ガラス、酸化珪素(SiO)などの酸化物、窒化珪素(Si)などの窒化物等が好ましく、このうち、酸化珪素(SiO)が、第1電極320及び第2電極330との密着性と、その製造における自由度と、が大きい点で好適となっている。
【0062】
また、電極間間隙部340は、前述した電極間間隙部40に比して形成される平面の向きが異なる点を除けば、実体的な構造はほぼ同一である。従って、電極間間隙部340の寸法などの設計条件やその動作方法は前述した電極間間隙部40の場合と同様である。
【0063】
かかる変形例2のスイッチング素子300は、前述したスイッチング素子100と同様の技術的効果を具備すると共に、絶縁性基板10に設けられた絶縁体360にホール361を設け、当該ホール361内に電極間間隙部340を形成しているので、第1電極320と第2電極330とを上下方向に重ねて配置した場合に、その相互間に電極間間隙部340を配置することができる。その結果、絶縁性基板10の平板面に対して上下方向に沿って第一の電極320と電極間間隙部340と第二の電極330とを並べて配置することが可能であるため、絶縁性基板10の平面視における各電極320,330が占有する面積を低減することが可能となる。これにより、例えば、単一の絶縁性基板10を共有して多数のスイッチング素子300を集積化して形成することでメモリ素子を製造する場合に、集積化に有利であり、メモリ素子の小型化を図ることが可能となる。
また、絶縁性基板10の平面に対して交差する方向(上下方向)に沿って第一の電極320と第二の電極330とを配置することが可能であるため、例えば、メモリ素子を製造する場合に、各スイッチング素子300を絶縁性基板10の平面に沿って互いに交差(直交)する二方向に沿って平面状に並べて配置する場合に、互いに交差する二方向の内の一方向について第一の電極320の共通一体化を図ることができると共に、互いに交差する二方向の内の他の方向について第二の電極330の共通一体化を図ることができ、集積化にさらなる有利な構造を採ることが可能となる。
【符号の説明】
【0064】
10 絶縁性基板
20,220,320 第1電極
30,230,330 第2電極
40,240,340 電極間間隙部
50,350 封止部材
100,200,300 スイッチング素子
260 絶縁体(段部)
361 ホール(孔部)

【特許請求の範囲】
【請求項1】
絶縁性基板と、
前記絶縁性基板に設けられた第1電極及び第2電極と、
前記第1電極と前記第2電極との間に設けられ、前記第1電極と前記第2電極との間への所定電圧の印加により抵抗のスイッチング現象が生じるナノメートルオーダーの間隙を有する電極間間隙部と、
前記電極間間隙部に気体の酸素が満たされた状態で少なくとも前記電極間間隙部を密封する封止部材と、
を備えることを特徴とするスイッチング素子。
【請求項2】
前記第1電極及び第2電極を金、白金又はこれらの合金のいずれかにより形成したことを特徴とする請求項1記載のスイッチング素子。
【請求項3】
前記封止部材は少なくとも102[Pa]以上の圧力で酸素を封止することを特徴とする請求項1又は2記載のスイッチング素子。
【請求項4】
前記絶縁性基板は段部を有し、前記第1電極と前記第2電極とは前記段部の段差により高低差をもって配置され、
前記段部の高さ方向に沿って前記電極間間隙部が形成されたことを特徴とする請求項1から3のいずれか一項に記載のスイッチング素子。
【請求項5】
前記絶縁性基板は、前記第1電極から前記第2電極に通じる孔部を有し、
当該孔部内に前記電極間間隙部が形成されると共に、前記封止部材は、当該孔部を密封することを特徴とする請求項1から3のいずれか一項に記載のスイッチング素子。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2011−176211(P2011−176211A)
【公開日】平成23年9月8日(2011.9.8)
【国際特許分類】
【出願番号】特願2010−40306(P2010−40306)
【出願日】平成22年2月25日(2010.2.25)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成21年度独立行政法人新エネルギー・産業技術総合開発機構委託研究「ナノエレクトロニクス半導体新材料・新構造ナノ電子デバイス技術開発」産業技術力強化法第19条の適用を受ける特許出願
【出願人】(301021533)独立行政法人産業技術総合研究所 (6,529)
【出願人】(505303059)株式会社船井電機新応用技術研究所 (108)
【出願人】(000201113)船井電機株式会社 (7,855)
【Fターム(参考)】