説明

パターン形成方法及び液滴吐出装置

【課題】液滴の飛行曲がりや吐出口の目詰まりを回避して、液滴からなるパターンの形状制御性を向上したパターン形成方法及び液滴吐出装置を提供する。
【解決手段】基板2の法線方向(Z矢印方向)から見て、各液滴Fbの相対移動経路Rから離間する位置に、対応する出射口Eを配設するようにした。しかも、各出射口Eを、それぞれ対応するノズルNと各照射位置PTのそれぞれとを結ぶ直線から離間するように配設した。そして、出射口Eから対応する照射位置PTを通過する光軸Aを形成し、その光軸Aが、対応する相対移動経路Rと交差するようにした。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、パターン形成方法及び液滴吐出装置に関する。
【背景技術】
【0002】
従来、液晶表示装置やエレクトロルミネッセンス表示装置等の表示装置には、画像を表示するための基板が備えられている。この種の基板には、品質管理や製造管理を目的として、その製造元や製品番号等の製造情報をコード化した識別コード(例えば、2次元コード)が形成されている。こうした識別コードは、配列された多数のパターン形成領域(データセル)の一部に、パターンとしてのコードパターン(例えば、有色の薄膜や凹部等のドット)を備え、そのコードパターンの有無によって製造情報を再現可能にしている。
【0003】
識別コードの形成方法には、金属箔にレーザ光を照射してコードパターンをスパッタ成膜するレーザスパッタ法や、研磨材を含んだ水を基板等に噴射してコードパターンを刻印するウォータージェット法が提案されている(特許文献1、特許文献2)。
【0004】
しかし、上記レーザスパッタ法では、所望するサイズのコードパターンを得るために、金属箔と基板の間隙を、数〜数十μmに調整しなければならない。つまり、基板と金属箔の表面に対して非常に高い平坦性が要求され、しかも、これらの間隙をμmオーダの精度で調整しなければならない。その結果、識別コードを形成できる対象基板が制限されて、その汎用性を損なう問題を招いていた。また、ウォータージェット法では、基板の刻印時に、水や塵埃、研磨剤等が飛散するため、同基板を汚染する問題があった。
【0005】
近年、こうした生産上の問題を解消する識別コードの形成方法として、インクジェット法が注目されている。インクジェット法は、金属微粒子を含む液滴を吐出口から吐出して、その液滴を乾燥させることによってコードパターンを形成する。そのため、識別コードを形成する基板の対象範囲を拡大することができ、同基板の汚染等を回避して識別コードを形成することができる。
【特許文献1】特開平11−77340号公報
【特許文献2】特開2003−127537号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、上記インクジェット法では、液滴を乾燥することによってコードパターンを形成するために、基板の表面状態や液滴の表面張力等に応じて、以下の問題を招いていた。すなわち、基板に着弾した液滴が基板表面に沿って直ちに濡れ広がるため、液滴の乾燥に時間を要すると(例えば、100ミリ秒以上の時間を要すると)、着弾した液滴が基板表面で過剰に濡れ広がって、対応するデータセル内から食み出すようになる。その結果、コードパターンを読み取り不可能にして基板情報を損失する問題があった。
【0007】
こうした問題は、図8に示すように、液滴吐出ヘッド101の直下に位置する基板102上の液滴Fbの領域にレーザ光Bを照射し、所定のサイズの液滴Fbを瞬時に乾燥することによって回避可能と考えられる。しかし、液滴Fbの領域にレーザ光Bを照射すると、液滴Fbや液滴Fb周辺の基板102、さらには液滴Fbの吐出不良によって露出した基板102から、吐出口103の領域に向かう反射光Brが反射されて、吐出口103の液状体Fを乾燥あるいは焼成させる。その結果、吐出口103の中の液状体Fが固化して、液滴Fbの飛行曲がりや吐出口103の目詰まりを招く虞があった。
【0008】
本発明は、上記問題を解決するためになされたものであり、その目的は、液滴の飛行曲がりや吐出口の目詰まりを回避して、液滴からなるパターンの形状制御性を向上したパターン形成方法及び液滴吐出装置を提供することである。
【課題を解決するための手段】
【0009】
本発明のパターン形成方法は、基板と相対向する吐出口からパターン形成材料を含む液滴を吐出して前記基板に着弾した前記液滴を前記吐出口に対して相対移動し、前記相対移動した前記液滴の領域にレーザ光を出射してパターンを形成するようにしたパターン形成方法において、前記基板の法線方向から見て、前記液滴の相対移動経路から離間する位置に前記レーザ光の出射口を設け、前記出射口から前記レーザ光を出射するようにした。
【0010】
本発明のパターン形成方法によれば、液滴の相対移動経路から出射口を離間させる分だけ、レーザ光の光路から吐出口を離間させることができる。従って、液滴の領域に出射したレーザ光が基板等に反射される場合であっても、吐出口に対するレーザ光の照射を回避することができる。その結果、液滴の飛行曲がりや吐出口の目詰まりを回避して、液滴からなるパターンの形状制御性を向上することができる。
【0011】
本発明のパターン形成方法は、基板と相対向する複数の吐出口からパターン形成材料を含む液滴を吐出して前記基板に着弾した前記液滴を前記吐出口に対して相対移動し、前記相対移動した前記液滴の領域にレーザ光を出射してパターンを形成するようにしたパターン形成方法において、前記基板の法線方向から見て、前記レーザ光を出射する前記液滴の領域と前記各吐出口とを結ぶ直線から離間する位置に前記レーザ光の出射口を設け、前記出射口から前記レーザ光を出射するようにした。
【0012】
本発明のパターン形成方法によれば、レーザ光を出射する液滴の領域と各吐出口とを結ぶ直線から出射口を離間させる分だけ、レーザ光の光路から各吐出口を離間させることができる。従って、液滴の領域に出射したレーザ光が基板等に反射される場合であっても、吐出口に対するレーザ光の照射を回避することができる。その結果、液滴の飛行曲がりや吐出口の目詰まりを回避して、液滴からなるパターンの形状制御性を向上することができる。
【0013】
本発明のパターン形成方法は、基板と相対向する吐出口からパターン形成材料を含む液滴を吐出して前記基板に着弾した前記液滴を前記吐出口に対して相対移動し、前記相対移動した前記液滴の領域にレーザ光を出射してパターンを形成するようにしたパターン形成方法において、前記レーザ光を出射する前記液滴の領域から前記吐出口に向かう方向の単位ベクトルと、前記レーザ光を出射する前記液滴の領域から出射口に向かう方向の単位ベクトルとの合成ベクトルの方向を前記基板の法線方向に対して傾斜させる位置に前記出射口を設け、前記出射口から前記レーザ光を出射するようにした。
【0014】
本発明のパターン形成方法によれば、出射したレーザ光が基板等によって正反射される場合であっても、レーザ光の光路から吐出口を離間させることができ、吐出口に対するレーザ光の照射を回避することができる。その結果、液滴の飛行曲がりや吐出口の目詰まりを回避して、液滴からなるパターンの形状制御性を向上することができる。
【0015】
本発明の液滴吐出装置は、基板と相対向する吐出口から液滴を吐出する液滴吐出ヘッドと、前記基板に着弾した前記液滴を前記吐出口に対して相対移動させる相対移動手段と、前記相対移動した前記液滴の領域にレーザ光を出射する出射口と、を備えた液滴吐出装置において、前記出射口は、前記基板の法線方向から見て、前記液滴の相対移動経路から離間する。
【0016】
本発明の液滴吐出装置によれば、液滴の相対移動経路から出射口を離間させる分だけ、レーザ光の光路から吐出口を離間させることができる。従って、液滴の領域に出射したレーザ光が基板等に反射される場合であっても、反射されたレーザ光の吐出口に対する照射を回避することができる。その結果、液滴の飛行曲がりや吐出口の目詰まりを回避して、液滴からなるパターンの形状制御性を向上することができる。
【0017】
本発明の液滴吐出装置において、基板と相対向する複数の吐出口から液滴を吐出する液滴吐出ヘッドと、前記基板に着弾した前記液滴を前記吐出口に対して相対移動させる相対移動手段と、前記相対移動した前記液滴の領域にレーザ光を出射する出射口と、を備えた液滴吐出装置において、前記出射口は、前記基板の法線方向から見て、前記レーザ光を出射する前記液滴の領域と前記各吐出口とを結ぶ直線から離間する。
【0018】
本発明の液滴吐出装置によれば、レーザ光を出射する液滴の領域と各吐出口とを結ぶ直線から出射口を離間させる分だけ、レーザ光の光路から各吐出口を離間させることができる。従って、液滴の領域に出射したレーザ光が基板等に反射される場合であっても、吐出口に対するレーザ光の照射を回避することができる。その結果、液滴の飛行曲がりや吐出口の目詰まりを回避して、液滴からなるパターンの形状制御性を向上することができる。
【0019】
この液滴吐出装置において、前記出射口は、複数の前記吐出口のそれぞれに対応して複数設けられ、対応する前記吐出口の吐出動作に基づいて前記レーザ光を出射するようにしてもよい。
【0020】
この液滴吐出装置によれば、各吐出口の吐出動作に基づいてレーザ光を出射することができる。従って、吐出した液滴の分だけレーザ光を出射することができ、レーザ光の過剰な出射を回避することができる。その結果、各吐出口に対するレーザ光の照射を、より確実に回避することができる。
【0021】
本発明の液滴吐出装置は、基板と相対向する吐出口から液滴を吐出する液滴吐出ヘッドと、前記基板に着弾した前記液滴を前記吐出口に対して相対移動させる相対移動手段と、前記相対移動した前記液滴の領域にレーザ光を出射する出射口と、を備えた液滴吐出装置において、前記出射口は、前記レーザ光を出射する前記液滴の領域から前記出射口に向かう方向の単位ベクトルと、前記レーザ光を出射する前記液滴の領域から前記吐出口に向かう方向の単位ベクトルとの合成ベクトルの方向を前記基板の法線方向に対して傾斜させる。
【0022】
本発明の液滴吐出装置によれば、出射したレーザ光が基板等によって正反射される場合であっても、レーザ光の光路から吐出口を離間させることができ、吐出口に対するレーザ光の照射を回避することができる。その結果、液滴の飛行曲がりや吐出口の目詰まりを回避して、液滴からなるパターンの形状制御性を向上することができる。
【0023】
この液滴吐出装置において、前記出射口は、複数の前記吐出口のそれぞれに対応して複数設けられ、対応する前記吐出口の吐出動作に基づいて前記レーザ光を出射し、対応する前記合成ベクトルの方向をそれぞれ前記基板の法線方向に対して傾斜させるようにしてもよい。
【0024】
この液滴吐出装置によれば、各吐出口の吐出動作に基づいてレーザ光を出射することができる。従って、吐出した液滴の分だけレーザ光を出射することができ、レーザ光の過剰な照射を回避することができる。その結果、各吐出口に対するレーザ光の照射を、より確実に回避することができる。
【発明を実施するための最良の形態】
【0025】
(第1実施形態)
以下、本発明を具体化した第1実施形態を図1〜図6に従って説明する。まず、本発明のパターン形成方法を利用して形成した識別コードを有する液晶表示装置について説明する。
【0026】
図1において、液晶表示装置1は、四角形状に形成された基板2を備えて、本実施形態では、その基板2の長手方向をX矢印方向とし、X矢印方向と直交する方向をY矢印方向とする。
【0027】
基板2の一側面(表面2a)であって、その略中央位置には、液晶分子を封入した四角形状の表示部3が形成されて、その表示部3の外側には、走査線駆動回路4及びデータ線駆動回路5が形成されている。液晶表示装置1は、これら走査線駆動回路4の供給する走査信号と、データ線駆動回路5の供給するデータ信号に基づいて、前記表示部3内の液晶分子の配向状態を制御するようになっている。そして、液晶表示装置1は、図示しない照明装置からの平面光を液晶分子の配向状態によって変調して、表示部3の領域に所望の画像を表示するようになっている。
【0028】
基板2の表面2aであって、その左側下隅には、液晶表示装置1の識別コード10が形成されている。識別コード10は、一辺が約1mmの正方形で形成されたコード形成領域S内に形成されている。コード形成領域Sは、16行×16列のデータセルCに仮想分割されて、そのデータセルCの領域に、外径がデータセルCの一辺の長さに相当する半球状のパターンとしてのドットDが選択的に形成されている。本実施形態では、ドットDの形成されたデータセルCを「黒セルC1」とし、ドットDの形成されないデータセルCを「白セルC0」という。また、各黒セルC1の中心位置を「目標吐出位置P」とし、データセルCの一辺の長さを「セル幅W」という。
【0029】
ドットDは、パターン形成材料としての金属微粒子(例えば、ニッケル微粒子やマンガン微粒子)を分散媒に分散させた液状体F(図4参照)の液滴Fbを黒セルC1に吐出し、黒セルC1に着弾した液滴Fbを乾燥及び焼成させることによって形成されている。この液滴Fbの乾燥・焼成は、レーザ光B(図5参照)を照射することによって行われる。尚、本実施形態では、液滴Fbを乾燥・焼成することによってドットDを形成するようにしているが、これに限らず、例えばレーザ光Bの乾燥のみによって形成するようにしてもよい。
【0030】
そして、識別コード10は、各データセルC内のドットDの有無によって、液晶表示装置1の製品番号やロット番号等を再現できるようになっている。
次に、前記識別コード10を形成するための液滴吐出装置について説明する。
【0031】
図2に示すように、液滴吐出装置20には、その長手方向がX矢印方向に沿う直方体形状に形成された基台21が備えられている。基台21の上面には、X矢印方向に延びる1対の案内溝22が形成されて、X軸モータMX(図6参照)に駆動連結される相対移動手段としての基板ステージ23が、その案内溝22に案内されてX矢印方向及び反X矢印方向に直動するようになっている。基板ステージ23の上面には、図示しない吸引式のチャック機構が設けられて、載置される基板2が、表面2a(コード形成領域S)を上側にして位置決め固定されるようになっている。
【0032】
基台21のY矢印方向両側には、門型に形成された案内部材24が配設されている。案内部材24の上側には、液状体Fを収容する収容タンク25が配設されて、収容する液状体Fを液滴吐出ヘッド(以下単に、「吐出ヘッド」という。)30に導出するようになっ
ている。案内部材24の下側には、Y矢印方向に延びる上下一対の案内レール26がY矢印方向全幅にわたり形成されて、Y軸モータMY(図6参照)に駆動連結されるキャリッジ27が、その案内レール26に沿ってY矢印方向及び反Y矢印方向に直動するようになっている。
【0033】
そのキャリッジ27の下側には、吐出ヘッド30が搭載されている。図3は、吐出ヘッド30を基板2側から見た斜視図であって、図4及び図5は、吐出ヘッド30を説明する説明図である。尚、図5では、図4の状態の基板2をX矢印方向に所定の距離だけ搬送した状態を示す。
【0034】
図3及び図4に示すように、吐出ヘッド30の基板2側には、ノズルプレート31が備えられている。ノズルプレート31は、ステンレス等の板部材であって、その基板2側の側面(ノズル形成面31a)が搬送移動する基板2の表面2aと平行に配設されている。ノズルプレート31には、吐出口としての16個のノズルNがY矢印方向に沿う列状に等間隔で形成されている。ノズルNは、基板2の法線方向(Z矢印方向)に沿って貫通形成された円形孔であって、そのY矢印方向に沿う形成ピッチが、前記目標吐出位置Pの形成ピッチと同じ幅(セル幅W)で形成されている。本実施形態では、表面2a上の位置であって、各ノズルNの反Z矢印方向に相対する位置を、それぞれ「着弾位置PF」という。また、本実施形態では、最も反Y矢印方向に位置するノズルNを「第1ノズルN1」とし、Y矢印方向に沿って、順に「第2ノズルN2」・・・「第16ノズルN16」という。
【0035】
図4に示すように、各ノズルNの内周面であってそのノズル形成面31a側には、ノズル形成面31aの全体に広がる撥液膜32が形成されている。撥液膜32は、数百nm程度のシリコーン樹脂やフッ素樹脂等からなる重合膜であって、液状体Fに対する撥液性を有して、ノズルN内に形成される液状体Fの界面(メニスカスM)の位置を安定させるようになっている。尚、本実施形態では、撥液膜32を直接ノズルプレート31に形成する構成にしたが、これに限らず、ノズルプレート31と撥液膜32との間の密着性を向上するために、ノズルプレート31と撥液膜32との間に、シランカップリング剤等からなる数nmの密着層を介在させる構成にしてもよい。
【0036】
各ノズルNのZ矢印方向には、収容タンク25に連通するキャビティ33が形成されて、収容タンク25が導出する液状体Fを、それぞれ対応するノズルN内に供給するようになっている。各キャビティ33の上側には、Z矢印方向及び反Z矢印方向(上下方向)に振動可能な振動板34が貼り付けられて、キャビティ33内の容積を拡大・縮小するようになっている。振動板34の上側には、各ノズルNに対応する複数の圧電素子PZが配設されて、圧電素子PZを駆動制御するための信号(圧電素子駆動電圧VDP:図6参照)を受けて上下方向に収縮・伸張し、対応する振動板34をZ矢印方向及び反Z矢印方向に振動させるようになっている。
【0037】
そして、基板ステージ23をX矢印方向に搬送して、目標吐出位置Pが着弾位置PFと相対するタイミングで、圧電素子PZを収縮・伸張させる。すると、対応するキャビティ33内の容積が拡大・縮小してメニスカスMが振動し、所定容量の液状体Fが、対応するノズルNから液滴Fbとして吐出される。ノズルNから吐出された液滴Fbは、略反Z矢印方向に飛行して、対応するノズルNの直下に位置する目標吐出位置P(着弾位置PF)に着弾する。目標吐出位置Pに着弾した液滴Fbは、基板ステージ23のX矢印方向に沿う搬送移動とともにX矢印方向に移動し、その搬送時間の経過とともに対応するデータセルC内で濡れ広がって、乾燥するためのサイズ(本実施形態では、前記セル幅W)にまで拡大する。
【0038】
本実施形態では、液滴Fbの中心位置(目標吐出位置P)であって、液滴Fbの外径が
セル幅Wになる位置(図4に示す2点鎖線)を、「照射位置PT」とし、最も反Y矢印方向に位置する照射位置PTを「第1照射位置PT1」とし、Y矢印方向に沿って、順に「第2照射位置PT2」・・・「第16照射位置PT16」という。また、図4の下図に2点鎖線で示すように、基板2の法線方向(Z矢印方向)から見て、各ノズルNに対する液滴Fbの移動経路を、「相対移動経路R」という。
【0039】
図3及び図4に示すように、吐出ヘッド30のX矢印方向側には、16個の半導体レーザLDを搭載したレーザ照射手段としてのレーザヘッド35が配設されている。半導体レーザLDは、液状体F(分散媒や金属微粒子)の吸収波長に対応した波長領域のレーザ光Bを出射するようになっている。各半導体レーザLDの基板2側には、それぞれ半導体レーザLDからのレーザ光Bを平行光束にするコリメータ36と、コリメータ36からのレーザ光を表面2a側に収束して液滴Fbを覆うサイズの光断面(ビームスポット)を表面2aに形成する出射口Eが配設されている。
【0040】
本実施形態では、最も反Y矢印方向に位置する出射口Eを「第1出射口E1」とし、Y矢印方向に沿って、順に「第2出射口E2」・・・「第16出射口E16」という。
各出射口E(E1〜E16)は、ビームスポットを形成する光学系(例えば、集光レンズ)のレンズ面であって、それぞれ前記ノズルNと対応するように配設されている。詳述すると、各出射口Eは、Y矢印方向に沿う列状にセル幅Wの等間隔で配列されて、Z矢印方向から見て、それぞれ対応するノズルN(液滴Fb)の相対移動経路RからY矢印方向に離間する位置に配設されている。
【0041】
しかも、各出射口Eは、図5に示すように、対応するノズルNと各照射位置PT1〜PT16のそれぞれとを含む直線L上から、その中心位置を離間させるように配設されている。例えば、第2出射口E2は、対応する第2ノズルN2と各照射位置PT1〜PT16のそれぞれとを含む直線L上から、その中心位置を離間させるように配設されている。
【0042】
そして、各出射口Eは、対応する照射位置PTを通過する光軸Aをそれぞれ形成して、その光軸A上から、全てのノズルN(N1〜N16)を離間させるようになっている。例えば、第2出射口E2は、対応する第2照射位置PT2を通過する光軸Aを形成して、その光軸A上(レーザ光Bの光路上)から、全てのノズルN(N1〜N16)を外すようになっている。
【0043】
ここで、目標吐出位置Pの液滴FbをX矢印方向に搬送して対応する照射位置PTまで搬送し、レーザ光Bを出射するための駆動信号(レーザ駆動電圧VDL:図6参照)を対応する半導体レーザLDに供給して、所定強度のレーザ光Bを対応する出射口Eから出射させる。すると、出射口Eから出射されたレーザ光Bは、光軸A上に位置する照射位置PT(液滴Fb)の領域を照射して、液滴Fbの濡れ広がりを抑制し、液滴Fbを瞬時に固化させる。固化された液滴Fbは、連続するレーザ光Bの照射によってその金属微粒子が焼成されて、外径がセル幅WからなるドットDとして基板2の表面2aに固着する。
【0044】
このとき、照射位置PTの領域では、出射されたレーザ光Bの一部が、基板2の表面2aや液滴Fbによって、吐出ヘッド30(ノズルN)側に向かう反射光Brとして反射される。照射位置PTの領域からの反射光Brは、Z矢印方向から見て光軸Aに沿って進行し、各ノズルNから外れたノズル形成面31aの領域に照射される。その結果、各ノズルNは、反射光Brの照射による液状体Fの増粘や乾燥、撥液膜32の損傷等を回避することができる。
【0045】
次に、上記のように構成した液滴吐出装置20の電気的構成を図6に従って説明する。
図6において、制御部41は、CPU、RAM、ROM等を備え、ROM等に格納され
た各種データと各種制御プログラムに従って、基板ステージ23を移動させて、液滴吐出ヘッド30及びレーザヘッド35を駆動させる。
【0046】
制御部41には、起動スイッチ、停止スイッチ等の操作スイッチを有した入力装置42が接続されて、入力装置42からの各種操作信号や識別コード10の画像が既定形式の描画データIaとして入力されるようになっている。そして、制御部41は、入力装置42からの描画データIaを受けて、二次元描画平面(コード形成領域S)上における各データセルCに、液滴Fbを吐出するか否かを示すビットマップデータBMDと、各圧電素子PZを駆動するための圧電素子駆動電圧VDPと、半導体レーザLDを駆動するためのレーザ駆動電圧VDLを生成する。
【0047】
制御部41には、X軸モータ駆動回路43及びY軸モータ駆動回路44が接続されて、X軸モータ駆動回路43及びY軸モータ駆動回路44に、それぞれ対応する駆動制御信号を出力するようになっている。X軸モータ駆動回路43及びY軸モータ駆動回路44は、制御部41からの駆動制御信号に応答して、それぞれ基板ステージ23を往復移動させるX軸モータMX及びキャリッジ27を往復移動させるY軸モータMYを正転又は逆転させるようになっている。
【0048】
制御部41には、基板2の端縁を検出可能な基板検出装置45が接続されて、基板検出装置45からの検出信号に基づいて、ノズルNの直下を通過する基板2の位置を算出するようになっている。
【0049】
制御部41には、X軸モータ回転検出器46及びY軸モータ回転検出器47が接続されて、X軸モータ回転検出器46及びY軸モータ回転検出器47からの検出信号が入力されるようになっている。制御部41は、X軸モータ回転検出器46からの検出信号に基づいて、基板2の移動方向及び移動量を演算するようになっている。そして、制御部41は、各データセルCの中心位置が着弾位置PFに位置するタイミングで、後述する吐出ヘッド駆動回路48及びレーザ駆動回路49に、それぞれ吐出タイミング信号SGを出力するようになっている。制御部41は、Y軸モータ回転検出器47からの検出信号に基づいて、液滴吐出ヘッド30のY矢印方向の移動方向及び移動量を演算するようになっている。そして、制御部41は、各ノズルNに対応する着弾位置PFを、それぞれ目標吐出位置Pの移動経路上に配置するようになっている。
【0050】
制御部41には、吐出ヘッド駆動回路48が接続されて、吐出タイミング信号SGと、所定のクロック信号に同期させた圧電素子駆動電圧VDPをそれぞれ出力するようになっている。また、制御部41は、所定のクロック信号に同期させたビットマップデータBMD(ヘッド制御信号SCH)を生成して、そのヘッド制御信号SCHを吐出ヘッド駆動回路48に順次転送するようになっている。吐出ヘッド駆動回路48は、制御部41からのヘッド制御信号SCHを各圧電素子PZに対応させてシリアル/パラレル変換する。そして、吐出ヘッド駆動回路48は、制御部41からの吐出タイミング信号SGを受けると、ヘッド制御信号SCHに応じた圧電素子PZに圧電素子駆動電圧VDPを供給するようになっている。
【0051】
制御部41には、レーザ駆動回路49が接続されて、吐出タイミング信号SGと、所定のクロック信号に同期させたレーザ駆動電圧VDLと、前記ヘッド制御信号SCHをそれぞれ出力するようになっている。レーザ駆動回路49は、制御部41からのヘッド制御信号SCHを各半導体レーザLDに対応させてシリアル/パラレル変換する。そして、レーザ駆動回路49は、制御部41からの吐出タイミング信号SGを受けると、所定の時間(吐出した液滴Fbの外径がセル幅Wまで濡れ広がる時間:待機時間)だけ待機して、ヘッド制御信号SCHに応じた半導体レーザLDにレーザ駆動電圧VDLを供給するようにな
っている。
【0052】
すなわち、制御部41は、レーザ駆動回路49を介して、液滴Fbを吐出したノズルNに対応する半導体レーザLDからレーザ光Bを出射させ、着弾位置PFに着弾した液滴Fbが照射位置PTに到達し、その外径がセル幅Wになるタイミングでレーザ光Bを照射するようになっている。
【0053】
次に、液滴吐出装置20を使って識別コード10を形成する方法について説明する。
まず、図2に示すように、基板ステージ23上に、表面2aが上側になるように基板2を配置固定する。このとき、基板2のX矢印方向側の辺は、案内部材24より反X矢印方向側に配置されている。
【0054】
この状態から、入力装置42を操作して描画データIaを制御部41に入力する。すると、制御部41は、描画データIaに基づくビットマップデータBMD、圧電素子駆動電圧VDP及びレーザ駆動電圧VDLを生成する。
【0055】
圧電素子駆動電圧VDP及びレーザ駆動電圧VDLを生成すると、制御部41は、Y軸モータMYを駆動制御して、基板2をX矢印方向に搬送するときに、各目標吐出位置Pがそれぞれ対応する着弾位置PFを通過するように、キャリッジ27(各ノズルN)をセットする。
【0056】
キャリッジ27をセットすると、制御部41は、X軸モータMXを駆動制御して、基板2をX矢印方向に搬送し、基板検出装置45及びX軸モータ回転検出器46からの検出信号に基づいて、最もX矢印方向側の黒セルC1(目標吐出位置P)が着弾位置PFまで搬送されたか否か判断する。この間、制御部41は、吐出ヘッド駆動回路48に、圧電素子駆動電圧VDP及びヘッド制御信号SCHを出力し、レーザ駆動回路49に、レーザ駆動電圧VDL及びヘッド制御信号SCHを出力し、これら吐出ヘッド駆動回路48及びレーザ駆動回路49の双方に、それぞれ吐出タイミング信号SGを出力するタイミングを待つ。
【0057】
そして、最もX矢印方向に位置する黒セルC1(目標吐出位置P)が着弾位置PFに搬送されると、制御部41は、吐出ヘッド駆動回路48とレーザ駆動回路49の双方に吐出タイミング信号SGを出力する。
【0058】
吐出タイミング信号SGを出力すると、制御部41は、吐出ヘッド駆動回路48を介して、ヘッド制御信号SCHに応じた圧電素子PZに、それぞれ圧電素子駆動電圧VDPを供給し、ヘッド制御信号SCHに対応した(選択された)ノズルNから、一斉に液滴Fbを吐出させる。吐出された液滴Fbは、対応する着弾位置PF(目標吐出位置P)に着弾し、着弾位置PFから照射位置PTまで搬送される間に、その外径をセル幅Wにする。
【0059】
また、吐出タイミング信号SGを出力すると、制御部41は、レーザ駆動回路49を介して、半導体レーザLDを待機時間だけ待機させた後に、ヘッド制御信号SCHに対応する半導体レーザLDに、それぞれレーザ駆動電圧VDLを供給する。そして、制御部41は、対応した(選択された)半導体レーザLDから、一斉にレーザ光Bを出射させる。
【0060】
一斉に出射されたレーザ光Bは、照射位置PTの液滴Fb、すなわちセル幅Wの外径を有した液滴Fbの領域に照射される。レーザ光Bの照射された液滴Fbは、分散媒の蒸発と金属微粒子の焼成によって、その外径がセル幅WのドットDとして基板2の表面2aに固着される。これによって、最もX矢印方向に位置する黒セルC1に、セル幅Wに整合したドットDが形成される。
【0061】
このとき、照射位置PTの領域からは、吐出ヘッド30側に向かう反射光Brが反射されるが、その反射光Brは、出射口Eによって形成される光軸Aによって、各ノズルNから離間したノズル形成面31aの領域に照射される。従って、各ノズルN内では、液状体Fの流動性やメニスカスMの安定性が維持されて、目詰まりや液滴Fbの飛行曲がりを来たすことなく、後続する液滴Fbを吐出し続けることができる。
【0062】
以後、同様に、制御部41は、基板2をX矢印方向に搬送して、各目標吐出位置Pが着弾位置PFに到達する毎に、選択されたノズルNから液滴Fbを一斉に吐出する。そして、黒セルC1に着弾した液滴Fbがセル幅Wになるタイミングで一斉にレーザ光Bを照射し、コード形成領域S内に全てのドットDを形成する。
【0063】
次に、上記のように構成した本実施形態の効果を以下に記載する。
(1)上記実施形態によれば、基板2の法線方向(Z矢印方向)から見て、各液滴Fbの相対移動経路Rから離間する位置に、対応する出射口Eを配設するようにした。そして、出射口Eから対応する照射位置PTを通過する光軸Aを形成し、その光軸Aが、対応する相対移動経路Rと交差するようにした。
【0064】
従って、相対移動経路Rから出射口Eを離間させる分だけ、反射光Brの光路(光軸A)から、対応するノズルNの位置を離間させることができる。そのため、出射口Eに対応するノズルNには、反射光Brが入射しない。
【0065】
その結果、出射したレーザ光Bが基板2や液滴Fbによって反射される場合であっても、ノズルNの液状体FやノズルN内の撥液膜32を、反射光Brから保護することができる。その結果、ノズルN内の液状体Fの流動性やメニスカスMの安定性を維持することができる。ひいては、液滴Fbの飛行曲がりやノズルNの目詰まりを回避して、ドットDの形状制御性を向上することができる。
【0066】
(2)上記実施形態によれば、基板2の法線方向(Z矢印方向)から見て、ノズルNと各照射位置PTのそれぞれとを結ぶ直線Lから離間する位置に、各出射口Eを配設するようにした。
【0067】
従って、各出射口Eに対応する光軸Aから、全てのノズルNを離間させることができ、出射するレーザ光Bの全ての光路上から、ノズルNを離間させることができる。そのため、全てのノズルNには、反射光Brが入射しない。
【0068】
その結果、全てのノズルNに対して、液状体Fの流動性やメニスカスMの安定性を維持することができる。ひいては、液滴Fbの飛行曲がりやノズルNの目詰まりを回避してドットDの形状制御性を向上することができる。
【0069】
(3)上記実施形態では、各圧電素子PZを駆動制御するヘッド制御信号SCHに基づいて各半導体レーザLDを駆動制御するようにした。従って、各ノズルNの吐出動作に基づいてレーザ光Bを出射することができ、吐出した液滴Fbの分だけ、レーザ光Bを照射することができる。その結果、レーザ光Bの過剰な出射を回避することができ、各ノズルNに対する反射光Brの照射を、より確実に回避することができる。
(第2実施形態)
次に、本発明を具体化した第2実施形態を、図7に従って説明する。尚、第2実施形態では、第1実施形態における出射口Eの配置を変更した構成である。そのため以下では、出射口Eの変更点ついて詳細に説明する。
【0070】
図7の下図に示すように、各出射口Eは、Y矢印方向に沿う列状にセル幅Wの等間隔で配列されて、その中心位置が、Z矢印方向から見て、それぞれ対応するノズルN(液滴Fb)の相対移動経路R上に配置されている。すなわち、各出射口Eは、各照射位置PTと対応するノズルNとを結ぶ直線上に配置されている。
【0071】
しかも、図7の上図に示すように、各出射口Eは、対応する照射位置PTから対応するノズルNに向かう方向の単位ベクトル(ノズル方向ベクトルA1)と、対応する照射位置PTから出射口Eに向かう方向の単位ベクトル(出射ベクトルA2)との合成ベクトルA3の方向が、基板2の法線方向(Z矢印方向)に対して傾斜するように配設されている。
【0072】
そして、液滴Fbを対応する照射位置PTまで搬送して、対応する半導体レーザLDにレーザ駆動電圧VDLを供給し、所定強度のレーザ光Bを対応する出射口Eから出射させる。すると、照射位置PTの領域からの反射光Brは、前記合成ベクトルA3の方向がZ矢印方向に対して傾斜する分だけ、前記ノズル方向ベクトルA1の方向から傾斜するようになる。すなわち、照射位置PTの領域からの反射光Brは、ノズル形成面31aであって各ノズルNから離間した領域に照射される。その結果、各ノズルNは、反射光Brの照射による液状体Fの増粘や乾燥、撥液膜32の損傷等を回避することができる。従って、本構成においても、第1実施形態と同じ効果を得ることができる。
【0073】
なお、上記実施形態は以下のように変更してもよい。
・上記実施形態では、反射光Brが、表面2aの照射位置PTから反射させる構成にした。これに限らず、例えば、反射光Brが基板2の裏面や基板ステージ23から反射される構成にしてもよい。
・上記実施形態では、液滴Fbの領域に照射するレーザ光Bによって、液滴Fbを乾燥・焼成する構成にした。これに限らず、例えば照射するレーザ光Bのエネルギーによって、液滴Fbを所望の方向に流動させる構成にしてもよく、あるいは液滴Fbの外縁のみに照射して液滴Fbをピニングする構成にしてもよい。すなわち、液滴Fbの領域に照射するレーザ光Bによってパターンを形成する構成であればよい。
・上記実施形態では、レーザ光源を半導体レーザLDで具体化したが、これに限らず、例えば炭酸ガスレーザやYAGレーザであってもよく、着弾した液滴Fbを乾燥可能な波長のレーザ光Bを出力するレーザであればよい。
・上記実施形態では、液滴Fbによって半円球状のドットDを形成する構成にしたが、これに限らず、例えば、楕円形状のドットや線状のパターンを形成する構成であってもよい。
・上記実施形態では、パターンを識別コード10のドットDに具体化した。これに限らず、例えばパターンを、液晶表示装置1や、平面状の電子放出素子を備えて同素子から放出された電子による蛍光物質の発光を利用した電界効果型装置(FEDやSED等)の絶縁膜や金属配線等、各種パターンに具体化してもよく、着弾した液滴Fbの領域にレーザ光を照射して形成するパターンであればよい。
・上記実施形態では、基板を液晶表示装置1の基板2に具体化したが、これに限らず、例えばシリコン基板やフレキシブル基板、あるいは金属基板等であってもよい。
【図面の簡単な説明】
【0074】
【図1】本実施形態における液晶表示装置を示す平面図。
【図2】同じく、液滴吐出装置を示す概略斜視図。
【図3】第1実施形態の吐出ヘッド及びレーザヘッドを示す概略斜視図。
【図4】同じく、吐出ヘッド及びレーザヘッドを説明する説明図。
【図5】同じく、吐出ヘッド及びレーザヘッドを説明する説明図。
【図6】同じく、液滴吐出装置の電気的構成を示す電気ブロック回路図。
【図7】第2実施形態の吐出ヘッド及びレーザヘッドを示す概略断面図。
【図8】従来例の吐出ヘッド及びレーザヘッドを示す概略断面図。
【符号の説明】
【0075】
2…基板、20…液滴吐出装置、30…液滴吐出ヘッド、B…レーザ光、E…出射口、D…パターンとしてのドット、Fb…液滴、L…直線、N…吐出口としてのノズル、R…相対移動経路、A3…合成ベクトル。

【特許請求の範囲】
【請求項1】
基板と相対向する吐出口からパターン形成材料を含む液滴を吐出して前記基板に着弾した前記液滴を前記吐出口に対して相対移動し、前記相対移動した前記液滴の領域にレーザ光を出射してパターンを形成するようにしたパターン形成方法において、
前記基板の法線方向から見て、前記液滴の相対移動経路から離間する位置に前記レーザ光の出射口を設け、前記出射口から前記レーザ光を出射するようにしたことを特徴とするパターン形成方法。
【請求項2】
基板と相対向する複数の吐出口からパターン形成材料を含む液滴を吐出して前記基板に着弾した前記液滴を前記吐出口に対して相対移動し、前記相対移動した前記液滴の領域にレーザ光を出射してパターンを形成するようにしたパターン形成方法において、
前記基板の法線方向から見て、前記レーザ光を出射する前記液滴の領域と前記各吐出口とを結ぶ直線から離間する位置に前記レーザ光の出射口を設け、前記出射口から前記レーザ光を出射するようにしたことを特徴とするパターン形成方法。
【請求項3】
基板と相対向する吐出口からパターン形成材料を含む液滴を吐出して前記基板に着弾した前記液滴を前記吐出口に対して相対移動し、前記相対移動した前記液滴の領域にレーザ光を出射してパターンを形成するようにしたパターン形成方法において、
前記レーザ光を出射する前記液滴の領域から前記吐出口に向かう方向の単位ベクトルと、前記レーザ光を出射する前記液滴の領域から出射口に向かう方向の単位ベクトルとの合成ベクトルの方向を前記基板の法線方向に対して傾斜させる位置に前記出射口を設け、前記出射口から前記レーザ光を出射するようにしたことを特徴とするパターン形成方法。
【請求項4】
基板と相対向する吐出口から液滴を吐出する液滴吐出ヘッドと、前記基板に着弾した前記液滴を前記吐出口に対して相対移動させる相対移動手段と、前記相対移動した前記液滴の領域にレーザ光を出射する出射口と、を備えた液滴吐出装置において、
前記出射口は、前記基板の法線方向から見て、前記液滴の相対移動経路から離間することを特徴とする液滴吐出装置。
【請求項5】
基板と相対向する複数の吐出口から液滴を吐出する液滴吐出ヘッドと、前記基板に着弾した前記液滴を前記吐出口に対して相対移動させる相対移動手段と、前記相対移動した前記液滴の領域にレーザ光を出射する出射口と、を備えた液滴吐出装置において、
前記出射口は、前記基板の法線方向から見て、前記レーザ光を出射する前記液滴の領域と前記各吐出口とを結ぶ直線から離間することを特徴とする液滴吐出装置。
【請求項6】
請求項4又は5に記載の液滴吐出装置において、
前記出射口は、複数の前記吐出口のそれぞれに対応して複数設けられ、対応する前記吐出口の吐出動作に基づいて前記レーザ光を出射することを特徴とする液滴吐出装置。
【請求項7】
基板と相対向する吐出口から液滴を吐出する液滴吐出ヘッドと、前記基板に着弾した前記液滴を前記吐出口に対して相対移動させる相対移動手段と、前記相対移動した前記液滴の領域にレーザ光を出射する出射口と、を備えた液滴吐出装置において、
前記出射口は、前記レーザ光を出射する前記液滴の領域から前記出射口に向かう方向の単位ベクトルと、前記レーザ光を出射する前記液滴の領域から前記吐出口に向かう方向の単位ベクトルとの合成ベクトルの方向を前記基板の法線方向に対して傾斜させることを特徴とする液滴吐出装置。
【請求項8】
請求項7に記載の液滴吐出装置において、
前記出射口は、複数の前記吐出口のそれぞれに対応して複数設けられ、対応する前記吐
出口の吐出動作に基づいて前記レーザ光を出射し、対応する前記合成ベクトルの方向をそれぞれ前記基板の法線方向に対して傾斜させることを特徴とする液滴吐出装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2007−98281(P2007−98281A)
【公開日】平成19年4月19日(2007.4.19)
【国際特許分類】
【出願番号】特願2005−291557(P2005−291557)
【出願日】平成17年10月4日(2005.10.4)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】