説明

パルス励磁検査装置及びパルス励磁検査方法

【課題】被検体内部深くまで検出磁場を透過させ、高精度で被検体の探傷を行うパルス励磁探傷装置の提供。
【解決手段】被検体に入射する磁場を発生する励磁コイル、及び被検体からの前記応答磁場を誘導電流又は誘導電圧として検出する検出コイルを具備するプローブと、励磁コイルに対し、0.1秒以上1秒以下のパルス幅のパルス電流を通電することにより、励磁コイルにより被検体に入射する入射磁場を発生させるロングパルス生成手段を備えた。ロングパルス磁場は低周波成分を多く含み、保温材などの表皮材をよく透過するとともに、被検体内の表皮効果の影響を受けにくく、被検体の深部にまで到達する。従って、被検体には、被検体の深部からの応答磁場も発生し、これをプローブの検出コイルにより検出することにより、被検体の深部の検査も精度よく行うことが可能となる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、パルス励磁により非破壊検査を行うための検査技術に関し、特に、被検体である磁性体の内部深くまで検出磁場を透過させることが可能で、高精度で被検体の検査を行うことが可能なパルス励磁検査技術に関する。
【背景技術】
【0002】
非破壊評価技術は、建物や機器の傷や欠陥の程度を調査するための重要な技術である。特に、近年では原子力発電所などのように一度の事故で甚大な被害が発生する大規模な設備の運用期間が長期に及んできており、かかる施設などにおいて配管等の傷や欠陥を的確に求めることが特に重要となってきている。
【0003】
非破壊評価の方法としては、渦電流探傷法が知られている。渦電流探傷法は、励磁コイルによって磁場を発生させ被検体の内部に渦電流を発生させ、この渦電流が引き起こす磁場を検出し検出磁場の変化を検出することによって、被検体の内部の亀裂等を検査する方法である。この渦電流探傷法は、非破壊評価として比較的容易かつ高速に行うことができるという利点がある。現在、検出磁場から傷を評価する評価制度を向上させる様々な研究が行われており、その中の一つとしてパルス励磁検査法がある。検出磁場としてパルス磁場を用いるパルス励磁検査は、検出磁場として周期的な連続磁場を用いる正弦波励磁法と比較して、被検体内部に大きな瞬間電流を励起させることで多くの励起磁場を発生させることができる。また、実効電流を低減させるとともに、検出パルスが広帯域の周波数成分を含むので非破壊評価による検査精度の向上を図ることが可能となる。
【0004】
従来のパルス励磁検査技術としては、例えば、特許文献1,2に記載のものが知られている。
【0005】
特許文献1に記載のパルス励磁型渦電流検査方法では、内側励磁コイルと外側励磁コイルとを同心軸Zに対して同心に配置し、両者が反対方向に通電するように直列に結線し、さらに前記同心軸Z上にホール素子からなる検出素子を配設した構成のプローブを使用する。これにより、同心軸Z上では内側励磁コイルの磁場と外側励磁コイルとの磁場が打ち消し合い、励磁電流による磁束を低減している。被検体としては、金属配管や保温剤で被覆された金属配管等が想定されており、検査を行う際にはプローブは配管又は保温材の外側に配置され、前記同心軸Zが配管又は保温材の表面に対し垂直となるように設置される。そして、検出素子にDC電圧を印加し、励磁コイルには、1周期が40msで0〜20msと20〜40msで正負が反転した矩形状のパルス電圧を印加してパルス電流を通電させ、被検体である配管内に渦電流を発生させる。そして、この渦電流により生じる励起磁場を検出素子によって電圧検出し、この検出電圧の応答波形から被検体の肉厚を評価している。
【0006】
特許文献2に記載のパルス励磁検査方法では、円筒状の励磁コイルと、励磁コイルと同径で所定の距離だけ隔離して同軸上に配置された磁界検出コイルとから構成される婦ロームを使用する。このプローブは、被検体である導体又は強磁性体の間の内部に配置される。励磁コイルと磁界検出コイルとの距離は被検体の管の直径の2倍以上とされている。励磁コイルにパルス電流を印加すると、励磁コイルから磁場が発生し、被検体である管の内部に直接磁場が形成されるとともに、管の外部に間接磁場(パルスリモートフィールド)が生じる。間接磁場は再び管の内部に侵入し、磁界検出コイルに達する。磁界検出コイルの直接磁場はすぐに減衰し、遅れて間接磁場が検出されるので、この間接磁場の検出波形を評価することによって被検体の検査を行う。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2010−85298号公報
【特許文献2】特開2004−294341号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
上述した従来のパルス励磁検査方法では、励磁コイルを励磁する際に非常に短いパルスを使用する。例えば、特許文献1では励磁パルス幅は10ms、特許文献2では0.1msのものが用いられている。
【0009】
しかしながら、このように短い励磁パルスは、高周波成分を多く含んでいるため、被検体の表面に保温材などのカバーがされていた場合には減衰が大きくなる。また、被検体が磁性体の場合、被検体内部に発生する表皮効果によって、被検体内部への磁場の侵入が妨害される。特に、パルス幅が短いと、励起磁束の発生が一瞬であるために検出磁場は磁性体の内部まで透過することができず、磁性体の深部に存在する傷の評価を正しく行うことができないという欠点を有する。
【0010】
そこで、本発明の目的は、被検体である磁性体の内部深くまで検出磁場を透過させることを可能とし、高精度で被検体の検査を行うことが可能なパルス励磁検査装置及びパルス励磁検査方法を提供することにある。
【課題を解決するための手段】
【0011】
本発明に係るパルス励磁検査装置の第1の構成は、被検体に対してパルス励磁を行いその応答磁場を検出するパルス励磁検査装置であって、
前記被検体に入射する磁場を発生する励磁コイル、及び前記被検体からの前記応答磁場を誘導電流又は誘導電圧として検出する検出コイルを具備するプローブと、
前記励磁コイルに対し、0.1秒以上2秒以下のパルス幅のパルス電流を通電することにより、前記励磁コイルにより前記被検体に入射する入射磁場を発生させるロングパルス生成手段と、を備えたことを特徴とする。
【0012】
この構成により、ロングパルス生成手段は、0.1秒以上2秒以下のパルス幅のパルス電流を励磁コイルに通電することにより、励磁コイルからはロングパルス磁場が被検体に入射される。このロングパルス磁場は低周波成分を多く含んでおり、保温材などの表皮材をよく透過するとともに、被検体内の表皮効果の影響を受けにくく、被検体の深部にまで到達する。従って、被検体には、被検体の深部からの応答磁場も発生し、これをプローブの検出コイルにより検出することにより、被検体の深部の検査も精度よく行うことが可能となる。
【0013】
ここで、「パルス幅」とは、パルス電流の立ち上がり時点からパルス電流がパルス最大値の1%となる時点までの時間幅と定義する。パルス電流のパルス幅を0.1秒以上としたのは、シミュレーションによる解析及び実際の測定の結果得られたパルス波形を周波数分析すると、10Hz以下の周波数成分において減肉に対する変化が得られたが、この10Hzは周期0.1秒に相当するからである。すなわち、10Hz以下の周波数成分を多く含むパルス電流波形で評価するためには、パルス幅が0.1秒以上であることが必要だからである。また、後述するように、パルス幅に対する減肉の変化率R50の計算機シミュレーションによる計算により、減肉の変化率R50((減肉の変化率R50)=(Imax50%−Imax0%)/Imax0%[%],Imax0%:被検体Pの減肉率0%のときの最大パルス電流,Imax50%:被検体Pの減肉率50%のときの最大パルス電流)が上記従来のパルス励磁検査方法の2倍以上となるパルス幅の範囲は0.1−2秒であり、この範囲のパルス幅とすることにより従来の2倍以上の検出感度が得られ、減肉をより有効的に評価できる。
【0014】
本発明に係るパルス励磁検査装置の第2の構成は、上記第1の構成において、前記ロングパルス生成手段は、前記励磁コイルに通電するパルス電流を発生させるための電荷を蓄電するコンデンサと、
前記コンデンサの両極に接続された抵抗器と、
前記コンデンサから放電の通断を行うスイッチ回路と、
を備え、
前記励磁コイルは、前記抵抗器と並列に、前記コンデンサの両極に接続されており、
前記抵抗器、前記コンデンサ、及び前記励磁コイルで構成されるLCR回路の時定数が0.1秒以上2秒以下であることを特徴とする。
【0015】
この構成により、0.1秒以上2秒以下のパルス幅のパルス電流を励磁コイルに通電することができる。
【0016】
本発明に係るパルス励磁検査装置の第3の構成は、上記第1又は2の構成において、
前記被検体は、円柱又は円筒状の形状を有し、
前記プローブは、
湾曲した湾曲部、並びに前記湾曲部の両端を互いに垂直向きとなるように内側に向かって曲折し直棒状に形成した上部直棒部及び側部直棒部を一体に形成した、右側及び左側のコア片を、左右対称となるように前記上部直棒部同士を対合してなるコアと、
それぞれ前記左右のコア片の前記湾曲部に巻回された左側励磁コイル及び右側励磁コイルと、
対合する左右の前記上部直棒部に巻回された中央励磁コイルと、
対合する左右の前記上部直棒部の前記中央励磁コイルよりも下端側に巻回された第1の検出コイルと、
対合する左右の前記上部直棒部の下端の側方に並置された第2の検出コイルと、を備えていることを特徴とする。
【0017】
この構成によれば、プローブの励磁コイルにおいて、左側励磁コイル及び右側励磁コイルは湾曲部に巻回されており巻数を多くとることができ、さらに中央励磁コイルにより巻数が稼ぐことができるので、励磁コイルのインダクタンスLを大きくすることが可能となる。従って、励磁コイルの時定数を大きくできるため、固有振動数の周期を長くすることができる。これにより、ロングパルスによる励磁が可能となり、被検体の深部の傷や摩耗を検査することが可能となる。
【0018】
また、コア内に励起される磁束は、上部直棒部の下端に集中し、この上部直棒部の下端から被検体に入射される。これにより、上部直棒部直下の被検体内に集中磁場が発生し、パルス励磁検査装置の感度を向上させることができる。
【0019】
本発明に係るパルス励磁検査装置の第4の構成は、上記第1乃至3の何れか一の構成において、応答磁場波形のデータを記憶する波形データ記憶手段と、
前記検出コイルにより検出される前記応答磁場による誘導電流又は誘導電圧の波形をデジタルデータとして取り込み、応答磁場波形のデータとして前記波形データ記憶手段に保存する波形取得手段と、
前記波形データ記憶手段に記憶された前記応答磁場波形のデータをフーリエ変換し、周波数スペクトルデータを生成するフーリエ変換手段と、
前記周波数スペクトルデータのうち、所定の閾値周波数以下の周波数から、前記被検体の異常の有無の判定を行う異常判定手段と、を備えたことを特徴とする。
【0020】
このように、検出された応答磁場波形のうち、直流成分と所定の閾値周波数以下の低周波成分により被検体の異常の有無の判定を行うことで、より精度の高い異常評価を行うことができる。
【0021】
本発明に係るパルス励磁検査方法は、被検体に対してパルス励磁を行いその応答磁場を検出するパルス励磁検査方法であって、
前記被検体に入射する磁場を発生する励磁コイル、及び前記被検体からの前記応答磁場を誘導電流又は誘導電圧として検出する検出コイルを具備するプローブを前記被検体に接触させ又は非接触で近接させた状態で配置し、
前記プローブの前記励磁コイルに対し、0.1秒以上2秒以下のパルス幅のパルス電流を通電することにより、前記励磁コイルにより前記被検体に入射する入射磁場を発生させ、
前記入射磁場に対して前記プローブの前記検出コイルにおいて検出される前記応答磁場を誘導電流又は誘導電圧の波形である応答磁場波形データをデジタルデータとして取り込み、
前記応答磁場波形データにより前記被検体の異常の判定を行うことを特徴とする。
【発明の効果】
【0022】
以上のように、本発明に係るパルス励磁検査装置及びパルス励磁検査方法によれば、0.1秒以上2秒以下のパルス幅のパルス電流を励磁コイルに通電し、励磁コイルからはロングパルス磁場を被検体に照射してその応答磁場から被検体の異常の有無を評価することとしたので、被検体表面の表皮材の影響や、被検体内部の表皮効果の影響を受けにくく、被検体の深部の検査も精度よく行うことが可能となる。
【図面の簡単な説明】
【0023】
【図1】本発明の実施例1に係るパルス励磁検査装置の構成を表す機能ブロック図である。
【図2】図1のバイポーラ電源2,放電回路3,コンデンサ4,サイリスタ5,ゲート制御部6,及び励磁コイル11の接続関係を示す回路図である。
【図3】図1のプローブ7の構造を表す図である。
【図4】図3の第2検出コイル13であるロゴスキー・チャトック・コイルの構造を表す図である。
【図5】従来のパルス励磁検査装置で用いられている励磁パルス電流波形と、本発明に於けるロングパルス励磁による励磁パルス電流波形とを比較した図である。
【図6】本実施例のパルス励磁検査装置1により被検体Pからの応答磁場を測定した実測例である。
【図7】図6の応答磁場強度波形をフーリエ変換部10cによりフーリエ変換したときの各周波数成分を表した図である。
【図8】図3の被検体Pの減肉の有無による応答磁場波形の変化を表す図である。
【図9】図8のパルス波形を高速フーリエ変換した周波数スペクトルである。
【図10】図2のコンデンサ4のコンデンサ容量Cを変化させた場合の励磁コイル11に流れる励磁パルス電流の変化を表す図である。
【図11】コンデンサ容量Cが励磁パルス電流波形に及ぼす影響を調査する計算機シミュレーションで使用した解析モデルを表す図である。
【図12】コンデンサ4の容量Cに対する励磁パルス電流波形の変化を表す図である。
【図13】コンデンサ容量Cに対する最大パルス電流及び減肉の変化率の関係を表す図である。
【図14】励磁パルス電流波形を表す図である。
【図15】励磁パルス電流波形のパルス幅と減肉の変化率との関係を表す図である。
【発明を実施するための形態】
【0024】
以下、本発明を実施するための形態について、図面を参照しながら説明する。
【実施例1】
【0025】
図1は、本発明の実施例1に係るパルス励磁検査装置の構成を表す機能ブロック図、図2は、図1のバイポーラ電源2,放電回路3,コンデンサ4,サイリスタ5,ゲート制御部6,及び励磁コイル11の接続関係を示す回路図である。図1,図2において、パルス励磁検査装置1は、バイポーラ電源2、放電回路3、コンデンサ4、サイリスタ5、ホウロウ抵抗3b、ゲート制御部6、プローブ7、消磁用交流電源8、増幅器9、及びコンピュータ10を備えている。また、プローブ7は、励磁コイル11、第1検出コイル12、及び第2検出コイル13を備えている。
【0026】
バイポーラ電源2は、励磁用の電力を供給するための電源である。放電回路3は、スイッチ回路3aとホウロウ抵抗3bを備えている。スイッチ回路3aは、コンデンサ4をバイポーラ電源2との接続か、ホウロウ抵抗3bとの接続かの何れかの接続に切り替えるスイッチである。このスイッチ回路3aの切り替えは、ゲート制御部6により制御される。
【0027】
ホウロウ抵抗3bは、図2に示すように、スイッチ回路3aを介して、プローブ7と並列にコンデンサ4の両極に接続されている。
【0028】
コンデンサ4は、励磁電流を供給するための電荷を蓄電するためのコンデンサである。コンデンサ4には、アルミ電解コンデンサが使用される。コンデンサ4はコンデンサ容量Cを有し、コンデンサ4に充電された電荷量をQとする。
【0029】
サイリスタ5は、アルミ電解コンデンサ4から励磁コイル11への電流の通断を行う。ゲート制御部6は、サイリスタ5のオンオフ制御をする。プローブ7は、被検体である管状の磁性体に対してパルス磁場を入射するとともに、その応答磁場を検出するプローブである。プローブ7は、インダクタンスLと内部抵抗Rを有する励磁コイル11を備えている。消磁用交流電源8は、プローブ7内の励磁コイル11のコアの消磁を行うための交流電源である。
【0030】
図2において、コンデンサ4、ホウロウ抵抗3b、及び励磁コイル11は、LCR回路を構成している。このLCR回路の時定数が、0.1秒以上2秒以下となるように調整されている。
【0031】
増幅器9は、プローブ7で検出された磁場信号の電圧を増幅する。コンピュータ10は、プローブ7で検出された磁場信号の電圧波形を取り込み、波形解析を行う。
【0032】
コンピュータ10は、波形取得部10a、波形データ記憶部10b、フーリエ変換部10c、及び異常判定部10dを備えている、これらはコンピュータ10に備えられたインタフェースや記憶装置及びコンピュータ10において実行されるプログラムによって実現される。
【0033】
波形取得部10aは、検出コイル(第1検出コイル12及び第2検出コイル13)により検出される応答磁場による誘導電流又は誘導電圧の波形を、A/D変換することによってデジタルデータとして取り込み、応答磁場波形データとして波形データ記憶部10bに保存する。波形データ記憶部10bは、この応答磁場波形データを記憶する。
フーリエ変換部10cは、波形データ記憶部10bに記憶された応答磁場波形データをフーリエ変換し、周波数スペクトルデータを生成する。異常判定部10dは、応答磁場波形のピーク、又は周波数スペクトルデータのうち所定の閾値周波数fth以下の周波数から、被検体の異常の有無の判定を行う。ここで閾値周波数fthは、使用者によって設定される値であるが、通常は、15Hz程度の大きさに設定される。
【0034】
図3は、図1のプローブ7の構造を表す図である。図7において、被検体Pは、管状磁性体20の外側面に保温材21が被覆されたものである。このプローブ7は、被検体P内の管状磁性体20の肉厚を検査するためのプローブである。
【0035】
プローブ7は、励磁コイル11、第1検出コイル12、第2検出コイル13、左側コア片15、及び右側コア片16、並びに被検体カバー17を備えている。
【0036】
励磁コイル11のコアは、磁性体からなり、左右対称の形状に形成された左側コア片15及び右側コア片16を、左右対称に対合してなる。左側コア片15は、被検体Pの外周に沿って湾曲した湾曲部15aと、湾曲部15aの両端を互いに垂直向きとなるように湾曲内側に向かって曲折し直棒状に形成された上部直棒部15c及び側部直棒部15bとが一体に形成された形状を有している。同様に、右側コア片16は、被検体Pの外周に沿って湾曲した湾曲部16aと、湾曲部16aの両端を互いに垂直向きとなるように湾曲内側に向かって曲折し直棒状に形成された上部直棒部16c及び側部直棒部16bとが一体に形成された形状を有している。被検体カバー17は、半円筒形の樹脂薄板からなるカバーであり、左側コア片15及び右側コア片16並びに第2検出コイル13と被検体Pとの間に、被検体Pを被覆するように配設されている。
【0037】
左側コア片15及び右側コア片16としては、例えば、厚さ23mmの方向性電磁鋼板を45枚程度積層した巻鉄心を使用することができる。
【0038】
励磁コイル11は、中央励磁コイル11a、左側励磁コイル11b、及び右側励磁コイル11cが直列接続されたものである。中央励磁コイル11aは、対合する左右のコア片15,16の上部直棒部15c,16cに巻回されたコイルである。左側励磁コイル11bは、左側コア片15の湾曲部15aに巻回されたコイルである。右側励磁コイル11cは、右側コア片16の湾曲部16aに巻回されたコイルである。湾曲部15a,16aは長いため、中央励磁コイル11aより巻数が稼ぐことができ、励磁コイル11全体の巻数を大きくし、励磁コイル11全体のインダクタンスLを大きくすることができる。
【0039】
例えば、中央励磁コイル11aの巻数を100 turn、左側励磁コイル11b及び右側励磁コイル11cの巻数をそれぞれ1000 turnとすれば、励磁コイル11全体の巻数は2100 turnとなる。
【0040】
第1検出コイル12は、左右のコア片15,16の上部直棒部15c,16cを通る磁束密度を検出するためのコイルである。第1検出コイル12は、上部直棒部15c,16cの中央励磁コイル11aよりも下端側に巻回されている。
【0041】
第2検出コイル13,13,13は、被検体P内に発生する磁界を検出するためのロゴスキー・チャトック・コイル(Rogowski-Chattock coil)である。第2検出コイル13,13,13は、上部直棒部15c,16cの下端の側方に、被検体Pの外周表面に沿うように並置されている。
【0042】
ここで、検出コイルとして、第1検出コイル12と第2検出コイル13の2種類の検出コイルを使用するのは、両者で検出される磁場の傾向が、被検体Pの損傷の形態によって相違するためである。従って、様々な形態の損傷に対して的確に検出することができるように、2種類の検出コイルを使用するようにしている。
【0043】
尚、第1検出コイル12は、励磁コイル11によって発生する磁束量を検出する。第1検出コイル12の出力波形を積分し、換算することにより、励磁コイル11によって発生した磁束密度を求めることができる。また、第2検出コイル13は、被検体の表面に発生する磁界強度成分を検出する。第2検出コイル13の出力波形を積分し、換算することにより、被検体の表面に発生した磁界強度を求めることができる。
【0044】
図4は、図3の第2検出コイル13であるロゴスキー・チャトック・コイルの構造を表す図である。第2検出コイル13は、半弧状のフェライトコア13aの全体にわたり導線13bが巻回された構成を有する。励磁コイル11によって励磁パルス磁界が入力されると、被検体Pの管状磁性体20に渦電流が励起され、被検体Pの内部には被検体内部磁界Hが生じる。このとき、アンペールの法則により、被検体内部磁界Hとフェライトコア13a内のコイル内部磁界Heffは等しくなる。第2検出コイル13の起電圧からコイル内部磁界Heffが検出され、これにより、被検体内部磁界Hを検出することができる。
【0045】
以上のように構成された本実施例のパルス励磁検査装置において、以下その動作を説明する。
【0046】
まず、コンデンサ4の充電を行う。この場合、ゲート制御部6はサイリスタ5をオフ状態とするとともに、スイッチ回路3aをバイポーラ電源2の側に接続するように切り替え、バイポーラ電源2によりコンデンサ4の充電を行う。
【0047】
次に、コンデンサ4の充電が完了すると、ゲート制御部6はサイリスタ5をオン状態とするとともに、スイッチ回路3aをホウロウ抵抗3bの側に接続するように切り替える。これにより、励磁コイル11に励磁パルス電流が流れる。ここで、コンデンサ4、ホウロウ抵抗3b、及び励磁コイル11は、LCR回路の時定数は0.1秒以上2秒以下であるので、励磁パルス電流のパルス幅も0.1秒以上2秒以下となる。
【0048】
図5は、従来のパルス励磁検査装置で用いられている励磁パルス電流波形と、本発明に於けるロングパルス励磁による励磁パルス電流波形とを比較した図である。励磁パルス電流のパルス幅は、図5に示すように、励磁パルス電流の立ち上がり時刻から、励磁パルス電流がパルス最大値の1%となる時点までの時間幅によって定義されている。従来のパルス励磁検査装置で用いられている励磁パルス電流は、パルス幅が20〜40msecであるのに対して、本発明のロングパルス励磁による励磁パルス電流のパルス幅は0.1〜1secと、非常に長いことが分かる。
【0049】
このようなロングパルス励磁を行うことにより、励磁コイル11により励起されるパルス磁場は、従来のものよりも直流成分及び低周波成分(ここでは、15Hz以下の成分をいう。)を非常に多く含むこととなる。このように、直流成分及び低周波成分の磁場は、被検体Pの表面を被覆する保温材21による減衰が小さく、また、被検体P内部に生じる表記効果の影響を受けにくいため、被検体Pの深部にまで到達することができる。
【0050】
また、励磁コイル11のコアは、左側コア片15及び右側コア片16が、上部直棒部15c,16cで対合した構造を有するため、左側コア片15及び右側コア片16の内部に励起される磁場は、対合した上部直棒部15c,16cの下端部に特に集中する。従って、この上部直棒部15c,16cの下端部の直下の被検体Pには、集中磁場が入射されることになり、この部分に特に大きな渦電流が励起されるため、検査感度を向上させることができる。
【0051】
被検体P内に励起される渦電流によって、応答磁場が励起され、この応答磁場により第1検出コイル12及び第2検出コイル13に起電力(又は起電流)が発生する。この起電力(又は起電流)は、増幅器9で増幅された後、波形取得部10aによりA/D変換され、応答磁場波形データとして波形データ記憶部10bに保存される。フーリエ変換部10cは、この応答磁場波形データをフーリエ変換し、周波数スペクトルデータを生成する。最後に、異常判定部10dが、周波数スペクトルデータの直流成分及び閾値周波数以下の周波数成分から、被検体Pの異常の有無を判定する。
【0052】
図6は、本実施例のパルス励磁検査装置1により被検体Pからの応答磁場を測定した実測例である。図6の横軸は時間、縦軸は第2検出コイル13で検出された磁界強度は径である。
【0053】
被検体Pの管状磁性体20としては、炭素鋼S45Cを材質とする厚さ6mmの配管を使用し、この管状磁性体20の周囲を厚さ3mmのアクリルからなる保温材21で被覆した。管状磁性体20として、減肉0%,23%,50%の3種類のものを用意し、これら3種類の被検体Pの評価を行った。また、プローブ7としては、左側コア片15、右側コア片16には厚さ23mmの方向性電磁鋼板を45枚重ねた巻鉄心を使用し、中央励磁コイル11aの巻数を100turn、左側励磁コイル11b及び右側励磁コイル11cの巻数を1000turnとし、励磁コイル11は合計で2100turnとした。コンデンサ4は静電容量10000μFのアルミ電解コンデンサを使用し、励磁コイル11に入力するパルス電流のパルス幅は0.1secとした。
【0054】
図6において、「metal loss 0%」,「metal loss 23%」,「metal loss 50%」は、それぞれ、減肉0%,23%,50%の被検体Pの測定結果を表している。減肉0%の応答磁場強度波形に対して、減肉23%及び減肉50%の応答磁場強度波形は最大値が異なっており、この最大値の大きさによって被検体Pの減肉量の評価を行うことができることが分かる。
【0055】
従って、異常判定部10dは、応答磁場強度波形のピーク検出を行い、このピーク値の減肉0%の場合に対する比率から、被検体Pの異常の判定を行うことができる。
【0056】
図7は、図6の応答磁場強度波形をフーリエ変換部10cによりフーリエ変換したときの各周波数成分を表した図である。図7より、直流成分及び1.79Hz,3.58Hzの周波数成分において減肉の影響が最も顕著に現れており、周波数が高くなるにつれて減肉の影響が現れにくくなる傾向があることが分かる。これは、高周波成分になるほど、保温材21による減衰や管状磁性体20内の表皮効果の影響によって磁場が管状磁性体20の深部に届かなくなるためであると考えられる。
【0057】
従って、異常判定部10dは、図7のような周波数スペクトルデータのうち、所定の閾値周波数以下の周波数から、被検体Pの異常の有無の判定を行うことで、精度の良い判定を行うことが可能となる。
【0058】
(ロングパルスのパルス幅の検討1)
最後に、本発明で使用するロングパルス励磁による励磁パルス電流のパルス幅の最適な範囲について検討する。
【0059】
図8は、図3の被検体Pの減肉の有無による応答磁場波形の変化を表す図である。図8の波形は、有限要素法を用いた計算機シミュレーションにより算出した。計算条件としては、C=10000μF、R=0.107Ωとし、印加電圧は100Vとした。入力した励磁パルス電流のパルス幅は0.1秒程度であり、応答磁場波形は被検体Pの減肉によって変化している。ここで、被検体Pは断面円形の管体とした。図8の縦軸の磁束密度Bθは、図11(b)に示したように、被検体Pの管中心軸を原点、原点を通りプローブ7の側部直棒部15b,16bに平行な直線を水平基準線としたとき、水平基準線に対して45.6°の位置における被検体Pの管外表面近傍における円周方向の磁束密度である。
【0060】
図9は、図8のパルス波形を高速フーリエ変換した周波数スペクトルである。図9より、DC(直流)成分から10Hz以下の周波数成分の領域において減肉に対する周波数スペクトル成分の変化が大きいことが分かる。従って、DC(直流)成分から10Hz以下の周波数成分のスペクトルの積分値を用いることで、減肉の評価が可能であることが分かる。
【0061】
図10は、図2のコンデンサ4のコンデンサ容量Cを変化させた場合の励磁コイル11に流れる励磁パルス電流の変化を表す図である。計算条件としては、L=547.2mH,C=5000μF,10000μF,15000μF,20000μF,R=17.8Ω、印加電圧:100Vとした。図10より、コンデンサ容量Cの増加に伴い、励磁パルス電流のパルス幅が増加することが確認できる。このようにパルス幅が増加することで、磁束が被検体Pの深部にまで浸透するため、減肉に対する応答磁場波形の変化が大きくなり、検出感度の向上が図られる。
【0062】
以上の解析及び測定結果から得られたパルス波形を周波数分析した結果から、10Hz成分以下から1.79Hz成分に相当する周波数領域において減肉変化が顕著に得られることが分かった。従って、低周波領域を利用した減肉評価を行うためには、パルス幅が0.1秒以上2秒以下が最適であることが分かる。
【0063】
(ロングパルスのパルス幅の検討2)
次に、コンデンサ4の容量Cが励磁パルス電流波形に及ぼす影響について計算機シミュレーションにより調査した結果について説明する。図11は、コンデンサ容量Cが励磁パルス電流波形に及ぼす影響を調査する計算機シミュレーションで使用した解析モデルを表す図である。充電電圧Vは30V,巻線抵抗Rは9.8Ω,巻数は2100turn,時間刻み幅1msとする。
【0064】
図12は、コンデンサ4の容量Cに対する励磁パルス電流波形の変化を表す図である。コンデンサ容量Cと励磁器のインダクタンスLの影響を調査するために、外部電源を考慮した二次元有限要素法を用いて計算機シミュレーションを行った。図12から分かるように、コンデンサ容量Cを大きくするに従って、励磁パルス電流のパルス幅は単調に増加することが分かる。
【0065】
図13は、コンデンサ容量Cに対する最大パルス電流及び減肉の変化率R50の関係を表す図である。「最大パルス電流」とは、図14に示すような励磁パルス電流波形において、パルス電流Iの最大値Imaxをいう。また、「パルス幅」は、図14に示すような励磁パルス電流波形において、最大パルス電流をImax、最大パルス電流の1%の値をIminとするとき、パルスの立ち上がり時刻からパルス電流Iが最大値を経てI=Iminとなるまでの時間で定義される。「減肉の変化率R50」は、被検体Pの減肉率0%のときの最大パルス電流をImax0%、被検体Pの減肉率50%のときの最大パルス電流をImax50%とすると、(減肉の変化率R50)=(Imax50%−Imax0%)/Imax0%[%]により定義される。図13から、コンデンサ容量Cが増加するに従って、減肉の変化率は最初増加し、C=5000〜10000μF付近で最大となり、その後減少することが分かる。コンデンサ容量Cの増加に伴い励磁パルス電流のパルス幅は単調に増加するため、パルス幅がある範囲(C=5000〜10000μF付近のパル詞幅の範囲)のときに減肉の変化率がもっとも大きくなることが分かる。
【0066】
図15は、パルス幅に対する減肉の変化率を示す図である。従来のパルス励磁検査方法では、[背景技術]で述べたようにパルス幅が10msや1msであったため、これらに合わせて従来の励磁パルス幅を20ms以下とした。図15より,従来のパルス幅において減肉の変化率R50は0.3以下となっている。しかしながら、本発明ではパルス幅を増加させることによって、減肉の変化率R50が0.6以上となっている。これは、従来の2倍以上の検出感度であり、パルス幅が0.1−2秒では減肉をより有効的に評価できることが分かる。
【符号の説明】
【0067】
1 パルス励磁検査装置
2 バイポーラ電源
3 放電回路
3a スイッチ回路
3b ホウロウ抵抗
4 コンデンサ
5 サイリスタ
6 ゲート制御部
7 プローブ
8 消磁用交流電源
9 増幅器
10 コンピュータ
10a 波形取得部
10b 波形データ記憶部
10c フーリエ変換部
10d 異常判定部
11 励磁コイル
11a 中央励磁コイル
11b 左側励磁コイル
11c 右側励磁コイル
12 第1検出コイル
13 第2検出コイル
13a フェライトコア
13b 導線
15 左側コア片
15a 湾曲部
15b 側部直棒部
15c 上部直棒部
16 右側コア片
16a 湾曲部
16b 側部直棒部
16c 上部直棒部
17 被検体カバー
20 管状磁性体
21 保温材
P 被検体

【特許請求の範囲】
【請求項1】
被検体に対してパルス励磁を行いその応答磁場を検出するパルス励磁検査装置であって、
前記被検体に入射する磁場を発生する励磁コイル、及び前記被検体からの前記応答磁場を誘導電流又は誘導電圧として検出する検出コイルを具備するプローブと、
前記励磁コイルに対し、0.1秒以上2秒以下のパルス幅のパルス電流を通電することにより、前記励磁コイルにより前記被検体に入射する入射磁場を発生させるロングパルス生成手段と、を備えたことを特徴とするパルス励磁検査装置。
【請求項2】
前記ロングパルス生成手段は、前記励磁コイルに通電するパルス電流を発生させるための電荷を蓄電するコンデンサと、
前記コンデンサの両極に接続された抵抗器と、
前記コンデンサから放電の通断を行うスイッチ回路と、
を備え、
前記励磁コイルは、前記抵抗器と並列に、前記コンデンサの両極に接続されており、
前記抵抗器、前記コンデンサ、及び前記励磁コイルで構成されるLCR回路の時定数が0.1秒以上2秒以下であることを特徴とする請求項1に記載のパルス励磁検査装置。
【請求項3】
前記被検体は、円柱又は円筒状の形状を有し、
前記プローブは、
湾曲した湾曲部、並びに前記湾曲部の両端を互いに垂直向きとなるように湾曲内側に向かって曲折し直棒状に形成した上部直棒部及び側部直棒部を一体に形成した、右側及び左側のコア片を、左右対称となるように前記上部直棒部同士を対合してなるコアと、
それぞれ前記左右のコア片の前記湾曲部に巻回された左側励磁コイル及び右側励磁コイルと、
対合する左右の前記上部直棒部に巻回された中央励磁コイルと、
対合する左右の前記上部直棒部の前記中央励磁コイルよりも下端側に巻回された第1の検出コイルと、
対合する左右の前記上部直棒部の下端の側方に並置された第2の検出コイルと、を備えていることを特徴とする請求項1又は2に記載のパルス励磁検査装置。
【請求項4】
応答磁場波形のデータを記憶する波形データ記憶手段と、
前記検出コイルにより検出される前記応答磁場による誘導電流又は誘導電圧の波形をデジタルデータとして取り込み、応答磁場波形のデータとして前記波形データ記憶手段に保存する波形取得手段と、
前記波形データ記憶手段に記憶された前記応答磁場波形のデータをフーリエ変換し、周波数スペクトルデータを生成するフーリエ変換手段と、
前記周波数スペクトルデータのうち、所定の閾値周波数以下の周波数から、前記被検体の異常の有無の判定を行う異常判定手段と、を備えたことを特徴とする請求項1乃至3の何れか一に記載のパルス励磁検査装置。
【請求項5】
被検体に対してパルス励磁を行いその応答磁場を検出するパルス励磁検査方法であって、
前記被検体に入射する磁場を発生する励磁コイル、及び前記被検体からの前記応答磁場を誘導電流又は誘導電圧として検出する検出コイルを具備するプローブを前記被検体に接触させ又は非接触で近接させた状態で配置し、
前記プローブの前記励磁コイルに対し、0.1秒以上2秒以下のパルス幅のパルス電流を通電することにより、前記励磁コイルにより前記被検体に入射する入射磁場を発生させ、
前記入射磁場に対して前記プローブの前記検出コイルにおいて検出される前記応答磁場を誘導電流又は誘導電圧の波形である応答磁場波形データをデジタルデータとして取り込み、
前記応答磁場波形データにより前記被検体の異常の判定を行うことを特徴とするパルス励磁検査方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2012−78349(P2012−78349A)
【公開日】平成24年4月19日(2012.4.19)
【国際特許分類】
【出願番号】特願2011−183058(P2011−183058)
【出願日】平成23年8月24日(2011.8.24)
【出願人】(399102323)日本電測機株式会社 (4)
【Fターム(参考)】