説明

ディスペンシング装置、ディスペンシング方法及び生体試料含有溶液吐出不良検出方法

【課題】 生体試料を固相上に確実にスポッティングできるディスペンシング技術を提案する。
【解決手段】 ヘッドチップ(12)はヘッドドライバIC(313)から出力される駆動制御信号に基づいて、振動板と個別電極の間に電圧パルスを印加し、振動板の弾性変形により加圧室内に充填されている蛋白質含有溶液を吐出する。駆動パルス発生回路(307)はヘッドドライバ(12)から蛋白質含有溶液を吐出するために、駆動電圧パルスを発生させ、ヘッドチップ(12)に供給する。駆動電流検出回路(308)は振動板と個別電極の間に流れる駆動電流を検出する。吐出状態が正常な場合と異常な場合とでは、検出駆動電流の波形及びピーク電流値などが異なるため、かかる変化を検出することで、吐出不良を判別できる。吐出状態が良好な吐出機構を利用して蛋白質含有溶液を基板上にスポッティングすれば、良質なプロテインチップを作製できる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は蛋白質、核酸などの生体試料を固相上にスポッティングするためのディスペンシング技術に関し、特に、マイクロチップの作製に好適な改良技術に関する。
【背景技術】
【0002】
バイオテクノロジー技術の進展により、ヒトゲノムが解読され、遺伝子研究は蛋白質の構造解析及び機能解析の段階へ移行している。例えば、医薬品の研究などにおいては、どのような蛋白質が病状にどのように関係しているのか、さらには、その働きを抑制するにはどのような薬品を開発すればよいかなど、プロテオミクスの研究が重要となりつつある。このようなプロテオミクスの研究において、各種の蛋白質を基板上にスポッティングしたプロテインチップが利用されている。同チップの作製手法として、例えば、下記特許文献1(特開平11−187900)に開示されているように、インクジェットヘッドから各種の蛋白質含有溶液を吐出し、固相上へスポッティングする手法が知られている。
【特許文献1】特開平11−187900号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
しかし、一般的に蛋白質溶液の粘性は高く、また、種類によってその粘性も著しく異なることから、インクジェットヘッドを用いた固相へのスポッティングでは安定した吐出特性の実現が困難となる。特に、蛋白質溶液の飛行軌跡が不安定となると、クロスコンタミネーションが起きるため、良質なプロテインチップの作製が困難となる。さらに、従来の手法では、多種類の蛋白質から成るプロテインチップを作製するには時間を要し、生産効率が良くない上に時間の経過により蛋白質が失活し、プロテインチップの信頼性が低下する問題があった。このような問題はDNAマイクロアレイを作製する場合にも生じていた。
【0004】
そこで、本発明は生体試料を固相上に確実にスポッティングできるディスペンシング技術を提案することを課題とする。さらには、本発明はマイクロチップ作製の高速化を実現することを課題とする。
【課題を解決するための手段】
【0005】
上記の課題を解決するため、本発明のディスペンシング装置は、生体試料含有溶液を吐出するための複数の吐出手段と、前記吐出手段における溶液吐出不良の有無を判別する判別手段と、前記判別手段による吐出不良判別の結果、吐出状態が不良でない吐出手段を選択して、生体試料含有溶液の吐出制御を行う制御手段を備える。
【0006】
かかる構成により、吐出状態の正常な吐出手段を選択して、生体試料含有溶液を吐出できるため、生体試料を固相上に確実かつ安定にスポッティングすることができる。また、多種類の生体試料を複数の吐出手段から略同時に吐出することで、マイクロチップ作製の高速化を実現できる。
【0007】
本発明のディスペンシング装置は、生体試料含有溶液を充填する複数の加圧室毎に対応して形成された複数の個別電極を有する電極基板と、前記電極基板に対して微小ギャップをおいて対向配置され、前記個別電極との電位差に対応する静電力によって弾性変形する振動板の機械的変位により前記加圧室内の圧力を加減し、前記溶液をノズル孔から吐出するための吐出機構を具備する加圧室基板と、前記ノズル孔から前記溶液を吐出するために、前記振動板と前記個別電極との間に所定波形の駆動電圧パルスを印加する駆動パルス発生回路と、前記駆動電圧パルスが印加されたときの前記振動板及び個別電極間に流れる駆動電流を検出する駆動電流検出回路と、前記駆動電流検出回路によって検出された検出駆動電流に基づいて、溶液吐出不良の有無を判別する判別手段と、前記判別手段による吐出不良判別の結果、吐出状態が不良でない吐出機構を選択して、生体試料含有溶液の吐出制御を行う制御手段を備える。
【0008】
本発明によれば、吐出不良に起因して振動板と個別電極間を流れる駆動電流が変化する点に着目して、当該駆動電流を検出するための手段を設けることで、各々の吐出機構の吐出不良を判別することができる。
【0009】
好ましくは、前記判別手段は、前記検出駆動電流の電流波形に基づいて、溶液吐出不良の有無を判別する。
【0010】
吐出状態が正常な場合と異常な場合とでは、検出駆動電流の波形が異なるため、両者の波形の相違を検出することで、吐出不良を判別できる。
【0011】
好ましくは、前記判別手段は、前記検出駆動電流のピーク電流値に基づいて、溶液吐出不良の有無を判別する。
【0012】
吐出状態が正常な場合と異常な場合とでは、検出駆動電流のピーク電流値が異なるため、両者のピーク電流値の相違を検出することで、吐出不良を判別できる。
【0013】
好ましくは、前記判別手段は、前記検出駆動電流の微分波形に基づいて、溶液吐出不良の有無を判別する。
【0014】
検出駆動電流の微分波形を利用することで、駆動電流の変化を高感度に検出できるため、吐出不良判別の正確性を確保できる。
【0015】
好ましくは、前記判別手段は、前記微分波形のピーク波形が正側に2回連続して現れるか否かにより前記判別を行う。
【0016】
吐出不良が生じている場合には、検出駆動電流の微分波形には正側にピーク波形が2回連続して現れる特性があるため、かかる特性を利用して吐出不良を判別できる。
【0017】
好ましくは、前記判別手段は、前記検出駆動電流波形の立下り時の直前において、前記微分波形に正側のピーク波形が現れるか否かにより前記判別を行う。
【0018】
吐出不良が生じている場合には、検出駆動電流波形の立下り時の直前において、前記微分波形に正側のピーク波形が現れる特性があるため、かかる特性を利用して吐出不良を判別できる。
【0019】
好ましくは、前記駆動電流検出回路は、前記振動板が前記個別電極に向けて弾性変位する期間、或いは前記振動板が前記個別電極から離れる方向に弾性変位する期間における前記駆動電流を検出する。
【0020】
上記の期間において、検出駆動電流の変化が大きくなるため、吐出不良の判別に好適である。
【0021】
好ましくは、前記判別手段は、前記検出駆動電流を、予め記憶されている正常駆動の際の駆動電流と比較することにより前記判別を行う。
【0022】
吐出状態が正常な場合と異常な場合とでは、検出駆動電流の波形が異なるため、両者の波形の相違を検出することで、吐出不良を判別できる。
【0023】
好ましくは、前記判別手段は、複数組の振動板及び個別電極間に駆動電圧パルスを印加したときに得られる前記検出駆動電流の合成電流と、予め記憶されている、複数組の振動板及び個別電極を正常駆動する際の駆動電流の合成電流とを比較することにより前記判別を行う。
【0024】
かかる構成により、複数の吐出機構の吐出不良を一度に判別することができる。
【0025】
本発明のディスペンシング装置は、生体試料含有溶液を充填する複数の加圧室毎に対応して形成された複数の個別電極を有する電極基板と、前記電極基板に対して微小ギャップをおいて対向配置され、前記個別電極との電位差に対応する静電力によって弾性変形する振動板の機械的変位により前記加圧室内の圧力を加減し、前記溶液をノズル孔から吐出するための吐出機構を具備する加圧室基板と、前記振動板と前記個別電極との間になだらかな立ち上がり勾配を有する台形波形の検査パルスを印加する検査パルス出力手段と、前記検査パルスが印加されたときの前記振動板及び個別電極間に流れる過度電流を検出する電流検出回路と、前記駆動電流検出回路によって検出された検出電流に基づいて、溶液吐出不良の有無を判別する判別手段と、前記判別手段による吐出不良判別の結果、吐出状態が不良でない吐出機構を選択して、生体試料含有溶液の吐出制御を行う制御手段を備える。
【0026】
かかる構成により、なだらかな立ち上がり勾配を有する台形波形の検査パルスを利用することで、吐出状態が正常な場合と異常な場合とで、振動板と個別電極の間を流れる過度電流の変化をより大きくできるため、吐出不良を高感度に検出することができる。
【0027】
本発明のディスペンシング装置は、生体試料含有溶液を充填する複数の加圧室毎に対応して形成された複数の個別電極を有する電極基板と、前記電極基板に対して微小ギャップをおいて対向配置され、前記個別電極との電位差に対応する静電力によって弾性変形する振動板の機械的変位により前記加圧室内の圧力を加減し、前記溶液をノズル孔から吐出するための吐出機構を具備する加圧室基板と、前記吐出機構を動作させたときにおける前記ノズル孔からの前記溶液の吐出の有無を光学的に検出する光学検出手段と、前記光学検出手段の検出結果から、溶液吐出不良の有無を判別する判別手段と、前記判別手段による吐出不良判別の結果、吐出状態が不良でない吐出機構を選択して、生体試料含有溶液の吐出制御を行う制御手段を備える。
【0028】
かかる構成により、吐出不良を光学的に検出することができる。
【0029】
好ましくは、前記光学検出手段は、レーザ光源と受光センサとから構成され、前記ノズル孔から液滴として吐出された前記溶液を透過するレーザ光線の受光強度の変化から前記溶液の吐出の有無を検出する。
【0030】
かかる構成により、受光センサの受光強度を基に吐出不良を光学的に検出できる。
【0031】
好ましくは、前記光学手段は、CCDセンサから構成され、前記ノズル孔から液滴として吐出される前記溶液を光学的に検出する。
【0032】
好ましくは、吐出不良となった吐出機構を正常な状態に回復させるための回復手段をさらに備える。このような回復手段として、生体試料含有溶液吸引手段が好適である。
【0033】
かかる構成により、吐出不良の原因となる生体試料の変性、凝固、加圧室内への気泡の混入などを除去することができ、正常な吐出状態へ回復できる。
【0034】
前記生体試料として、蛋白質或いは核酸を用いることで、プロテインチップ或いはDNAチップなどのマイクロアレイを作製できる。
【0035】
本発明の生体試料含有溶液吐出不良検出方法は、生体試料含有溶液を充填する複数の加圧室毎に対応して個別に形成された複数の個別電極を有する電極基板に対して微小ギャップをおいて対向配置され、前記個別電極との電位差に対応する静電力によって弾性変形する振動板の機械的変位により前記加圧室内の圧力を加減し、前記溶液をノズル孔から吐出する吐出機構における溶液吐出不良を検出するための方法であって、前記ノズル孔から前記溶液を吐出するために、前記振動板と前記個別電極との間に所定波形の駆動電圧パルスを印加するステップと、前記駆動電圧パルスが印加されたときの前記振動板及び個別電極間に流れる駆動電流を検出するステップと、検出された駆動電流に基づいて、溶液吐出不良の有無を判別するステップを含む。
【0036】
かかる方法により、吐出不良に起因して振動板と個別電極間を流れる駆動電流が変化する点に着目して、当該駆動電流を検出することにより、各々の吐出機構の吐出不良を判別することができる。
【0037】
本発明の生体試料含有溶液吐出不良検出方法は、生体試料含有溶液を充填する複数の加圧室毎に対応して個別に形成された複数の個別電極を有する電極基板に対して微小ギャップをおいて対向配置され、前記個別電極との電位差に対応する静電力によって弾性変形する振動板の機械的変位により前記加圧室内の圧力を加減し、前記溶液をノズル孔から吐出する吐出機構における溶液吐出不良を検出するための方法であって、前記振動板と前記個別電極との間になだらかな立ち上がり勾配を有する台形波形の検査パルスを印加するステップと、前記検査パルスが印加されたときの前記振動板及び個別電極間に流れる過度電流を検出するステップと、検出された検出電流に基づいて、溶液吐出不良の有無を判別するステップを含む。
【0038】
かかる方法により、なだらかな立ち上がり勾配を有する台形波形の検査パルスを利用することで、吐出状態が正常な場合と異常な場合とで、振動板と個別電極の間を流れる過度電流の変化をより大きくできるため、吐出不良を高感度に検出することができる。
【0039】
本発明の生体試料含有溶液吐出不良検出方法は、生体試料含有溶液を吐出する吐出手段における溶液吐出不良を検出するための方法であって、前記吐出手段を動作させたときにおける前記溶液の吐出の有無を光学的に検出するステップと、当該検出結果から、溶液吐出不良の有無を判別するステップを含む。
【0040】
かかる方法により、吐出不良を光学的に検出することができる。
【0041】
本発明のディスペンシング方法は、生体試料含有溶液を基板上にスポッティングする前準備として、上述した本発明の方法で吐出機構の吐出不良を判別するステップと、吐出状態が不良でない吐出機構を選択して、前記溶液を基板上にスポッティングするステップを含む。
【0042】
かかる方法により、生体試料のスポッティングの前準備として吐出不良判別を行い、吐出状態が正常な吐出機構を利用してスポッティングを行うため、生体試料を固相上に確実にスポッティングできる。
【0043】
好ましくは、前記生体試料含有溶液をアレイ状にスポッティングすることでマイクロアレイを作製する。
【0044】
かかる方法により、クロスコンタミネーションをできるだけ抑制し、高品質なマイクロアレイを作製できる。
【0045】
好ましくは、前記生体試料として多種類の蛋白質を使用し、プロテインチップを作製する。
【0046】
かかる方法により、プロテオミクスの研究に好適な高品質のプロテインチップを作製できる。
【発明を実施するための最良の形態】
【0047】
発明の実施の形態1.
図1は本実施形態におけるプロテインディスペンシング装置の構成図である。
【0048】
同装置100は、異種蛋白質を略同時に吐出するためのマイクロディスペンサアレイ10と、多種類の蛋白質を高密度なアレイ状にスポッティングしたプロテインチップ20と、プロテインチップ20を載置するためのステージ30と、マイクロディスペンサアレイ10とプロテインチップ20とを相対的に移動させ、蛋白質溶液の吐出制御を行う駆動制御装置40と、プロテインチップ20上への蛋白質溶液の吐出状態を光学的に検出するCCDセンサ50を備えて構成されている。
【0049】
図2はマイクロディスペンサアレイ10の構成図である。
【0050】
同アレイ10は、i行×j列の位置にマイクロディスペンサ10a−ijをマトリクス状に配列した構成を備えている。同図においては、5行×5列の構成を例示している。各々のマイクロディスペンサ10a−ijからは互いに異なる蛋白質溶液が吐出されるように構成されている。同アレイ10の行数及び列数並びにマイクロディスペンサ10a−ijの総数はスポッティングする蛋白質溶液の種類、吐出量などに応じて適宜定められる。例えば、多量の吐出量を予定する蛋白質溶液に対しては、複数のマイクロディスペンサ10a−ijが同一種類の蛋白質溶液を含むようにマイクロディスペンサアレイ10を構成する。同図には図示してないが、各々のマイクロディスペンサ10a−ijは、隣接するマイクロディスペンサ10a−(i±1)(j±1)との相対的な位置決めをするための係止機構を備えており、所定の収納容器に収められてディスペンサ間のピッチが等間隔になるように設計されている。
【0051】
図3はマイクロディスペンサ10aの構成図、図4は同ディスペンサ10aの分解斜視図である。説明の便宜上、一部透視図としている。
【0052】
マイクロディスペンサ10aは、蓋11と、ヘッドチップ12と、タンク13と、ケース14とを備えて構成されている。蓋11には蛋白質溶液を吐出させるための開口部112を具備する吐出口111が形成されている。ヘッドチップ12は静電駆動タイプのヘッド構造を備えた積層基板構造体であり、タンク13の中空部131内に貯蔵された蛋白質含有溶液を吐出するように構成されている。中空部131の容積は、例えば、1mlである。蛋白質含有溶液を安定に吐出するには、中空部131内に充填される溶液の粘度は1mNs/m2〜20mNs/m2、表面張力30mN/m〜50mN/mとなる範囲が望ましい。ケース14は中空部141内にヘッドチップ12及びタンク14を収容し、さらに中空部141の開口部を塞ぐように蓋11が接着される。
【0053】
蓋11及びケース14の構成素材としては、成型し易く適度の強度を備え、蛋白質含有溶液に対する耐食性のある材料であれば、特に限定されるものではないが、例えば、ポリ塩化ビニルなどの合成樹脂、或いはガラス材料などが好適である。また、タンク13の構成素材としては、充填する溶液に対する耐食性及び充填液に適度な内圧を加えてヘッドチップ12に溶液を供給するための適度な弾力性を備えた材料であれば、特に限定されるものではないが、例えば、ブチルゴムなどが好適である。ヘッドチップ12に対して安定した液供給を行うには、溶液を大気圧よりも小さな圧力(負圧)下で中空部131内に格納しなければならないが、ブチルゴムでタンク13を構成すれば、液体や水蒸気の透過性が低いので、タンク内外へ気体や水蒸気が侵入したり液体が流出したりすることを防ぎつつ、所定の圧力条件を満たすことができる。また、タンク13の構成素材として、収容する蛋白質を変性させたりする可能性があるものを予め除去することが好ましい。
【0054】
尚、同図に図示してないが、タンク13には蛋白質含有溶液を充填するための充填口及びヘッドチップ12への溶液の供給口以外を密封するためのパッキンを備えて密封処理が施されている。このように溶液の充填口を封止し、マイクロディスペンサ10aを使い捨て構造とすることで、他の生体分子とのクロスコンタミネーションを効果的に防止することができる。
【0055】
図5はヘッドチップ12の分解斜視図、図6は図5におけるA−A線断面図である。
【0056】
ヘッドチップ12は加圧室基板210の表面及び裏面のそれぞれを電極基板220及び上部基板230により肉厚方向に挟持する方向に積層した構造を備えている。加圧室基板210はノズル211と、ノズル溝212と、加圧室213と、供給溝214と、リザーバ215を含む流路構造を備えて構成されており、シリコン基板を所定のパターンに凹陥状に食刻形成することにより得られる。加圧室基板210として用いられるシリコン基板としては、単結晶シリコン基板、多結晶シリコン基板、SOI基板のいずれでもよい。シリコン基板の面方位を(110)とすると、水酸化カリウム水溶液で異方性エッチングすると、断面舟型の加圧室213及びリザーバ215が形成される。加圧室基板210は、図6に示すように、シリコン基板216の表面を熱酸化法、スパッタ法、蒸着法、イオンプレーティング法、ゾル・ゲル法、CVD法などで成膜したシリコン酸化膜217で被覆した構成を成している。加圧室基板210の表面をシリコン酸化膜217で被覆することにより、蛋白質、DNA、RNA、PNA、抗原抗体などの生体試料との親和性を高めることができ、プロテインディスペンサヘッドとして好適である。
【0057】
ノズルピッチの好ましい距離は、蛋白質溶液とノズルヘッドとの接触角や、蛋白質溶液の表面張力などによって著しく異なるが、クロスコンタミネーションが生じにくい間隔であれば特に限定されるものではなく、例えば、0.5mm程度が好ましい。また、図5に示す例では、1チップあたり3ノズル系統の流路構造を採用する場合を例示しているが、これに限られるものではなく、圧力室基板210の面積や、蛋白質溶液の物性的特性(粘度、表面張力、接触角)などを基に最適な流路構造を決定すればよい。
【0058】
電極基板220は、静電駆動タイプのヘッド構造において、電圧を印加するための個別電極(対向電極)222を収納するための基板であり、硼珪酸硝子基板などから構成される。硼珪酸硝子基板によれば、アルカリイオンを多く含み、熱膨張係数がシリコン基板とほぼ一致するため、加圧室基板210との陽極接合に好適である。陽極接合によれば、接着剤を使用しないため、生体試料に対して衛生的な接合を得ることが可能となる。また、加圧室基板210に貼り合わされた場合に、各々の加圧室213に対応する位置に凹部221が形成されている。各々の凹部221の底面には導電薄膜から成る個別電極222が成膜されており、配線223を通じて電源240に導通している。個別電極222として、例えば、スパッタ法で0.1μm程度の膜厚に成膜したITOなどが好適である。個別電極222と加圧室基板210間の微小ギャップは、静電駆動により溶液吐出が可能となる距離に選定することが好ましく、例えば、0.2μm程度が好適である。
【0059】
共通電極として機能する加圧室基板210と、個々の個別電極222間に振幅0Vから35Vの矩形波を印加すると、加圧室213の底面と個別電極222間に静電力が作用し、加圧室213の底面が凹部221側にわずかに撓み、弾性変形を起こす。このとき、加圧室213の底面は振動板218として機能する。次いで、矩形波の振幅を0Vにすると、静電力は解除され、振動板218の撓みは元に復元し、加圧室213内の圧力を瞬間的に高める。すると、ノズル211から蛋白質含有溶液が吐出される。加圧室213内に変形した振動板218はその反発力により再度、凹部221側に撓み、リザーバ215から加圧室213内へ1発分の蛋白質溶液が補給される。
【0060】
尚、上部基板230の構成素材としては、一定の剛性、蛋白質含有溶液に対する腐食性、コスト、視認性などを考慮すると、硼珪酸硝子などの硝子基板が好適である。
【0061】
本実施形態においては、プロテインチップ20を作製する前準備として、マイクロディスペンサアレイ10を駆動し、ダミー領域22に蛋白質溶液の試し打ちを試みることで、吐出状態が良好なノズル211を選択する。そのために、図11に示すように、プロテインチップ20を作製するための基板21上に試し打ち用のダミー領域22を設ける。溶液の吐出状態の良否を判別する手法としては、各種の手法が考えられるが、本実施形態においては、ヘッドチップ12の蛋白質溶液吐出の際の駆動電流波形を基にして判別する。吐出状態が良好なノズル211が選定されたならば、当該選定されたノズル211から基板21に蛋白質溶液を吐出してプロテインチップ20を作製する。
【0062】
図7はヘッドチップ12を駆動制御するための駆動制御回路の構成図である。
【0063】
同制御回路は、CPU303を中心に構成された制御部301と、ヘッドチップ12を中心に構成された回路基板302を主要構成として備えている。制御部301はCPU303と、RAM304と、ROM305と、論理ゲートアレイ306と、駆動パルス発生回路307と、駆動電流検出回路308と、入出力インターフェース309と、ノズル不良判断回路310とを備えて構成されている。回路基板302は、コネクタ312と、ヘッドドライバIC313と、ヘッドチップ12とを備えて構成されている。
【0064】
CPU303は駆動制御装置40からバス経由で出力されるヘッド駆動情報を受信すると、RAM304をワークエリアとして使用し、ROM305に格納されているプログラムに従って、ヘッドチップ12の駆動用制御信号を生成する。当該駆動用制御信号は論理ゲートアレイ306及び駆動パルス発生回路307を介して、ヘッド駆動情報に対応した駆動制御信号となって、コネクタ312を経由してヘッドドライバIC313に供給される。また、ヘッドドライバIC313には、図9に示すように、基準駆動電圧パルス信号VSと、制御信号LPと、極性反転制御信号REVとが各々供給される。これらの各信号は駆動パルス発生回路307及び論理ゲートアレイ306で生成される。
【0065】
ヘッドドライバIC313では、上記の各信号及び電源回路314から供給される駆動電圧VPに基づき、共通電極(加圧室基板210)に印加すべき駆動電圧パルス信号をその出力端子COMから出力し、各々の加圧室213内に設けられた個別電極222に印加すべき駆動電圧を出力端子SEGから出力する。COM出力とSEG出力の差(COM−SEG電位差出力)が駆動電圧となって、各々の加圧室213に設けられた振動板218を弾性変形させ、加圧室213の内圧を加減する。溶液吐出時には、COM出力とSEG出力に所定の電位差を与えることで、蛋白質溶液を吐出させる一方で、溶液非吐出時には、COM出力とSEG出力を同一波形とすることで、電位差を0Vとしている。
【0066】
図9は、基準駆動電圧パルス信号VSと、制御信号LPと、極性反転制御信号REVと、COM出力と、SEG出力と、COM−SEG電位差出力の各々の電圧波形を示している。同図に示す例では、2ショット(2回吐出)で1スポットを形成する場合を想定している。極性反転信号REVは、連続する2ショットのためにSEG出力を反転させるための信号である。このように、ヘッドチップ12を交流駆動することによって、個別電極222と共通電極間の残留電荷の蓄積に伴う静電気力の変動を抑制し、良好な吐出特性を確保できる。
【0067】
図10は2ショットで1スポットを形成するときの基準駆動電圧パルス信号VSの電圧波形を示している。同図に示すように、基準駆動電圧パルス信号VSの電圧波形の1周期分がPwiaであり、一定の勾配で立ち上がる充電部分のパルス幅がPwca1,Pwca2であり、立ち上がり後に一定電圧に保持された後における充電部分よりも急峻な勾配で立ち下がる放電部分のパルス幅がPwda1,Pwda2であり、充電部分の開始時点から放電部分の開始時点までのパルス幅がPwa1,Pwa2となっている。
【0068】
ここで、図7に戻って説明を続けると、制御部301は、基準駆動電圧パルス信号VSの信号供給線311を流れる駆動電流Iを検出するための駆動電流検出回路308を備えている。駆動電流検出回路308は個別電極222と共通電極間に流れる駆動電流を検出すると、検出駆動電流の値をノズル不良判断回路310に供給する。ノズル不良判断回路310は検出駆動電流に基づいて、各ノズル211に溶液吐出不良が生じているか否かを判別する。
【0069】
図8は基準駆動電圧パルス信号VSを1パルス分印加したときに検出される駆動電流Iの波形を示している。より詳細には、同図(a)では、ヘッドチップ12が計128個のノズル211を備えているとした場合において、全てのノズル211を駆動しないときに検出される駆動電流波形をI0として表示し、全てのノズル211を駆動した場合において、全てのノズル211から正常に蛋白質溶液の吐出が行われたときに検出される駆動電流波形をI(128)として表示し、全てのノズル211を駆動した場合において、全てのノズル211から蛋白質溶液の吐出が行われなかったときに検出される駆動電流波形をI(0)として表示している。同図(c)は1パルス分の基準駆動電圧パルス信号VSの電圧波形である。
【0070】
これらの駆動電流波形I0、I(128)、及びI(0)を比較してわかるように、ノズル211から蛋白質溶液が吐出されないときに検出される駆動電流波形I(0)は、ノズル211を駆動しないときに検出される駆動電流波形I0、及び全てのノズル211から正常に溶液吐出が行われたときに検出される駆動電流波形I(128)の何れとも異なる。また、駆動電流波形I(0)は駆動電流波形I(128)よりもピーク波形部分のピーク電流値の絶対値が大きい。この点を詳細に説明すると、駆動電流波形Iのピークは、基準駆動電圧パルス信号VSの立ち上がり終了時点の近傍及びその立下り終了時点の近傍において現れる。つまり、個別電極222と共通電極の間に基準駆動電圧パルス信号VSを印加すると、これらの間に生じる静電吸引力により振動板218が弾性変形を開始して個別電極222に吸引され、その表面に吸着される。これら振動板218及び個別電極222間の静電容量は両者のギャップに反比例して変化し、駆動電流Iは静電容量の時間変化率に比例して変化する。従って、基準駆動電圧パルス信号VSの立ち上がり時には急激に静電容量が減少するので、これに伴って駆動電流Iは正方向に立ち上がる。これとは逆に、基準駆動電圧パルス信号VSの立ち下がり時には、静電吸引力が減少して、個別電極222に吸着している振動板218が弾性復元力により個別電極222から開放される。よって駆動電流Iは負方向に立ち下がる。
【0071】
ここで、タンク13内に気泡が混入して溶液吐出不良、或いは溶液吐出不能となっている場合には、中空部131内の蛋白質溶液の充填率が低いので、その分、振動板218の振動速度が高まる。その結果、静電容量の変化率が大きくなる。よって、駆動電流Iには、図8(a)における駆動電流波形I(0)のように、振動板218が個別電極222に吸着される時点及び個別電極222から開放される時点において、ピーク波形Ia及びIbが現れ、これらは駆動電流波形I(128)の対応するピーク波形部分と比較すると、より急峻な波形となるとともに、ピーク電流値の絶対値も大きく異なる。ノズル不良判断回路310では、上述した駆動電流波形の特性変化に着目し、溶液吐出不良の有無を判断している。
【0072】
尚、図8においては、正常な溶液吐出が行われるときの駆動電流の波形と、溶液吐出が不良であるときの駆動電流の波形の相違を比較するため、駆動電流波形I(128)と、駆動電流波形I(0)とを示したが、両者の関係は、1個の正常なノズルから得られる駆動電流波形と、1個の不良ノズルから得られる駆動電流波形との間にも、変動値は少ないものの、同様に当てはまることが確認された。さらに、タンク13内への気泡の混入だけでなく、蛋白質の変性や凝固などに起因して溶液吐出が不良となる場合にも、駆動電流波形の特性変化を検出することで、溶液吐出不良の有無を判断することができる。
【0073】
溶液吐出不良の具体的な判別手法として、各種の手法が考えられるが、例えば、正常に溶液吐出できるノズルの駆動電流のピーク波形を予めメモリに記憶しておき、当該ピーク波形と、検出駆動電流Iのピーク波形とを比較し、両者の差が予め定められた閾値を超えた場合に、溶液吐出不良と判断できる。比較するピーク波形部分は、正側のピーク波形Iaと負側のピーク波形Ibの何れでもよい。さらに、このような判別手法では、複数のノズルに順次に駆動電圧パルスを印加しながら、個別に吐出不良の有無を判別してもよく、同時に全てのノズルに駆動電圧パルスを印加した場合に得られる駆動電流を合成した合成波形を、予めメモリに記憶されている正常なノズルを同時に駆動した場合に得られる駆動電流を合成した合成波形と比較し、両者の差が予め定められた閾値を超えた場合に、吐出不良と判断するように構成してもよい。
【0074】
他の判別手法として、検出駆動電流波形Iを微分処理することにより得られる微分波形に現れるピーク波形に基づいて吐出不良を判別することもできる。図8(b)は、I(128)及びI(0)の駆動電流波形を微分処理した微分波形D(128)及びD(0)を示している。微分波形D(128)では、I(128)の電流波形の立ち上がり時と立ち下り時において、正側のピーク波形d1及び負側のピーク波形d2が現れる。これに対して、微分波形D(0)では、I(0)の電流波形が最初に立ち上がった後に、再度、同一方向に立ち上がってピーク波形が現れるので、正側のピーク波形da,dbが連続して現われ、その直後に負側のピーク波形dcが現れる。このような微分波形の特性の相違から、連続して正側にピーク波形が現れるか否かに基づき、吐出不良の有無を判別できる。或いは、検出駆動電流波形Iの立下り時の直前において、微分波形に正側のピーク波形が得られるか否かで吐出不良を判別できる。
【0075】
微分波形に基づく吐出不良の判別手法は、検出駆動電流波形Iのピーク電流波形若しくはピーク電流値に基づく判別手法と比較して感度が高いという利点がある。また、この場合においても、吐出不良の判断は、各々のノズルに対して順番に駆動電圧パルスを印加しながら個別に吐出不良を判別してもよく、さらに、同時に全てのノズルに駆動電圧パルスを印加した場合に得られる駆動電流を合成した合成波形を微分することにより得られる微分波形に基づき判別してもよい。
【0076】
尚、吐出不良の有無を判別するには、ヘッドチップ駆動用として通常用いる基準駆動電圧パルス信号VSとは異なる波形の検査パルスを印加するように構成してもよい。つまり、正常状態と異常状態において検出される過度電流波形の波形差はわずかであるので、判別の感度若しくは精度を高めるには、これらの電流波形の波形差が拡大するような検査パルスを印加することが好ましい。このようにするためには、立ち上がり勾配のなだらかな台形波形を検査パルスとして印加すればよい。言い換えれば、図10のパルス幅Pwiaを長くし、若しくは検査パルスの振幅を下げればよい。検査パルスの電圧振幅を小さくすると、加圧室203内に所定量以上の気泡が混入している場合には、振動板218が個別電極222に吸着されるが、気泡のない正常状態では振動板218が個別電極222に吸着された状態とならない大きさの静電力を発生させることが可能となる。このような状態を形成できる検査パルスを用いると、正常な状態における過度電流の波形と不良な状態における過度電流波の形の相違が一層明確になるので、吐出不良の有無を高感度で検出することができる。
【0077】
図7の駆動パルス発生回路307から5V程度の振幅プローブ電圧波形を正弦波形として出力し、該プローブ電圧波形の周波数を例えば1kHzから100kHzへ1kHz毎に増加させてスイープして、駆動電流検出回路308によりプローブ電圧波形の周波数に対する電流値を検出し、ヘッドチップ12の振動板218の共振周波数を検出して、これにより液滴吐出の可否を不良ノズル判断回路310により判断してもよい。駆動電流検出回路308で電流を検出することにより、電流値が最も高くなる周波数を共振周波数として検知することが可能となる。この場合、加圧室213に液滴吐出不良を招く気泡が混入していた場合には、共振周波数が正常時よりも高くなり、ノズル211近傍において蛋白質の凝固等により吐出不良を招く場合は共振周波数が正常時よりも低くなる。例えば、共振周波数が33kHzの例においては、25kHz以上、45kHz以下を正常吐出として、ノズル不良判断回路310において液滴吐出の可否を判断する。
【0078】
これらの方法では、より検出精度を上げることが可能であり、静電容量が振動振幅により変化して電流値が大きく変動する構造の静電駆動方式に好適な検出方法を提供できる。
【0079】
尚、図7において、ヘッドドライバIC313は省略してもよい。ヘッドドライバIC313を省略すれば、直接ヘッドチップ12に入出力される電流を検出することが可能となるので、検出精度を上げることが可能となる。
【0080】
本実施形態においては、図7の想像線で記したように、ノズルの吐出不良を回復するための機構を追加するのが好ましい。同図において、ポンプ制御回路315は液体吸引ポンプ317を作動させ、ノズルヘッドにキャッピング可能なヘッドキャップ316を介して吐出不良のノズル211から蛋白質溶液を吸引し、廃液用のタンク318に貯蔵する。吐出不良のノズル211には、加圧室213内に気泡が混入していたり、或いは蛋白質が変性若しくは凝固している可能性があるので、かかる吸引動作により、吐出不良を改善できる。
【0081】
以上、説明したように、本実施形態によれば、ノズルの駆動電流波形から吐出不良を判別し、吐出状態が良好なノズルを選択してプロテインチップを作製するため、多種類の蛋白質を安定して吐出することができ、プロテインチップの作製を高速化することができる。さらに、蛋白質溶液の吐出特性が安定することにより、液滴の飛散によるクロスコンタミネーションの発生を効果的に抑制でき、高品質のプロテインチップを作製できる。
発明の実施の形態2.
本実施形態においては、ノズルの吐出不良を判別する手法として、液滴吐出を光学的に検出する手法を採用する。図12は液滴吐出を光学的に検出するための構成図であり、12はヘッドチップ、21はスポッティング用の基板、70は蛋白質含有液滴、71は液滴の飛行軌跡、61はレーザ光源、62は受光センサ、63はレーザ光線を示している。ヘッドチップ12からは基板21へ向けて液滴70が吐出される。液滴の飛行軌跡71とレーザ光線63が交差する位置にレーザ光源61及び受光センサ62を設置すれば、液滴70がレーザ光線63と交わるときに、受光センサ62の検出感度が変化し、液滴70が吐出されたことがわかる。つまり、液滴70の吐出タイミングにおいて、受光センサ62の検出感度が1回変化すれば、1滴の液滴70が吐出されたことが判別できるため、ノズルの吐出不良を光学的に検出することが可能となる。
【0082】
基板21上にスポッティングされた蛋白質含有溶液は基板21上に化学的に吸着することで、プロテインチップが形成される。蛋白質を含む溶媒として、基板21上に付着させたときのスポット形状が略円形となり、かつ吐出スポットが広がることによって隣接する吐出スポット同士のクロスコンタミネーションが生じないような溶媒を用いるのが望ましい。このような溶媒として、蛋白質を変性させるものでなく、安定した吐出特性を得られるものであれば、特に限定されるものではない。安定した液滴吐出を可能ならしめるには、粘度1mNs/m2〜20mNs/m2、表面張力30mN/m〜50mN/mとなる範囲が望ましい。
【0083】
但し、上記の手法において、飛行軌跡71を予め正確に予測することは困難であるから、ヘッドチップ12から液滴70が吐出された場合でも、飛行軌跡71とレーザ光線63とが交差する位置にレーザ光源61及び受光センサ62を設置しなければ、吐出不良を判別できない。このような場合を想定して、レーザ光源61及び受光センサ62の相対的位置関係を保持したまま、両者を紙面に直交する向きに往復動させ、なるべく飛行軌跡71とレーザ光線63とが交差するように工夫するのが好ましい。
【0084】
液滴70の吐出を光学的に検出する手段として、上述の例の他に、例えば、ダミー領域22に液滴を試し打ちし、CCDセンサ50(図1参照)で液滴70の吐出の有無を検出することもできる。このようにして光学的に吐出不良の有無を判断したならば、吐出状態が良好なノズルを選択してプロテインチップを作製する。
【0085】
尚、上記の説明においては、プロテインチップの作製を例に説明したが、本発明はこれに限られるものではなく、あらゆるマイクロチップを作製するための生体試料のディスペンシングに応用できる。例えば、ヘッドチップから一本鎖DNAを基板上に吐出し、スポットをアレイ状に形成することで、DNAマイクロアレイを作製することができる。DNAマイクロアレイを作製するには、スポッティングの対象となるDNA鎖末端にチオール基を導入しておく一方で、基板21の表面にマレイミド基を導入しておくことで、両者の結合を介してプローブDNAを安定的に固定することができる。
【0086】
また、この場合においえ、プローブDNAとなる一本鎖DNAとしては、ターゲットDNAと相補的な塩基配列を有するもの、例えば、生体材料から抽出したDNA鎖を制限酵素で切断し、電気泳動による分解などで精製した一本鎖DNA若しくは生化学的に合成したオリゴヌクレオチド、PCR(ポリメラーゼ連鎖反応)産物、cDNAなどを用いることができる。一方、ターゲットDNAとしては、生物材料から抽出したDNA鎖を遺伝子分解酵素若しくは超音波処理で分解したもの、又は特定のDNA鎖からPCRによって増幅させた一本鎖DNA等を用いることができる。
【0087】
また、溶液吐出不良を判別する手段として、光学的検出手段を用いる場合には、生体試料含有溶液吐出手段として、上述の静電駆動方式に限らず、ピエゾ素子等の電気機械変換素子に投入された電気エネルギーを機械エネルギーに変換し、振動板の変位によって加圧室内に充填された溶液の内部圧力を加減し、オリフィスを通じてノズル孔から液滴を吐出するピエゾジェット方式でもよく、さらには、発熱抵抗体に投入された電気エネルギーを熱エネルギーに変換し、溶液中に気泡を発生させてオリフィスを通じてノズル孔から液滴を吐出するバブルジェット(登録商標)方式でもよい。生体試料に与える影響を考慮すると、瞬間的な発熱を併有しない静電駆動方式若しくはピエゾジェット方式が好ましい。また、本発明は、プローブアレイの製造だけでなく、各ノズルから相異なる複数の試薬を固相表面上に吐出して所望の検査キット等を製造する場合にも応用できる。
【0088】
本発明によれば、吐出状態の正常な吐出手段を選択して、生体試料含有溶液を吐出できるため、生体試料を固相上に確実かつ安定にスポッティングすることができる。また、多種類の生体試料を複数の吐出手段から略同時に吐出することで、マイクロチップ作製の高速化を実現できる。さらに、本発明によれば、溶液吐出不良に起因して振動板と個別電極間を流れる駆動電流が変化する点に着目して、当該駆動電流を検出するための手段を設けることで、各々の吐出機構の吐出不良を正確に判別することができる。
【図面の簡単な説明】
【0089】
【図1】プロテインディスペンシング装置の構成図である。
【図2】マイクロディスペンサアレイの構成図である。
【図3】マイクロディスペンサの構成図である。
【図4】マイクロディスペンサの分解斜視図である。
【図5】ヘッドチップの分解斜視図である。
【図6】ヘッドチップの断面図である。
【図7】ヘッドチップの制御回路の構成図である。
【図8】検出駆動電流の波形変化を説明するための図である。
【図9】ヘッドチップの各種駆動制御信号の波形図である。
【図10】基準駆動電圧パルス信号の波形図である。
【図11】プロテインチップの説明図である。
【図12】吐出不良を光学的に検出する手段の説明図である。
【符号の説明】
【0090】
10…マイクロディスペンサアレイ、10a…マイクロディスペンサ、11…蓋、12…ヘッドチップ、13…タンク、14…ケース、20…プロテインチップ、30…ステージ、40…駆動制御装置、100…プロテインディスペンシング装置、210…加圧室基板、211…ノズル、212…ノズル溝、213…加圧室、214…供給溝、215…リザーバ、216…シリコン基板、217…シリコン酸化膜、218…振動板、220…電極基板、221…凹部、222…個別電極、223…配線、230…上部基板、240…電源、301…制御部、302…回路基板、303…CPU、304…RAM、305…ROM、306…論理ゲートアレイ、307…駆動パルス発生回路、308…駆動電流検出回路、309…入出力インターフェース、310…ノズル不良判断回路、311…信号供給線、312…コネクタ、313…ヘッドドライバIC

【特許請求の範囲】
【請求項1】
生体試料含有溶液を吐出するための複数の吐出手段と、
前記吐出手段からの前記溶液の吐出の有無を光学的に検出する光学検出手段と、
前記光学検出手段の検出結果から、溶液吐出不良の有無を判別する判別手段と、
前記判別手段による吐出不良判別の結果、吐出状態が不良でない吐出機構を選択して、生体試料含有溶液の吐出制御を行う制御手段を備える、ディスペンシング装置。
【請求項2】
前記吐出手段は、生体試料含有溶液を充填する複数の加圧室毎に対応して形成された複数の個別電極を有する電極基板と、
前記電極基板に対して微小ギャップをおいて対向配置され、前記個別電極との電位差に対応する静電力によって弾性変形する振動板の機械的変位により前記加圧室内の圧力を加減し、前記溶液をノズル孔から吐出するための加圧室基板を含んで構成される、請求項1に記載のディスペンシング装置。
【請求項3】
前記光学検出手段は、レーザ光源と受光センサとから構成され、前記ノズル孔から液滴として吐出された前記溶液を透過するレーザ光線の受光強度の変化から前記溶液の吐出の有無を検出する、請求項1又は請求項2に記載のディスペンシング装置。
【請求項4】
前記光学手段は、CCDセンサから構成され、前記ノズル孔から液滴として吐出される前記溶液を光学的に検出する、請求項1又は請求項2に記載のディスペンシング装置。
【請求項5】
吐出不良となった吐出機構を正常な状態に回復させるための回復手段をさらに備える、請求項1乃至請求項4のうち何れか1項に記載のディスペンシング装置。
【請求項6】
前記回復手段は、生体試料含有溶液吸引手段である、請求項5に記載のディスペンシング装置。
【請求項7】
前記生体試料は蛋白質である、請求項1乃至請求項6のうち何れか1項に記載のディスペンシング装置。
【請求項8】
前記生体試料は核酸である、請求項1乃至請求項6のうち何れか1項に記載のディスペンシング装置。
【請求項9】
生体試料含有溶液を吐出する吐出手段における溶液吐出不良を検出するための方法であって、
前記吐出手段を動作させたときにおける前記溶液の吐出の有無を光学的に検出するステップと、
当該検出結果から、溶液吐出不良の有無を判別するステップを含む、生体試料含有溶液吐出不良検出方法。
【請求項10】
生体試料含有溶液を基板上にスポッティングする前準備として、請求項9の方法で吐出機構の吐出不良を判別するステップと、
吐出状態が不良でない吐出機構を選択して、前記溶液を基板上にスポッティングするステップを含む、ディスペンシング方法。
【請求項11】
前記生体試料含有溶液をアレイ状にスポッティングすることでマイクロアレイを作製する、請求項10に記載のディスペンシング方法。
【請求項12】
前記生体試料として多種類の蛋白質を使用し、プロテインチップを作製する、請求項11に記載のディスペンシング方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2006−64707(P2006−64707A)
【公開日】平成18年3月9日(2006.3.9)
【国際特許分類】
【出願番号】特願2005−278638(P2005−278638)
【出願日】平成17年9月26日(2005.9.26)
【分割の表示】特願2002−218650(P2002−218650)の分割
【原出願日】平成14年7月26日(2002.7.26)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】