説明

データストレージシステム

【課題】複数の記憶デバイスを制御する複数の制御モジュールを有するストレージシステムに関し、制御モジュールの数が増加しても、低レンテシイな応答を維持しつつ、実装構成を容易とする。
【解決手段】複数の記憶デバイス(2−0〜2−35)を並列接続したエンクロージャを、バックエンドルータ(5−0〜5−7)で、各制御モジュール(4−0〜4−7)の第2のインターフェース(42)に接続し、全ての制御モジュールが、全ての記憶デバイスにアクセスできる冗長性を維持する。且つ制御モジュールと第1のスイッチユニットとをバックパネル(7)で、インターフェースを構成する信号数が少ないシリアルバスで接続する。これにより、プリント基板での実装が可能となる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、コンピュータの外部記憶装置として用いられるデータストレージシステムの構成に関し、特に、ディスクデバイスを多数接続するデータストレージシステムを高性能且つ柔軟に構成できるようなユニットの組み合わせと接続を持つデータストレージシステムに関する。
【背景技術】
【0002】
近年、様々なデータが電子化され、コンピュータ上で扱われるのに従い、データの処理を実行するホストコンピュータとは独立して、大量のデータを効率よく、高い信頼性で格納することのできるデータストレージ装置(外部記憶装置)の重要性が増加している。
【0003】
このデータストレージ装置として、大量のディスクデバイス(例えば、磁気ディスクや光ディスク)と、これら大量のディスクデバイスを制御するディスクコントローラとから構成されるディスクアレイ装置が利用されている。このディスクアレイ装置は、同時に複数のホストコンピュータからのディスクアクセス要求を受け付けて、大量のディスクに対する制御を行なうことができる。
【0004】
近年では、ディスクデバイスが数1000台以上、記憶容量では、数百テラバイト以上のディスクデバイス群を1台で制御できるディスクアレイ装置も提供されている。
【0005】
このようなディスクアレイ装置は、ディスクのキャッシュの役割を果たすメモリを内蔵する。これにより、ホストコンピュータからリード要求及びライト要求を受信した際の、データへのアクセス時間を短縮し、高性能化を実現できる。
【0006】
一般に、ディスクアレイ装置は、複数の主要ユニット、即ち、ホストコンピュータとの接続部分であるチャネルアダプタ,ディスクドライブとの接続部分であるディスクアダプタ,キャッシュメモリ,キャッシュメモリの制御を担当するキャッシュ制御部,及び大量のディスクドライブから構成される。
【0007】
図11は、第1の従来技術の説明図である。図11に示すディスクアレイ装置102は、キャッシュマネージャ(キャッシュメモリとキャッシュ制御部)10が2つそなえられ、且つ各キャッシュマネージャ10には、チャネルアダプタ11及びディスクアダプタ13が接続されている。
【0008】
また、2つのキャッシュマネージャ10,10は、バス10cによって、互いに通信可能に直接接続されている。この2つのキャッシュマネージャ10,10間、並びに、キャッシュマネージャ10とチャネルアダプタ11との間、及び、キャッシュマネージャ10とディスクアダプタ13との間は、低いレイテンシが要求されるためPCIバスによって接続されている。
【0009】
更に、チャネルアダプタ11は、例えば、ファイバチャネルもしくはEthernet(登録商標)によって、ホストコンピュータ(図示略)に接続され、ディスクアダプタ13は、例えば、ファイバチャネルのケーブルによってディスクエンクロージャ12の各ディスクドライブに接続されている。
【0010】
また、ディスクエンクロージャ12は、2つのポート(例えば、ファイバチャネルポート)を有し、これら2つのポートが、異なるディスクアダプタ13に接続されている。これにより、冗長性を持たせ、耐故障性を高めている。
【0011】
図12は、第2の従来例のディスクアレイ装置100の構成図である。図12に示すように、従来のディスクアレイ装置100は、主要ユニットであるキャッシュメモリとキャッシュ制御部とをそなえるキャッシュマネージャ(図中CMと表記)10、ホストコンピュータ(図示略)とのインターフェースであるチャネルアダプタ(図中CAと表記)11、複数のディスクドライブを備えるディスクエンクロージャ12、及び、このディスク装置12とのインターフェースであるディスクアダプタ(図中DAと表記)13をそなえる。
【0012】
更に、キャッシュマネージャ10,チャネルアダプタ11,及びディスクアダプタ13間を互いに接続し、これら主要ユニット間のデータ転送と通信を行うためのルータ(Router;図中RTと表記)14がそなえられている。
【0013】
このディスクアレイ装置100では、キャッシュマネージャ10が4つそなえられ、これらのキャッシュマネージャ10に対応して4つのルータ14がそなえられている。これらキャッシュマネージャ10とルータ14とは、1対1で相互に接続されており、これによって、複数のキャッシュマネージャ10間の接続が冗長化されて、可用性が高められている(例えば、特許文献1参照)。
【0014】
即ち、1つのルータ14の故障した場合にも、別のルータ14を経由することで複数のキャッシュマネージャ10間の接続は確保されており、かかる場合にも、ディスクアレイ装置100は通常の動作を継続することができる。
【0015】
また、このディスクアレイ装置100は、各ルータ14に、2つのチャネルアダプタ11と2つのディスクアダプタ13とが接続され、ディスクアレイ装置100は合計8つのチャネルアダプタ11と合計8つのディスクアダプタ13とをそなえている。
【0016】
これらのチャネルアダプタ11及びディスクアダプタ13は、キャッシュマネージャ10とルータ14との相互接続により、全てのキャッシュマネージャ10との間で通信が可能である。
【0017】
又、チャネルアダプタ11は、例えば、ファイバチャネルやEthernet(登録商標)によって、データを処理対象とするホストコンピュータ(図示略)に接続されており、ディスクアダプタ13は、例えば、ファイバチャネルのケーブルによって、ディスクエンクロージャ12(具体的にはディスクドライブ)に接続される。
【0018】
そして、チャネルアダプタ11とキャッシュマネージャ10との間、及びディスクアダプタ13とキャッシュマネージャ10との間では、ホストコンピュータからのユーザデータだけではなく、ディスクアレイ装置100の内部の動作の一貫性を保つための様々な情報のやり取り(例えば、複数のキャッシュメモリ間のデータのミラーリング処理)がなされる。
【0019】
キャッシュマネージャ10,チャネルアダプタ11及びディスクアダプタ13と、ルータ14との間は、ディスクアレイ装置100とホストコンピュータとの間や、ディスクドライブとの間よりも低いレイテンシ(速い応答速度)を実現できるインターフェースを介して接続される。例えば、PCI(Peripheral Component Interconnect)バスのように、LSI(Large Scale Integration)やプリント基板の間を接続するために設計されたバスによって、キャッシュマネージャ10,チャネルアダプタ11,及びディスクアダプタ13と、ルータ14との間が接続される。
【0020】
さらに、ディスクドライブを収容するディスクエンクロージャ12は、2つのファイバチャネルのポートを有し、各ポートには異なるルータ14配下に属するディスクアダプタ13が接続される。これにより、ディスクアダプタ13の故障時もしくはルータ14の故障時にも、キャッシュマネージャ10からの接続が切断されることを防止できる。
【先行技術文献】
【特許文献】
【0021】
【特許文献1】特開2001−256003号公報(図1)
【発明の概要】
【発明が解決しようとする課題】
【0022】
近年の電子化の推進により、より大容量で、高速なデータストレージシステムが要求されている。前述の第1の従来のディスクアレイ装置では、大容量、高速化のため、更に、キャッシュマネージャ10や、チャネルアダプタ11、ディスクアダプタ13を増設する場合には、ディスクエンクロージャ12のポート数を増加し、且つディスクアダプタ13とディスクエンクロージャ12の接続ケーブルの本数を増加させる必要がある。
【0023】
ディスクエンクロージャ12のポート数を増加することは、1つのディスクエンクロージャに接続されるディスクアダプタの数に応じたケーブル数が、増加し、実装空間が大きくなる。即ち、装置の大型化を招く。又、1つのディスクエンクロージャでは、2系統のパスがあれば、十分な冗長構成をとれるため、ポート数を増加することは、得策でない。しかも、接続されるディスクアダプタの数は、一定でなく、ユーザの要求に応じて、変化するため、多数のポートを増設すると、少ないディスクアダプタでは、無駄が生じ、少数のポートを増設すると、多数のディスクアダプタに対応できない。即ち、汎用性を失うことになる。
【0024】
一方、第2の従来のディスクアレイ装置では、キャッシュマネージャ10や、チャネルアダプタ11、ディスクアダプタ13を増設することは、可能であるが、全て、ルータ14を介して通信するため、ルータ14に通信データが集中するため、スループットのネックとなり、高いスループットは期待できない。
【0025】
しかも、ディスクアレイ装置100では、主要ユニットを多数設けた大規模なディスクアレイ装置を構成する場合には、キャッシュマネージャ10とルータ14との間の接続線数が急増するため、接続関係が複雑になってしまい、物理的にも実装が困難になる。
【0026】
例えば、図12の構成では、図13に示すように、4つ(4枚)のキャッシュマネージャ10と、4つ(4枚)のルータ14とが、バックパネル15を経由して接続される実装構造をとる。この場合、前述のように、図12のように、信号本数は、4×4×(1パス当りの信号本数)となる。例えば、前述のように、1パスを、64ビットのPCI(パラレルバス)で接続する場合には、制御線を含め、バックパネル15上では、100×16=1600本の信号線となる。この信号線を配線するためには、バックパネル15のプリント基板は、6層の信号層を必要とする。
【0027】
さらに、大規模構成の場合には、例えば、8つ(4枚)のキャッシュマネージャ10と、8つ(4枚)のルータ14とが、バックパネル15を経由して接続される構成では、信号本数は、100×8×8=約6400本も必要する。このためのバックパネル15のプリント基板は、4倍の24層必要となり、実現が困難である。
【0028】
仮に、64ビットのPCIバスに代え、信号線の少ない4レーンのPCI−Expressで接続すると、信号線数は、16×8×8=1024本となる。しかし、PCIバスは、66MHzであるのに対し、PCI−Expressは、2.5Gbpsの高速バスであり、高速バスの信号品質を保つには、高価な基板材料を使用する必要がある。
【0029】
更に、低速バスであれば、ビア(Via)を使用することで、配線層の入れ替えが可能であるが、高速バスでは、Viaは、信号品質の低下を招くことになり、避ける必要もある。このため、高速バスでは、全ての信号線が交差しないよう配置する必要があり、同じ本数の低速バスの約2倍の信号層が必要となる。例えば、基板は、12層の信号層を必要とし、且つ高価な材料で構成する必要があり、これも実現が困難である。
【0030】
しかも、第2の従来のディスクアレイ装置100では、ルータ14の一つが故障した場合には、当該ルータ14の故障と同時に、当該ルータ14配下に接続されたチャネルアダプタ11及びディスクアダプタ13も使えなくなってしまう。
【0031】
従って、本発明の目的は、各ユニット間のデータ転送を高いスループットで行うとともに、小規模から大規模までの構成を、実装上の問題なく、容易に実現するためのデータストレージシステムを提供することにある。
【0032】
又、本発明の他の目的は、あるユニットが故障した場合でも動作可能な冗長性を維持しつつ、小規模から大規模までの構成を、同一のユニットの組み合わせで、容易に実現する柔軟性を持つデータストレージシステムを提供することにある。
【0033】
更に、本発明の更に他の目的は、高いスループットと冗長性を保証しつつ、小規模から大規模までの構成を、実装上の問題なく、容易に実現するためのデータストレージシステムを提供することにある。
【課題を解決するための手段】
【0034】
この目的の達成のため、本発明のデータストレージシステムは、データを記憶する複数のディスク記憶デバイスを並列に接続して構成された複数のディスクエンクロージャと、上位からのアクセス指示に応じて、前記ディスク記憶デバイスをアクセス制御する複数の制御モジュールとを有し、前記制御モジュールの各々は、前記上位とのインターフェース制御を行う第1のインターフェース部と、前記ディスク記憶デバイスとのインターフェース制御を行う第2のインターフェース部と、前記アクセス指示に応じて、前記第2のインターフェース部より、前記ディスク記憶デバイスをアクセス制御する制御ユニットとを有し、各前記制御モジュールの前記第2のインターフェース部に接続され、前記各制御モジュールの前記第2のインターフェース部と前記複数のディスクエンクロージャとを選択的に切り替える複数の第1のスイッチユニットを搭載する複数の第1の基板と、少なくとも前記制御ユニットと、前記第2のインターフェース部とを設けた複数の第2の基板と、前記複数の第1の基板と、前記複数の第2の基板が取り付けられ、前記第2のインターフェース部と、前記複数の第1のスイッチユニットとを、バスで接続するバックパネルとを設けた。
【0035】
更に、本発明では、好ましくは、前記制御モジュールは、他の前記制御モジュールと通信するための通信ユニットを有し、更に、前記各制御モジュールの通信ユニットを選択的に接続する第2のスイッチユニットを有する。
【0036】
更に、本発明では、好ましくは、各制御モジュールの通信ユニットと第2のスイッチユニットとを、前記バックパネルで接続した。
【0037】
更に、本発明では、好ましくは、前記第1のスイッチユニットと前記複数の記憶デバイスをケーブルで接続した。
【0038】
更に、本発明では、好ましくは、前記記憶デバイスは、複数のアクセスポートを有し、前記複数のアクセスポートに、複数の異なる前記第1のスイッチユニットを接続した。
【0039】
更に、本発明では、好ましくは、前記制御モジュールは、前記キャッシュ制御ユニットと前記第2のインターフェース部とを、複数レーンの高速シリアスバスで接続するとともに、前記第2のインターフェース部と前記複数の第1のスイッチユニットとを、前記バックパネルで、シリアルバスで接続した。
【0040】
更に、本発明では、好ましくは、前記高速シリアルバスが、PCI-Expressバスである。
【0041】
更に、本発明では、好ましくは、前記シリアルバスが、ファイバチャネルである。
【0042】
更に、本発明では、好ましくは、前記制御モジュールは、前記キャッシュ制御ユニットと前記第1のインターフェース部とを、低レンテシイの高速シリアスバスで接続した。
【発明の効果】
【0043】
本発明では、各制御モジュールの第2のインターフェースと複数の第1のスイッチユニットを接続したため、全ての制御モジュールは、全ての記憶デバイスにアクセスできる冗長性を維持でき、且つ制御モジュールの数が増大しても、制御モジュールと第1のスイッチユニットとをバックパネルで、インターフェースを構成する信号数が少ないシリアルバスで接続できるため、プリント基板での実装が可能となる。
【図面の簡単な説明】
【0044】
【図1】本発明の一実施の形態のデータストレージシステムの構成図である。
【図2】図1の制御モジュールの構成図である。
【図3】図1及び図2のバックエンドルータとディスクエンクロージャの構成図である。
【図4】図1及び図3のディスクエンクロージャの構成図である。
【図5】図1及び図2の構成のリード処理の説明図である。
【図6】図1及び図2の構成のライト処理の説明図である。
【図7】本発明の一実施の形態の制御モジュールの実装構成を示す図である。
【図8】本発明の一実施の形態のデータストレージシステムの実装構成例を示す図である。
【図9】本発明の一実施の形態の大規模ストレージシステムのブロック図である。
【図10】本発明の他の実施の形態の中規模ストレージシステムのブロック図である。
【図11】第1の従来のストレージシステムの構成図である。
【図12】第2の従来のストレージシステムの構成図である。
【図13】図12の第2の従来のストレージシステムの実装構成を示す図である。
【発明を実施するための形態】
【0045】
以下、本発明の実施の形態を、データストレージシステム、リード/ライト処理、実装構造、他の実施の形態の順で説明する。
【0046】
[データストレージシステム]
図1は、本発明の一実施の形態のデータストレージシステムの構成図、図2は、図1のコントロールモジュールの構成図、図3は、図1のバックエンドルータとディスクエンクロージャの構成図、図4は、図1及び図3のディスクエンクロージャの構成図である。
【0047】
図1は、8台のコントロールモジュールを持つ大規模なストレージシステムを例に示す。図1に示すように、ストレージシステム1は、データを保持する複数のディスクエンクロージャ2−0〜2−25と、図示しないホストコンピュータ(データ処理装置)と、複数のディスクエンクロージャ2−0〜2−25との間に、配置された複数(ここでは8つ)の制御モジュール4−0〜4−7と、これら複数の制御モジュール4−0〜4−7と複数のディスクエンクロージャ2−0〜2−25との間に設けられた複数(ここでは8つ)のBack-end Router(第1スイッチユニット;図中BRTと表記し、以下、BRTという)5−0〜5−7と、複数(ここでは2つ)のFront-end Router(第2スイッチユニット;図中FRTと表記、以下、FRTという)6−0,6−1とを有する。
【0048】
制御モジュール4−0〜4−7のそれぞれは、キャッシュマネージャ40と、チャネルアダプタ(第1インターフェース部;図中CAと表記)41a〜41dと、ディスクアダプタ(第2インターフェース部;図中DAと表記)42a,42bと、DMA(Direct Memory Access)エンジン(通信部;図中DMAと表記)43とを有する。
【0049】
なお、図1では、図の簡略化のため、これらキャッシュマネージャの符号“40”、チャネルアダプタの符号“41a”,“41b”,“41c”,“41d”、ディスクアダプタの符号“42a”,“42b”、DMAの符号“43”を、制御モジュール4−0に対してのみ付しており、他の制御モジュール4−1〜4−7におけるこれら構成要素の符号は省略している。
【0050】
図2により、コントロールモジュール4−0〜4−7を説明する。キャッシュマネージャ40は、ホストコンピュータからの処理要求(リード要求もしくはライト要求)に基づいて、リード/ライト処理を行なうものであり、キャッシュメモリ40bとキャッシュ制御部40aとを備える。
【0051】
キャッシュメモリ40bは、ディスクエンクロージャ2−0〜2−25の複数のディスクに保持されたデータの一部を保持する、所謂、複数のディスクに対するキャッシュの役割を果たす。
【0052】
キャッシュ制御部40aは、キャッシュメモリ40b,チャネルアダプタ41、デバイスアダプタ42、DMA43の制御を行なう。このため、1つ又は複数(図では、2つ)のCPU400,410と、メモリコントローラ420とを有する。メモリコントローラ420は、各メモリのリード/ライトを制御し、且つパスの切り替えを行う。
【0053】
メモリコントローラ420は、メモリバス434を介しキャッシュメモリ40bと接続し、CPUバス430,432を介しCPU400,410と接続し、更に、メモリコントローラ420は、後述する4レーンの高速シリアルバス(例えば、PCI−Express)440,442を介しディスクアダプタ42a,42bに接続する。同様に、メモリコントローラ420は、4レーンの高速シリアルバス(例えば、PCI−Express)443,444,445,446を介しチャネルアダプタ41a,41b、41c,41dに接続し、4レーンの高速シリアルバス(例えば、PCI−Express)447,448を介しDMA43−a,43−bに接続する。
【0054】
後述するように、このPCI−Expess等の高速シリアルバスは、パケットで通信し、且つシリアルバスを複数レーン設けることにより、信号線本線を減らしても、遅延の少ない、速い応答速度で、所謂、低レンテンシで通信することができる。
【0055】
チャネルアダプタ41a〜41dは、ホストコンピュータに対するインターフェースであり、チャネルアダプタ41a〜41dは、それぞれ異なるホストコンピュータと接続される。また、チャネルアダプタ41a〜41dは、それぞれ対応するホストコンピュータのインターフェース部に、バス、例えば、ファイバチャネル(Fiber Channel)やEthernet(登録商標)によって接続されることが好ましく、この場合、バスとしては、光ファイバや同軸ケーブルが用いられる。
【0056】
さらに、これらチャネルアダプタ41a〜41dそれぞれは、各制御モジュール4−0〜4−7の一部として構成されているが、対応するホストコンピュータと制御モジュール4−0〜4−7とのインターフェース部として、複数のプロトコルをサポートする必要がある。対応するホストコンピュータによって実装すべきプロトコルが同一ではないため、各チャネルアダプタ41a〜41dを必要に応じて容易に交換できるように、制御モジュール4−0〜4−7の主要ユニットであるキャッシュマネージャ40とは、図7で後述するように、別のプリント基板に実装されている。
【0057】
例えば、チャネルアダプタ41a〜41dがサポートすべきホストコンピュータとの間のプロトコルとしては、上述のように、ファイバチャネルや、Ethernet(登録商標)に対応するiSCSI(Internet Small Computer System Interface)等がある。
【0058】
更に、各チャネルアダプタ41a〜41dは、前述のように、PCI−Expressバスのように,LSI(Large Scale Integration)やプリント基板の間を接続するために設計されたバスによって、キャッシュマネージャ40と直接結合されている。これにより、各チャネルアダプタ41a〜41dとキャッシュマネージャ40と間に要求される高いスループットを実現することができる。
【0059】
ディスクアダプタ42a,42bは、ディスクエンクロージャ2−0〜2−25のディスクドライブに対するインターフェースであり、ディスクエンクロージャ2−0〜2−25に接続されたBRT5−0〜5−7に接続され,ここでは、4つのFC(Fiber Channel)ポートを有する。
【0060】
又、各ディスクアダプタ42a、42bは、前述のように、PCI−Expressバスのように,LSI(Large Scale Integration)やプリント基板の間を接続するために設計されたバスによって、キャッシュマネージャ40と直接結合されている。これにより、各ディスクアダプタ42a、42bとキャッシュマネージャ40と間に要求される高いスループットを実現することができる。
【0061】
図1及び図3に示すように、BRT5−0〜5−7は、各制御モジュール4−0〜4−7のディスクアダプタ42a,42bと各ディスクエンクロージャ2−0〜2−25とを選択的に切り替えて、通信可能に接続する多ポートスイッチである。
【0062】
図3に示すように、各ディスクディスクエンクロージャ2−0〜2−7は、複数(ここでは2つ)のBRT5−0,5−1が接続される。図4に示すように、各ディスクエンクロージャ2−0は、各々2つのポートを有する複数台のディスクドライブ200を搭載し、このディスクエンクロージャ2−0の構成は、4つの接続ポート210,212,214,216を有する単位ディスクエンクロージャ20−0〜23−0で構成される。これらを、直列接続して、容量の増大を実現する。
【0063】
そして、ディスクエンクロージャ20−0〜23−0内では、2つのポート210,212からの一対のFCケーブルにより、各ディスクドライブ200の各ポートが、2つのポート210,212に接続される。この2つのポート210,212は、図3で説明したように、異なるBRT5−0,5−1に接続される。
【0064】
図1に示すように、各制御モジュール4−0〜4−7のディスクアダプタ42a,42bそれぞれを、すべてのディスクエンクロージャ2−0〜2−25に接続する。即ち、各制御モジュール4−0〜4−7のディスクアダプタ42aは、ディスクエンクロージャ2−0〜2−7に接続されたBRT5−0(図3参照)と、ディスクエンクロージャ2−8,2−9〜に接続されたBRT5−2と、ディスクエンクロージャ2−16、2−17〜に接続されたBRT5−4と、ディスクエンクロージャ2−24,2−25〜に接続されたBRT5−6とにそれぞれ接続される。
【0065】
又、同様に、各制御モジュール4−0〜4−7のディスクアダプタ42bは、ディスクエンクロージャ2−0〜2−7に接続されたBRT5−1(図3参照)と、ディスクエンクロージャ2−8,2−9〜に接続されたBRT5−3と、ディスクエンクロージャ2−16、2−17〜に接続されたBRT5−5と、ディスクエンクロージャ2−24,2−25〜に接続されたBRT5−7とに、それぞれ接続される。
【0066】
このように、各ディスクエンクロージャ2−0〜2−31は、複数(ここでは2つ)のBRTが接続されるとともに、同一のディスクエンクロージャ2−0〜2−31に接続された2つのBRTのそれぞれに、同一の制御モジュール4−0〜4−7における異なるディスクアダプタ42a,42bが接続される。
【0067】
このような構成により、各制御モジュール4−0〜4−7が、いずれのディスクアダプタ42a,42bを通じても、すべてのディスクエンクロージャ(ディスクドライブ)2−0〜2−31にアクセスできる。
【0068】
また、これらディスクアダプタ42a,42bのそれぞれは、制御モジュール4−0〜4−7の一部として構成されており、制御モジュール4−0〜4−7の主要ユニットであるキャッシュマネージャ40の基板上に実装され、各ディスクアダプタ42a,42bは、例えばPCI(Peripheral Component Interconnect)−Expressバスによってキャッシュマネージャ40と直接結合されており、これにより、各ディスクアダプタ42a,42bとキャッシュマネージャ40と間に要求される高いスループットを実現することができる。
【0069】
さらに、図2に示すごとく、各ディスクアダプタ42a,42bは対応するBRT5−0〜5−7にバス、例えば、ファイバチャネル(Fiber Channel)やEthernet(登録商標)、によって接続される。この場合、バスは、後述するように、バックパネルのプリント基板に電気的配線で設けられる。
【0070】
各制御モジュール4−0〜4−7のディスクアダプタ42a,42bとBRT5−0〜5−7との間は、前述のように、全てのディスクエンクロージャと接続するため、1対1のメッシュ接続になるため、制御モジュール4−0〜4−7の数(つまり、ディスクアダプタ42a,42bの数)が増大するほど、接続数が増加して接続関係が複雑になり、物理的な実装が困難になる。しかし、ディスクアダプタ42a,42bとBRT5−0〜5−7との間の接続に、インターフェースを構成する信号数が少ないファイバチャネルを採用することにより、プリント基板での実装が可能となる。
【0071】
なお、各ディスクアダプタ42a,42bと対応するBRT5−0〜5−7とがファイバチャネル接続される場合、BRT5−0〜5−7は,ファイバチャネルのスイッチとなる。また、各BRT5−0〜5−7と対応するディスクエンクロージャ2−0〜2−31との間も、例えば、ファイバチャネルによって接続され、この場合には、モジュールが異なるため、光ケーブル500,510で接続される。
【0072】
図1に示すように、DMAエンジン43は、他の制御モジュール4−0〜4−7と相互に通信を行なうものであり、他の制御モジュール4−0〜4−7間との通信とデータ転送処理を担当する。各制御モジュール4−0〜4−7のDMAエンジン43それぞれは、制御モジュール4−0〜4−7の一部として構成されており、制御モジュール4−0〜4−7の主要ユニットであるキャッシュマネージャ40の基板上に実装される。そして、前述の高速シリアルバスによって、キャッシュマネージャ40と直接結合されるとともに、FRT6−0,6−1を介して他の制御モジュール4−0〜4−7のDMAエンジン43と互いに通信する。
【0073】
FRT6−0,6−1は、複数(特に3以上、ここでは8つ)の制御モジュール4−0〜4−7のDMAエンジン43に接続され、これら制御モジュール4−0〜4−7の相互間を選択的に切り替え,通信可能に接続するものである。
【0074】
このような構成により、各制御モジュール4−0〜4−7のDMAエンジン43のそれぞれは、FRT6−0,6−1を介して、自身に接続されたキャッシュマネージャ40と他の制御モジュール4−0〜4−7のキャッシュマネージャ40との間で、ホストコンピュータからのアクセス要求等に応じて生じる通信やデータ転送処理(例えば、ミラーリング処理)を実行する。
【0075】
また、図2に示すように、各制御モジュール4−0〜4−7のDMAエンジン43が複数(ここでは2つ)のDMAエンジン43−a,43−bで構成され、これら2つのDMAエンジン43−a,43−bの各々が、各々2つのFRT6−0,6−1を使用する。
【0076】
さらに、DMAエンジン43−a,43−bは、前述のように、例えば、PCI−Expressバスによって、キャッシュマネージャ40に接続されており、低レイテシイを実現する。
【0077】
また、各制御モジュール4−0〜4−7間(つまり、各制御モジュール4−0〜4−7のキャッシュマネージャ40間)の通信やデータ転送処理では、データ転送量が多く、通信にかかる時間を短くすることが望ましく、高いスループットと同時に低いレイテンシ(速い応答速度)が要求される。このため、図1、図2に示すように、各制御モジュール4−0〜4−7のDMAエンジン43とFRT6−0,6−1とは、高いスループットと低いレイテンシとの両方の要求を満たすべく設計された、高速シリアル伝送を利用したバス(PCI-ExpressやRapid-IO)によって、接続される。
【0078】
これらPCI-ExpressやRapid-IOは、2.5Gbpsの高速シリアル伝送を利用したものであり、これらのバスインターフェースには、LVDS(Low Voltage Differential Signaling)という小振幅差動インターフェースが採用される。
【0079】
[リード/ライト処理]
次に、図1乃至図4のデータストレージシステムのリード処理を説明する。図5は、図1乃至図2の構成のリード動作の説明図である。
【0080】
先ず、キャッシュマネージャ40は、ホストコンピュータのいずれかから対応するチャネルアダプタ41a〜41dを介してリード要求を受け取った場合、当該リード要求の対象データをキャッシュメモリ40bが保持していれば、キャッシュメモリ40bに保持された当該対象データを、チャネルアダプタ41a〜41dを介してホストコンピュータに送る。
【0081】
一方、当該対象データがキャッシュメモリ40bに保持されていなければ、キャッシュ制御部40aが、当該対象データを保持しているディスクドライブ200から対象データを、キャッシュメモリ40b上に読み出してから、対象データを、リード要求を発行したホストコンピュータに送信する。
【0082】
このディスクドライブとのリード処理を、図5で説明する。
【0083】
(1)キャッシュマネージャ40の制御部40a(CPU)は、キャッシュメモリ40bのディスクリプタ領域に、FCヘッダとディスクリプタを作成する。ディスクリプタは、データ転送回路(DMA回路)に対して、データ(DMA)転送を要求する命令であり、FCヘッダのキャッシュメモリ上のアドレス、転送したいデータのキャッシュメモリ上でのアドレスとデータバイト数、データ転送のディスクの論理アドレスを含む。
【0084】
(2)ディスクアダプタ42のデータ転送回路を起動する。
【0085】
(3)ディスクアダプタ42の起動されたデータ転送回路は、キャッシュメモリ40bからディスクリプタを読み出す。
【0086】
(4)ディスクアダプタ42の起動されたデータ転送回路は、キャッシュメモリ40bからFCヘッダを読み出す。
【0087】
(5)ディスクアダプタ42の起動されたデータ転送回路は、ディスクリプタを解読し、要求ディスク、先頭アドレス、バイト数を得て、FCヘッダを、ファイバーチャネル500(510)より、対象ディスクドライブ200に転送する。ディスクドライブ200は、要求された対象データを読み出し、ファイバーチャネル500(510)を介しディスクアダプタ42のデータ転送回路に送信する。
【0088】
(6)ディスクドライブ200は、要求された対象データを読み出し、送信を完了すると、完了通知を、ファイバーチャネル500(510)を介しディスクアダプタ42のデータ転送回路に送信する。
【0089】
(7)ディスクアダプタ42の起動されたデータ転送回路は、完了通知を受けると、ディスクアダプタ42のメモリからリードデータを読み出し、キャッシュメモリ40bに格納する。
【0090】
(8)ディスクアダプタ42の起動されたデータ転送回路は、リード転送が完了すると、キャッシュマネージャ40に、割り込みによる完了通知を行う。
【0091】
(9)キャッシュマネージャ40の制御部42aは、ディスクアダプタ42の割り込み要因を得て、リード転送を確認する。
【0092】
(10)キャッシュマネージャ40の制御部42aは、ディスクアダプタ42の終了ポインタを調べ、リード転送完了を確認する。
【0093】
このように、十分な性能を得るためには、全ての接続が高いスループットを持つ必要があるが、キャッシュ制御部40aとディスクアダプタ42との間には、信号のやり取りが多く(図では、7回)、特に、低いレイテンシのバスが必要となる。
【0094】
この実施例では、PCI-Express(4レーン)と、Fibre Channel(4G)を、どちらも高いスループットの接続として採用しているが、PCI-Expressが低いレイテンシの接続なのに対して、Fibre Channelは比較的レイテンシの大きな(データ転送に時間のかかる) 接続である。
【0095】
そこで、第2の従来技術では、CM10とDA13、CA11との間のRT14(図12参照)には、レイテンシが高いFibre Channelを採用できないのに対して、本発明では、図1の構成のため、BRT5−0〜5−7に,Fibre Channelを採用することができる。
【0096】
低いレイテンシを実現するためには、バスの信号本数をある程度より減らすことができないが、本発明では、ディスクアダプタ42とBRT5−0間の接続には、信号線本数の少ないFibre Channelを採用することができ、バックパネル上の信号本数が少なくなり、実装上で有効である。
【0097】
次に、ライト動作を説明する。ホストコンピュータのいずれかから対応するチャネルアダプタ41a〜41dを介してライト要求を受け取った場合、当該ライト要求のコマンドとライトデータとを受信したチャネルアダプタ41a〜41dは、キャッシュマネージャ40に対して、ライトデータを書き込むべきキャッシュメモリ40bのアドレスを尋ねる。
【0098】
そして、このチャネルアダプタ41a〜41dがキャッシュマネージャ40からの応答を受け取ると、キャッシュマネージャ40のキャッシュメモリ40bにライトデータを書き込むとともに、当該キャッシュマネージャ40とは異なる少なくとも1つのキャッシュマネージャ40(つまり、異なる制御モジュール4−0〜4−7のキャッシュマネージャ40)内のキャッシュメモリ40bにもライトデータを書き込む。このため、DMAエンジン43を起動し、FRT6−0,6−1を介し、他の制御モジュール4−0〜4−7のキャッシュマネージャ40内のキャッシュメモリ40bにもライトデータを書き込む。
【0099】
ここで、少なくとも異なる2つの制御モジュール4−0〜4−7のキャッシュメモリ40bにライトデータを書き込むのは、データを2重化(ミラーリング)することで、予期しない制御モジュール4−0〜4−7もしくはキャッシュマネージャ40のハード故障の場合にも、データの喪失を防ぐためである。
【0100】
最後に、これら複数のキャッシュメモリ40bへのライトデータの書き込みが正常に終了すると、チャネルアダプタ41a〜41dがホストコンピュータ3−0〜3−31に対して完了通知を行ない、処理を終了する。
【0101】
更に、このライトデータを、対象とするディスクドライブに、書き戻す(ライトバックという)必要がある。キャッシュ制御部40aは、内部スケジュールに従い、キャッシュメモリ40bのライトデータを、当該対象データを保持しているディスクドライブ200にライトバックする。このディスクドライブとのライト処理を、図6で説明する。
【0102】
(1)キャッシュマネージャ40の制御部40a(CPU)は、キャッシュメモリ40bのディスクリプタ領域に、FCヘッダとディスクリプタを作成する。ディスクリプタは、データ転送(DMA)回路に対して、データ(DMA)転送を要求する命令であり、FCヘッダのキャッシュメモリ上のアドレス、転送したいデータのキャッシュメモリ上でのアドレスとデータバイト数、データ転送のディスクの論理アドレスを含む。
【0103】
(2)ディスクアダプタ42のデータ転送回路を起動する。
【0104】
(3)ディスクアダプタ42の起動されたデータ転送回路は、キャッシュメモリ40bからディスクリプタを読み出す。
【0105】
(4)ディスクアダプタ42の起動されたデータ転送回路は、キャッシュメモリ40bからFCヘッダを読み出す。
【0106】
(5)ディスクアダプタ42の起動されたデータ転送回路は、ディスクリプタを解読し、要求ディスク、先頭アドレス、バイト数を得て、キャッシュメモリ40bからデータを読み出す。
【0107】
(6)読み出し完了後、ディスクアダプタ42のデータ転送回路は、FCヘッダとデータを、ファイバーチャネル500(510)より、対象ディスクドライブ200に転送する。ディスクドライブ200は、転送されたデータを内臓するディスクに書き込む。
【0108】
(7)ディスクドライブ200は、データの書き込みを完了すると、完了通知を、ファイバーチャネル500(510)を介しディスクアダプタ42のデータ転送回路に送信する。
【0109】
(8)ディスクアダプタ42の起動されたデータ転送回路は、完了通知を受けると、キャッシュマネージャ40に、割り込みによる完了通知を行う。
【0110】
(9)キャッシュマネージャ40の制御部42aは、ディスクアダプタ42の割り込み要因を得て、ライト動作を確認する。
【0111】
(10)キャッシュマネージャ40の制御部42aは、ディスクアダプタ42の終了ポインタを調べ、ライト動作完了を確認する。
【0112】
この図6でも、図5でも、矢印は、データなどのパケットの転送を示し、コの字型の矢印は、データのリードを表しており、一方のデータ要求に対してデータが送り返されているのを示す。このように、DA内の制御回路の起動と終了状態の確認が必要となるため、一回のデータ転送を行うのにCM40とDA42の間では、7回のやり取りが行われている。DA42とディスク200の間は2回である。
【0113】
これによって、キャッシュ制御部40とディスクアダプタ42との間の接続に、低いレイテンシが要求され、一方、ディスクアダプタ42とディスクデバイス200とは、信号本数の少ないインタフェースを利用できることが理解できる。
【0114】
[実装構造]
図7は、本発明による制御モジュールの実装構成例を示す図、図8は、図7の制御モジュールとディスクエンクロージャとを含む実装構成例を示す図、図9及び図10は、かかる実装構成によるデータストレージシステムのブロック図である。
【0115】
図8に示すように、ストレージ装置の筐体の上側には、4台のディスクエンクロージャ2−0,2−1,2−8,2−9が搭載される。ストレージ装置の下側半分は、制御回路を搭載する。この下側半分は、図7のように、バックパネル7によって前後に分割されている。バックパネル7の前方、後方には、それぞれスロットが設けられる。図9の大規模構成のストレージシステムでは、前方側(Front)には、8枚(8個)のCM4−0〜4−7が、後方には、2枚(2個)のFRT6−0,6−1、8枚(8個)のBRT5−0〜5−7及び、電源制御などを担当するサービスプロセッサSVC(図1、図9では図示しない)が配置される。
【0116】
図7では、8枚のCM4−0〜4−7と2枚のFRT6−0,6−1が、バックパネル7を経由して、4レーンのPCI-Expressで接続される。PCI−Expessは、4本(差動、両方向のため)の信号線であり、4レーン分で、16本の信号線となるから、この信号本数は16×16=256本となる。また、8枚のCM4−0〜4−7と8枚のBRT5−0〜5−7がバックパネル7を経由して、Fibre Channelで接続される。Fibre Channelは、差動、両方向のため、1×2×2=4の信号線であり、この信号本数は、8×8×4=256本となる。
【0117】
このように、接続箇所毎にバスを使い分けることにより、図9のような大規模構成のストレージシステムでも、CM4−0〜4−7の8枚、FRT6−0,6−1の2枚、BRT5−0〜5−7の8枚の接続が、512本の信号線によって実現できる。この信号線数は、バックパネル基板7に十分に実装可能な信号数であり、また基板の信号層数も6層で十分であり、コスト的にも実現可能な範囲内にある。
【0118】
又、図8では、4台のディスクエンクロージャ2−0,2−1,2−8,2−9(図9参照)を搭載するが、他のディスクエンクロージャ2−3〜2−7、2−10〜2−31は、別の筐体に設けられる。
【0119】
更に、図10のような中規模ストレージシステムでも、同様の構成で実現できる。即ち、4台のCM4−0〜4−3、4台のBRT5−0〜5−3、2台のFRT6−0〜6−1、16モジュールのディスクエンクロージャ2−0〜2−15の構成でも、同一のアーキテクチャで実現できる。
【0120】
しかも、各制御モジュール4−0〜4−7のディスクアダプタ42a,42bそれぞれは、BRTにより、すべてのディスクドライブ200に接続され、各制御モジュール4−0〜4−7が、いずれのディスクアダプタ42a,42bを通じても、すべてのディスクドライブにアクセスできる。
【0121】
また、これらディスクアダプタ42a,42bそれぞれは、制御モジュール4−0〜4−7の主要ユニットであるキャッシュマネージャ40の基板上に実装され、各ディスクアダプタ42a,42bは、例えばPCI−Express等の低レンテシイバスによってキャッシュマネージャ40と直接結合でき、高いスループットを実現することができる。
【0122】
更に、各制御モジュール4−0〜4−7のディスクアダプタ42a,42bとBRT5−0〜5−7との間は、1対1のメッシュ接続になるため、システムがそなえる制御モジュール4−0〜4−7の数(つまり、ディスクアダプタ42a,42bの数)が増大しても、ディスクアダプタ42a,42bとBRT5−0〜5−7との間の接続に、インターフェースを構成する信号数が少ないファイバチャネルを採用することができ、実装の課題を解決することができる。
【0123】
また、各制御モジュール4−0〜4−7間(つまり、各制御モジュール4−0〜4−7のキャッシュマネージャ40間)の通信やデータ転送処理では、データ転送量が多く、通信にかかる時間を短くすることが望ましく、高いスループットと同時に低いレイテンシ(速い応答速度)が要求されるため、図2に示すごとく、各制御モジュール4−0〜4−7のDMAエンジン43とFRT6−0,6−1とは、高いスループットと低いレイテンシとの両方の要求を満たすべく設計された、高速シリアル伝送を利用したバスPCI-Expressによって接続されている。
【0124】
[他の実施の形態]
前述の実施の形態では、制御モジュール内の信号線を、PCI-Expressで説明したが, Rapid-IO等の他の高速シリアルバスを利用できる。制御モジュール内のチャネルアダプタやディスクアダプタの数は、必要に応じて、増減できる。
【0125】
又、ディスクドライブとしては、ハードディスクドライブ、光ディスクドライブ、光磁気ディスクドライブ等の記憶デバイスを適用できる。
【0126】
以上、本発明を実施の形態により説明したが、本発明の趣旨の範囲内において、本発明は、種々の変形が可能であり、本発明の範囲からこれらを排除するものではない。
【0127】
(付記1)データを記憶する複数の記憶デバイスと、上位からのアクセス指示に応じて、前記記憶デバイスをアクセス制御する複数の制御モジュールとを有し、前記制御モジュールは、前記記憶デバイスに記憶されたデータの一部を格納するキャッシュメモリと、前記キャッシュメモリの制御を行うキャッシュ制御ユニットと、前記上位とのインターフェース制御を行う第1のインターフェース部と、前記複数の記憶デバイスとのインターフェース制御を行う第2のインターフェース部とを有し、更に、前記複数の制御モジュールと前記複数の記憶デバイスとの間に設けられ、各制御モジュールの前記第2のインターフェース部と前記複数の記憶デバイスとを選択的に切り替える複数の第1のスイッチユニットを設け、前記複数の制御モジュールと前記複数の第1のスイッチユニットとをバックパネルで接続したことを特徴とするデータストレージシステム。
【0128】
(付記2)前記制御モジュールは、キャッシュ制御ユニットと前記第2のインターフェース部とを、低レンテシイの高速シリアスバスで接続するとともに、前記第2のインターフェース部と前記複数の第1のスイッチユニットとを、前記バックパネルで、シリアルバスで接続したことを特徴とする付記1のデータストレージシステム。
【0129】
(付記3)前記制御モジュールは、他の前記制御モジュールと通信するための通信ユニットを有し、更に、前記各制御モジュールの通信ユニットを選択的に接続する第2のスイッチユニットを有することを特徴とする付記1のデータストレージシステム。
【0130】
(付記4)各制御モジュールの通信ユニットと第2のスイッチユニットとを、前記バックパネルで接続したことを特徴とする付記3のデータストレージシステム。
【0131】
(付記5)前記第1のスイッチユニットと前記複数の記憶デバイスをケーブルで接続したことを特徴とする付記1のデータストレージシステム。
【0132】
(付記6)前記記憶デバイスは、複数のアクセスポートを有し、前記複数のアクセスポートに、複数の異なる前記第1のスイッチユニットを接続したことを特徴とする付記1のデータストレージシステム。
【0133】
(付記7)前記制御モジュールは、前記キャッシュ制御ユニットと前記第2のインターフェース部とを、複数レーンの高速シリアスバスで接続するとともに、前記第2のインターフェース部と前記複数の第1のスイッチユニットとを、前記バックパネルで、シリアルバスで接続したことを特徴とする付記2のデータストレージシステム。
【0134】
(付記8)前記高速シリアルバスが、PCI-Expressバスであることを特徴とする付記2のデータストレージシステム。
【0135】
(付記9)前記シリアルバスが、ファイバチャネルであることを特徴とする付記2のデータストレージシステム。
【0136】
(付記10)前記制御モジュールは、前記キャッシュ制御ユニットと前記第1のインターフェース部とを、低レンテシイの高速シリアスバスで接続したことを特徴とする付記2のデータストレージシステム。
【0137】
(付記11)上位からのアクセス指示に応じて、データを記憶する複数の記憶デバイスをアクセス制御するデータストレージ制御装置において、前記記憶デバイスに記憶されたデータの一部を格納するキャッシュメモリと、前記キャッシュメモリの制御を行うキャッシュ制御ユニットと、前記上位とのインターフェース制御を行う第1のインターフェース部と、前記複数の記憶デバイスとのインターフェース制御を行う第2のインターフェース部とを有する複数の制御モジュールと、前記複数の制御モジュールと前記複数の記憶デバイスとの間に設けられ、各制御モジュールの前記第2のインターフェース部と前記複数の記憶デバイスとを選択的に切り替える複数の第1のスイッチユニットを有し、前記複数の制御モジュールと前記複数の第1のスイッチユニットとをバックパネルで接続したことを特徴とするデータストレージ制御装置。
【0138】
(付記12)前記制御モジュールは、キャッシュ制御ユニットと前記第2のインターフェース部とを、低レンテシイの高速シリアスバスで接続するとともに、前記第2のインターフェース部と前記複数の第1のスイッチユニットとを、前記バックパネルで、シリアルバスで接続したことを特徴とする付記11のデータストレージ制御装置。
【0139】
(付記13)前記制御モジュールは、他の前記制御モジュールと通信するための通信ユニットを有し、更に、前記各制御モジュールの通信ユニットを選択的に接続する第2のスイッチユニットを有することを特徴とする付記11のデータストレージ制御装置。
【0140】
(付記14)各制御モジュールの通信ユニットと第2のスイッチユニットとを、前記バックパネルで接続したことを特徴とする付記13のデータストレージ制御装置。
【0141】
(付記15)前記第1のスイッチユニットと前記複数の記憶デバイスをケーブルで接続したことを特徴とする付記1のデータストレージ制御装置。
【0142】
(付記16)複数の異なる前記第1のスイッチユニットは、複数のアクセスポートを有する前記記憶デバイスの各々に接続したことを特徴とする付記11のデータストレージ制御装置。
【0143】
(付記17)前記制御モジュールは、前記キャッシュ制御ユニットと前記第2のインターフェース部とを、複数レーンの高速シリアスバスで接続するとともに、前記第2のインターフェース部と前記複数の第1のスイッチユニットとを、前記バックパネルで、シリアルバスで接続したことを特徴とする付記12のデータストレージ制御装置。
【0144】
(付記18)前記高速シリアルバスが、PCI-Expressバスであることを特徴とする付記12のデータストレージ制御装置。
【0145】
(付記19)前記シリアルバスが、ファイバチャネルであることを特徴とする付記12のデータストレージ制御装置。
【0146】
(付記20)前記制御モジュールは、前記キャッシュ制御ユニットと前記第1のインターフェース部とを、低レンテシイの高速シリアスバスで接続したことを特徴とする付記12のデータストレージ制御装置。
【産業上の利用可能性】
【0147】
各制御モジュールの第2のインターフェースと複数の第1のスイッチユニットを接続したため、全ての制御モジュールは、全ての記憶デバイスにアクセスできる冗長性を維持でき、且つ制御モジュールの数が増大しても、制御モジュールと第1のスイッチユニットとをバックパネルで、インターフェースを構成する信号数が少ないシリアルバスで接続できるため、制御モジュール内の低レンテシイな通信を維持しつつ、プリント基板での実装が可能となる。このため、大規模から小規模までのアーキテクチャを統一化するのに有効であり、装置のコストダウンに寄与できる。
【符号の説明】
【0148】
1 ストレージシステム
2−0〜2−35 ディスクエンクロージャ
4−0〜4−7 制御ユニット
5−0〜5−7 バックエンドルータ
6−0〜6−1 フロントエンドルータ
7 バックパネル
40 制御モジュール
40a キャッシュ制御ユニット
40b キャッシュメモリ
41 チャネルアダプタ
42 デバイスアダプタ
43 通信ユニット(DMAエンジン)

【特許請求の範囲】
【請求項1】
データを記憶する複数のディスク記憶デバイスを並列に接続して構成された複数のディスクエンクロージャと、
上位からのアクセス指示に応じて、前記ディスク記憶デバイスをアクセス制御する複数の制御モジュールとを有し、
前記制御モジュールの各々は、
前記上位とのインターフェース制御を行う第1のインターフェース部と、
前記ディスク記憶デバイスとのインターフェース制御を行う第2のインターフェース部と、
前記アクセス指示に応じて、前記第2のインターフェース部より、前記ディスク記憶デバイスをアクセス制御する制御ユニットとを有し、
各前記制御モジュールの前記第2のインターフェース部に接続され、前記各制御モジュールの前記第2のインターフェース部と前記複数のディスクエンクロージャとを選択的に切り替える複数の第1のスイッチユニットを搭載する複数の第1の基板と、
少なくとも前記制御ユニットと、前記第2のインターフェース部とを設けた複数の第2の基板と、
前記複数の第1の基板と、前記複数の第2の基板が取り付けられ、前記第2のインターフェース部と、前記複数の第1のスイッチユニットとを、バスで接続するバックパネルとを設けた
ことを特徴とするデータストレージシステム。
【請求項2】
前記ディスクエンクロージャを、複数個直列接続した
ことを特徴とする請求項1のデータストレージシステム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2010−49716(P2010−49716A)
【公開日】平成22年3月4日(2010.3.4)
【国際特許分類】
【出願番号】特願2009−273376(P2009−273376)
【出願日】平成21年12月1日(2009.12.1)
【分割の表示】特願2005−22121(P2005−22121)の分割
【原出願日】平成17年1月28日(2005.1.28)
【出願人】(000005223)富士通株式会社 (25,993)
【Fターム(参考)】