説明

ポンプ−プローブ測光装置および測光方法

【課題】
感光物質にポンプ光とプローブ光とを照射し、その応答信号の非線形成分の時間発展を正確に測定し、かつディスプレイに波形表示する。
【解決手段】
レーザパルスを発生するレーザ光発生装置11と、前記レーザパルスをポンプ光とフェムト秒オーダのプローブ光とに分離する光分離装置12と、前記ポンプ光の光路および前記プローブ光の光路の一方を他方に対して周期的に短縮および伸長させる光掃引装置13と、前記ポンプ光および前記プローブ光を試料に照射する照射装置14と、前記試料に照射した光の当該試料からの応答光を受光し複数チャンネルの検出信号を生成する応答光受光装置15と、前記複数チャンネルの検出信号の直流成分をカットする直流成分カット装置16と、前記直流成分が除去された前記複数チャンネルの検出信号をAD変換して、波形表示する応答信号表示装置17とを備えている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、時間分解分光測定技術に関し、具体的には感光物質にポンプ光とプローブ光とを照射し、その応答信号の非線形成分の時間発展を正確に測定し、かつディスプレイに波形表示することができるポンプ−プローブ測光装置および測光方法に関する。
【背景技術】
【0002】
従来、物質の光化学反応(光学応答)を検出するために、ポンプ光とプローブ光とを用いた測光技術が知られている。
【0003】
たとえば、図6に示すポンプ−プローブ測光装置9では、レーザ発生装置91が生成するレーザパルスLPをスプリッタ92によりポンプ光p1とフェムト秒オーダのプローブ光p2に分離する。
【0004】
図6では、ポンプ光p1の光路長L1を、遅延装置93により変化させることができ、ポンプ光p1とプローブ光p2とが異なるピークタイミングで試料100に照射される。なお、プローブ光p2の一部はスプリッタ94により補正用光検出装置95に入射される。
【0005】
試料100に照射された合波光(符号p3で示す)の応答光(透過光)は、光検出装置96により検出される。光検出装置96は、前記応答光を多チャンネルで検出をする(すなわち、異なる周波数成分について検出する)ことができる。具体的には、応答光をロックインアンプにより増幅して複数のフォトセンサPD(図示せず)によりステップスキャン検出している。なお、光検出装置96からの検出信号は、補正用の光検出装置95により補正されて、AD変換器97によりデジタル化され、検出データとしてデータ記憶装置98に保存される。
【発明の開示】
【発明が解決しようとする課題】
【0006】
ところで、図6のポンプ−プローブ測光装置9では、ステップスキャン検出、1ステップ当たりの所要時間が数秒程度あるため、積算に時間がかかる。したがって、レーザ発生装置の長時間安定性が保証されないと全体の波形が正確に測定できない。また、補正用の光検出装置95により、直流分を相殺することも可能であるが、検出データの処理が複雑となるという問題がある。
【0007】
本発明の目的は、感光物質にポンプ光とプローブ光とを照射し、その応答信号の非線形成分の時間発展を正確に測定し、かつディスプレイに波形表示することができるポンプ−プローブ測光装置および測光方法を提供することにある。
【課題を解決するための手段】
【0008】
本発明のポンプ−プローブ測光装置は、
レーザパルスを発生するレーザ光発生装置と、
前記レーザパルスをポンプ光とフェムト秒オーダのプローブ光とに分離する光分離装置と、
前記ポンプ光の光路および前記プローブ光の光路の一方を他方に対して周期的に短縮および伸長させる光掃引装置と、
試料に照射された前記ポンプ光および前記プローブ光の当該試料からの応答光を受光し複数チャンネルの検出信号を生成する応答光受光装置と、
前記複数チャンネルの検出信号の直流成分をカットする直流成分カット装置と、
前記直流成分が除去された前記複数チャンネルの検出信号をAD変換して、波形表示する応答信号表示装置と、
を備えたことを特徴とする。
【0009】
なお、本発明では、適宜、前記ポンプ光および前記プローブ光を試料に照射する照射装置を備えることもできる。
【0010】
本発明のポンプ−プローブ測光方法は、
レーザパルスをポンプ光とフェムト秒オーダのプローブ光とに分離する光分離ステップと、
前記ポンプ光の光路および前記プローブ光の光路の一方を他方に対して周期的に短縮および伸長させる光掃引ステップと、
前記ポンプ光および前記プローブ光を試料に照射する照射ステップと、
前記試料に照射した光の当該試料からの応答光を受光し複数チャンネルの検出信号を生成する応答光受光ステップと、
前記複数チャンネルの検出信号の直流成分をカットする直流成分カットステップと、
前記直流成分が除去された前記複数チャンネルの検出信号をAD変換して、波形表示する応答信号表示ステップと、
を有することを特徴とする。
【発明の効果】
【0011】
本発明では、ポンプ光の光路およびプローブ光の光路の一方を他方に対して周期的に短縮および伸長させる光掃引を行い、かつ複数チャンネルの検出信号の直流分をカットしているので、感光物質(試料)の非線形成分を選択的に検出できる。また、連続掃引が可能なので、オシロスコープ等のディスプレイに波形表示することができる。
【発明を実施するための最良の形態】
【0012】
図1は本発明のポンプ−プローブ測光装置の一実施形態を示す構成図である。
図1において、ポンプ−プローブ測光装置1は、レーザ光発生装置11と、光分離装置12と、光掃引装置13と、合波装置14と、合波光照射装置15と、試料応答光受光装置16と、ハイパスフィルタ17と、応答信号表示装置18とを備えている。
【0013】
レーザ光発生装置11は、レーザパルスLPを発生する。レーザ光発生装置11はエネルギー310pJ/pulse、繰り返し周波数3.78MHz、半値幅20fsのレーザパルスLPを生成している。
【0014】
光分離装置12は、ビームスプリッタBSであり、レーザパルスLPをポンプ光p1とプローブ光p2(フェムト秒オーダ)とに分離する。
光分離装置12により分離された光のうちポンプ光p1は、第1ポンプ光反射ミラーM11により反射されて光掃引装置13に入射する。光掃引装置13に入射した光は第2ポンプ光反射ミラーM12,第3ポンプ光反射ミラーM13により反射される。
第3ポンプ光反射ミラーM13の反射光(すなわち、光掃引装置13の出射光)は、第4ポンプ光反射ミラーM14により反射されて合波装置14に入射される。
【0015】
一方、光分離装置12により分離された光のうちプローブ光p2は、第1プローブ光反射ミラーM21および第2プローブ光反射ミラーM22、第3プローブ光反射ミラーM23により反射されて合波装置14に入射される。
プローブ光p2の光路長L2(本実施形態では、光路長は、ビームスプリッタBSから後述する試料100に至る距離と定義する)は、ポンプ光p1の光路長L1とほぼ同じ長さになるように調整されている。
【0016】
光掃引装置13は、前述したように第2ポンプ光反射ミラーM12,第3ポンプ光反射ミラーM13を有しており、これらは90°に配置され、可動ステージ131により所定周期で往復移動するように構成されている。本実施形態では、可動ステージ131が往復動することで、ポンプ光p1の光路L1をプローブ光p2の光路L2に対して周期的に短縮および伸長する。可動ステージ131の往復移動周期は、20Hzないし数kHzオーダである(本実施形態では20Hzとしてある)。可動ステージ131の駆動信号(往復動の同期信号)は、後述する応答信号表示装置18に出力される。
【0017】
合波装置14は、ミラーM31からなり、ポンプ光p1およびプローブ光p2を合波する(合波光を符号p3で示す)。
合波光照射装置15は、集光ミラーM32からなり合波光p3を試料100に照射する。試料100に照射された合波光p3は、試料100を透過し、スリット部材SLTを介して試料応答光受光装置16に入射される。
【0018】
試料応答光受光装置16は、本実施形態ではモノクロメータであり、試料100からの応答光(透過光)p4を受光し、複数周波数に対応するチャンネルの応答信号を生成する。すなわち、試料応答光受光装置16は、チャンネル数に応じたフォトセンサPD(感光素子)を備えており、複数のチャンネルについて光強度検出をすることができる。本実施形態ではチャンネル数は16としてある。試料応答光受光装置16は、各フォトセンサPDの光強度出力信号をハイパスフィルタ17に送信する。
【0019】
ハイパスフィルタ17は、DCカットフィルタ増幅器であり、複数のチャンネルについての検出信号を入力し、この信号から直流成分DCを除去し、これを増幅して出力する。
応答信号表示装置18は、デジタルオシロスコープであり、直流成分DCが除去された複数のチャンネルの応答信号をAD変換してディスプレイに波形表示する。前述したように、応答信号表示装置18は、光掃引装置13から駆動信号(往復動のタイミング信号)を入力しており、光掃引装置13の掃引動作に応じた波形を出力することができる。
【0020】
以下、ポンプ−プローブ測光装置1の具体的な動作例を図2にフローチャートに沿って説明する。まず、光分離装置12によりレーザパルスLPをポンプ光p1とプローブ光p2とに分離し(光分離ステップ:S101)、光掃引装置13によりポンプ光p1の光路L1をプローブ光p2の光路L2に対して周期的に短縮および伸長させる(光掃引ステップ:S102)。図3に、ポンプ光p1とプローブ光p2のタイミングを例示する。
図4(A),(B)は、プローブ光p2の2つの周波数成分EP21,EP22を示す図である。各図では、ポンプ光p1の光路L1をプローブ光p2の光路L2に対して周期的に短縮および伸長させた場合の、各周波数成分の位相のずれを示している。図4(A)はプローブ光p2の2つの周波数成分EP21,EP22の一方の位相がやや進んでいる状態を示し、図4(B)はプローブ光p2の2つの周波数成分EP21,EP22の位相が同じ状態を示している。
【0021】
合波装置14は、ポンプ光p1およびプローブ光p2を合波し(合波ステップ:S103)、合波光照射装置15により合波光p3を試料100に照射する(合波光照射ステップS104)。これは、試料100にポンプ光p1を照射するとともに、プローブ光p2の周波数成分を、位相差を変化させつつ照射した場合の光学応答(非線形成分の時間発展(時間変化))を検出することを意味する。
【0022】
このときの、試料100の変化状態の一例を図5(A),(B)に示す。ここでは、試料100は、シアニン系有機色素分子(DTTCI)であり、ポテンシャル井戸に閉じ込められた電子の確率分布を示している。試料100にポンプ光p1が照射され、位相が変化するにしたがって、図5(A),(B)に示すように、シアニン系有機色素分子にはねじれ振動が生じる。
【0023】
ポンプ光p1の照射とほぼ同時に(このねじれ振動が減衰する前に)プローブ光p2を照射して試料100の光学応答を検出することができる。
ねじれの向きは、分子内電子の確率分布に応じて変化する。ポンプ光p1の照射による影響が消失する前に、プローブ光p2の周波数成分を試料100に照射することで、ねじれの大きさや向きに依存する応答光が試料応答光受光装置16により受光される。
【0024】
試料応答光受光装置16は、試料100に照射された合波光p3の応答光を受光し複数チャンネルの応答信号を生成する(試料応答光受光ステップ:S105)。これらの各チャンネルは、位相が異なる成分についてそれぞれ抽出された応答信号であり、直流成分除去装置17に送出される。
【0025】
直流成分除去装置17は、複数のチャンネルの応答信号の直流成分を除去する(直流成分除去ステップS106)。周波数成分のうち直流成分は資料100について、線形成分の検出に影響が強く現れるものである。この直流成分の除去により、非線形成分の応答のみを取り出すことができ、この非線形成分の応答信号が応答信号表示装置18に送出される。この応答信号の例を図5に示す。
【0026】
応答信号表示装置18は、直流成分が除去された複数のチャンネルの応答信号をAD変換して波形表示する(応答信号表示ステップS107)。
【図面の簡単な説明】
【0027】
【図1】本発明のポンプ−プローブ測光装置の一実施形態を示す構成図である。
【図2】ポンプ−プローブ測光装置の具体的な動作例を示すフローチャートである。
【図3】ポンプ光とプローブ光のタイミングを示す図である。
【図4】プローブ光の2つの周波数成分を示す図であり、(A)はプローブ光の2つの周波数成分の一方の位相がやや進んでいる状態を示し、(B)はプローブ光の2つの周波数成分の位相が同じ状態を示している。
【図5】(A),(B)は、シアニン系有機色素分子(DTTCI)の電子がポテンシャル井戸に閉じ込められた電子の確立分布および位相が変化するにしたがって分子にねじれが生じた様子を示す図である。
【図6】従来のポンプ−プローブ測光装置を示す構成図である。
【符号の説明】
【0028】
1 ポンプ−プローブ測光装置
11 レーザ光発生装置
12 光分離装置
13 光掃引装置
14 合波装置
15 合波光照射装置
16 試料応答光受光装置
17 ハイパスフィルタ
18 応答信号表示装置
p1 ポンプ光
p2 プローブ光
M11 第1ポンプ光反射ミラー
M12 第2ポンプ光反射ミラー
M13 第3ポンプ光反射ミラー
M14 第4ポンプ光反射ミラー
M21 第1プローブ光反射ミラー
M22 第2プローブ光反射ミラー
M23 第3プローブ光反射ミラー
M31 ミラー
M32 集光ミラー
BS ビームスプリッタ
100 試料
L1 ポンプ光の光路
L2 プローブ光の光路

【特許請求の範囲】
【請求項1】
レーザパルスを発生するレーザ光発生装置と、
前記レーザパルスをポンプ光とフェムト秒オーダのプローブ光とに分離する光分離装置と、
前記ポンプ光の光路および前記プローブ光の光路の一方を他方に対して周期的に短縮および伸長させる光掃引装置と、
試料に照射された前記ポンプ光および前記プローブ光の当該試料からの応答光を受光し複数チャンネルの検出信号を生成する応答光受光装置と、
前記複数チャンネルの検出信号の直流成分をカットする直流成分カット装置と、
前記直流成分が除去された前記複数チャンネルの検出信号をAD変換して、波形表示する応答信号表示装置と、
を備えたことを特徴とするポンプ−プローブ測光装置。
【請求項2】
レーザパルスをポンプ光とフェムト秒オーダのプローブ光とに分離する光分離ステップと、
前記ポンプ光の光路および前記プローブ光の光路の一方を他方に対して周期的に短縮および伸長させる光掃引ステップと、
前記ポンプ光および前記プローブ光を試料に照射する照射ステップと、
前記試料に照射した光の当該試料からの応答光を受光し複数チャンネルの検出信号を生成する応答光受光ステップと、
前記複数チャンネルの検出信号の直流成分をカットする直流成分カットステップと、
前記直流成分が除去された前記複数チャンネルの検出信号をAD変換して、波形表示する応答信号表示ステップと、
を有することを特徴とするポンプ−プローブ測光方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2006−242615(P2006−242615A)
【公開日】平成18年9月14日(2006.9.14)
【国際特許分類】
【出願番号】特願2005−55578(P2005−55578)
【出願日】平成17年3月1日(2005.3.1)
【新規性喪失の例外の表示】特許法第30条第1項適用申請有り 
【出願人】(504132881)国立大学法人東京農工大学 (595)
【Fターム(参考)】