説明

マイクロ波画像を生成するためのアレイ及びマイクロ波画像を取得する方法

【課題】アレイ上の2つのパターン(送信及び受信)を内蔵する場合に、それぞれのアンテナ要素の最適な位相シフト値が設定されたアレイを提供すること。
【解決手段】物体のマイクロ波画像を取得するマイクロ波画像生成システムにおいて使用する反射器アレイであって、それぞれがマイクロ波放射の第1ビームを第1ターゲットに向かって導くように第1パターンの個別の位相シフトをプログラム可能であり、且つ、それぞれがマイクロ波放射の第2ビームを第2ターゲットに向かって導くように第2パターンの個別の位相シフトをプログラム可能である複数の反射アンテナ要素を有し、前記複数のアンテナ要素は、前記物体の前記マイクロ波画像を取得するべく、前記第1パターンの一部及び前記第2パターンの一部を含むインターリーブパターンで個別の位相シフトをプログラムされる、アレイ。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マイクロ波画像を生成するためのアレイ及びマイクロ波画像を取得する方法に関する。
【背景技術】
【0002】
最近のマイクロ波画像生成における進歩により、物体及びその他の対象物品(例えば、対象の人物)の2次元及び更には3次元のマイクロ波画像生成能力を有するマイクロ波画像生成システムの製品開発が可能になった。現在、提供されているマイクロ波画像生成法には、いくつかのものが存在している。例えば、1つの技法は、マイクロ波検出器(以下、これを「アンテナ要素」と呼ぶ)のアレイを使用し、ターゲットの能動的なマイクロ波照射に応答して、人物又はその他の物体から放出された受動的マイクロ波放射、又は人物又はその他の物体から反射された反射マイクロ波放射を取得している。物体の位置に関連してアンテナ要素のアレイを走査すると共に/又は、送信又は検出するマイクロ波放射の周波数(又は、波長)を調節することにより、人物又はその他の物体の2次元又は3次元画像を構築する。
【0003】
マイクロ波画像生成システムは、通常、物体との間でマイクロ波放射を送信、受信、及び/又は反射するための送信、受信、及び/又は反射アンテナアレイを含んでいる。このようなアンテナアレイは、従来のアナログフェーズドアレイ又は2値反射器アレイを使用して構築可能である。いずれの場合にも、アンテナアレイは、通常、いくつかの個別のマイクロ波線を含むマイクロ波放射のビームを3D空間内の点又は領域/容積(以下、これをターゲットと呼ぶ)に向かって導いている。ターゲットは、物体と関連付けすると共に、物体の画像内の1つ又は複数のボクセルに対応可能であり、或いは、ターゲットは、物体から反射されたマイクロ波放射を取得するマイクロ波受信機であってもよい。これは、アンテナ要素による個々のマイクロ波線の位相の変更を可能にする個別の位相シフトによってアレイ内のアンテナ要素のそれぞれをプログラムすることによって実現される。それぞれのアンテナ要素の位相シフトは、アンテナ要素のそれぞれからの個別のマイクロ波線のすべてがターゲットに実質的に同相で到達するように選択されている。プログラム可能なアンテナアレイの例は、「Device for Reflecting Electromagnetic Radiation」という名称の特許文献1及び「Broadband Binary Phased Antenna」という名称の特許文献2に記述されている。
【0004】
この結果、それぞれのターゲットごとに、ターゲットにおいて最大の建設的な干渉(constructive interference)を経験するマイクロ波放射のビームを生成する特定の位相シフトにより、それぞれのアンテナ要素がプログラムされる。特定のターゲットについてアレイ内のアンテナ要素に割り当てられているすべての位相シフトの組み合わせをパターンと呼ぶ。パターンのサイズは、アレイと同じサイズであり、パターン内のそれぞれの要素は、アレイ内の対応するアンテナ要素の位相シフトを表している。それぞれのアンテナ要素が2つの位相シフトの中のいずれかのみを導入可能な2値アレイの場合には、パターンは、1と0のアレイとして表現可能である。
【0005】
物体と関連付けられたターゲットにマイクロ波源からのマイクロ波放射を反射すると共に物体のターゲットから反射されたマイクロ波放射をマイクロ波受信機のターゲットに反射するべく設計された反射器アンテナアレイを使用する場合には、(物体ターゲット及び受信機ターゲットへの)それぞれの反射用のパターンに含まれる値が、対立している場合がある。例えば、反射器アレイ内の特定のアンテナ要素が、マイクロ波源からのマイクロ波放射を物体ターゲットに対して反射する送信設計における0度の位相シフトと、物体ターゲットからのマイクロ波放射をマイクロ波受信機ターゲットに対して反射する受信設計における180度の位相シフトを具備する場合がある。
【特許文献1】米国特許出願第10/997,422号明細書
【特許文献2】米国特許出願第10/997,583号明細書
【発明の開示】
【発明が解決しようとする課題】
【0006】
ターゲット物体のマイクロ波画像を取得するには、マイクロ波源とマイクロ波受信機間において実質的に同時の反射が必要である。従って、マイクロ波放射の送信及び受信の両方に単一の反射器アンテナアレイを使用するべくそれぞれのアンテナ要素にプログラムできるのは、1つの位相シフト値のみである。送信及び受信パターン内の特定のアンテナ要素用の2つの位相シフト値が互いに矛盾している場合には、画像取得の際に、その特定のアンテナ要素に使用できるのは、いずれかの位相シフト値のみである。2つのパターン(送信及び受信)をアレイ上に内蔵する際に、それぞれのアンテナ要素の位相シフト値を判定する方法が求められている。
【課題を解決するための手段】
【0007】
本発明の実施例は、それぞれがマイクロ波放射の第1ビームを第1ターゲットに向かって導くように第1パターンの個別の位相シフトをプログラム可能であり、且つ、それぞれがマイクロ波放射の第2ビームを第2ターゲットに向かって導くように第2パターンの個別の位相シフトをプログラム可能である複数の反射アンテナ要素を含むマイクロ波画像生成システム内において使用するアンテナアレイを提供する。物体のマイクロ波画像を取得するべく、アンテナ要素は、第1パターンの一部と第2パターンの一部を含むインターリーブパターンで個別の位相シフトがプログラムされている。
【0008】
一実施例においては、インターリーブパターンは、第1パターンと第2パターンの直接インターリーブパターンである。別の実施例においては、インターリーブパターンは、アレイの量子化誤差を極小化する第1及び第2パターンの一部を含んでいる。第1及び第2パターンのいずれにおいても、複数のアンテナ要素のそれぞれの位相シフトは、理想的な位相に基づいて選択されている。量子化誤差を極小化するべく、インターリーブパターンの第1及び第2パターンの一部は、アンテナ要素のそれぞれごとに、理想的な位相からの最小位相オフセットを生成する。
【0009】
更に別の実施例においては、インターリーブパターンの第1及び第2パターンの一部は、連続マイクロ波画像間におけるアレイ内の位相シフト変化の数を極小化するべく選択されており、この結果、電力消費が減少する。更に別の実施例においては、インターリーブパターン内に含まれる第1及び第2パターンの一部は、インターリーブパターン記述のビットにおけるデジタル圧縮と関連するメトリック(metric,測定基準)を最適化するべく選択されており、この結果、パターンデータのストレージ空間を低減すると共に処理を高速化可能である。
【0010】
更なる実施例においては、第1ターゲットと第2ターゲットは、いずれも画像生成対象の物体と関連付けられている。別の実施例においては、第1ターゲットは、画像生成対象の物体と関連付けられたターゲットであり、第2ターゲットは、マイクロ波受信機である。ターゲットのマイクロ波画像を取得するべく、第1パターンは、マイクロ波放射の送信ビームをターゲットに向かって導く送信パターンであり、第2パターンは、ターゲットから反射されたマイクロ波放射の受信ビームをマイクロ波受信機に向かって反射する受信パターンである。更に別の実施例においては、インターリーブパターンは、ターゲットにおける建設的な干渉の相応した減少を伴うことなしに、マイクロ波受信機における破壊的な干渉(destructive interference)を増大させる送信及び受信パターンの一部を含んでいる。
【発明を実施するための最良の形態】
【0011】
以下、添付の図面を参照し、開示対象の発明について説明するが、これらの図面は、本発明の重要な実施例を示しており、これらは、本引用によって本明細書に包含される。
【0012】
本明細書において使用する「マイクロ波放射(microwave radiation)」と「マイクロ波照射(microwave illumination)」という用語は、それぞれ、約1GHz〜約1,000GHzの周波数に相当する0.3mm〜30cmの波長を具備する電磁放射の帯域を意味している。従って、マイクロ波放射及びマイクロ波照射という用語は、それぞれ、従来のマイクロ波放射に加えて、一般にミリメートル波放射と呼ばれているものを含んでいる。又、本明細書において使用するターゲットという用語は、3D空間内の点又は領域/容積を意味している。一実施例においては、ターゲットは、物体と関連付けられており、物体の画像内の1つ又は複数のボクセルに対応している。別の実施例においては、ターゲットは、画像生成対象の物体から反射されたマイクロ波放射を取得するマイクロ波受信機である。
【0013】
図1は、本発明の実施例による単純な模範的なマイクロ波画像生成システム10の概略図である。マイクロ波画像生成システム10は、1つ又は複数のアレイ50(利便のために、この中の1つのみが示されている)を含んでおり、このそれぞれは、物体150(例えば、スーツケース、対象の人物、又はその他の対象の物品)のマイクロ波画像を取得するべくアンテナ要素80を介してマイクロ波放射を送信、受信、及び/又は反射する能力を有している。
【0014】
一実施例においては、アレイ50は、反射アンテナ要素80から構成された受動的なプログラム可能反射器アレイを含んでいる。反射アンテナ要素のそれぞれは、マイクロ波放射のビームを画像生成対象の物体150上のターゲット155(例えば、物体150の画像内の1つ又は複数のボクセルに対応した3D空間内の点又は領域/容積)に向かって導く個別の位相シフトによってプログラム可能である。位相シフトは、2値であるか、或いは、連続的なものであってよい。例えば、マイクロ波源60からアレイ50によって受信されたマイクロ波放射30は、個々の反射アンテナ要素80のそれぞれを個別の位相シフトによってプログラムすることにより、送信マイクロ波放射70として物体150上のターゲット155に向かって反射され、ターゲット155から反射され、アレイ50によって受信された反射マイクロ波放射90は、受信マイクロ波放射20として別のターゲット40(例えば、マイクロ波受信機40)に向かって反射される。
【0015】
マイクロ波画像生成システム10は、プロセッサ100、コンピュータ可読媒体110、及びディスプレイ120を更に含んでいる。プロセッサ100は、アレイ50を制御し、ターゲット155から反射された受信マイクロ波放射20を処理してターゲット155及び/又は物体150のマイクロ波画像を構築するハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせを含んでいる。例えば、プロセッサ100は、1つ又は複数のマイクロプロセッサ、マイクロコントローラ、プログラム可能なロジック装置、デジタル信号プロセッサ、又はコンピュータプログラムの命令を実行するべく構成されたその他のタイプの処理装置と、プロセッサ100によって使用される命令及びその他のデータを保存する1つ又は複数のメモリ(例えば、キャッシュメモリ)を含むことができる。しかしながら、プロセッサ100のその他の実施例も使用可能であることを理解されたい。メモリ110は、ハードドライブ、RAM(Random Access Memory)、ROM(Read Only Memory)、コンパクトディスク、フロッピーディスク、ZIP(登録商標)ドライブ、テープドライブ、データベース、又はその他のタイプのストレージ装置又はストレージ媒体を含む(但し、これらに限定されない)任意のタイプのデータストレージ装置である。
【0016】
プロセッサ100は、コンピュータ可読媒体110内に保存されている1つ又は複数のパターン115を使用してアレイ50をプログラムするべく動作する。それぞれのパターン115は、マイクロ波源60から物体150上の特定のターゲット155に向かってマイクロ波放射を反射し、ターゲット155からの反射マイクロ波放射をマイクロ波受信機40に向かって反射するアレイ50内の個々のアンテナ要素80のそれぞれの位相シフトを含んでいる。従って、プロセッサ100は、物体150を走査するべく、パターン115及びアレイ50と共に動作する。
【0017】
プロセッサ100は、物体150上のそれぞれのターゲット155からマイクロ波受信機40によって取得された反射マイクロ波放射20の強度を使用して物体150のマイクロ波画像を構築する能力を更に有している。例えば、一実施例においては、マイクロ波受信機40は、アレイ50内のそれぞれのアンテナ要素80から反射された反射マイクロ波放射20を組み合わせて、ターゲット155における反射マイクロ波放射の有効強度値を生成する能力を有している。強度値は、プロセッサ100に伝達され、プロセッサが強度値を物体150上のターゲット155に対応したピクセル又はボクセルの値として使用する。動作の際には、マイクロ波画像生成システム10は、1秒当たり数百万個のターゲット155を走査可能な周波数において動作可能である。
【0018】
結果的に得られたターゲット155及び/又は物体150のマイクロ波画像をプロセッサ100からディスプレイ120に伝達し、マイクロ波画像を表示可能である。一実施例においては、ディスプレイ120は物体150の3次元マイクロ波画像又はターゲット155及び/又は物体150の1つ又は複数の1次元又は2次元のマイクロ波画像を表示する2次元ディスプレイである。別の実施例においては、ディスプレイ120は、物体150の3次元マイクロ波画像を表示する能力を有する3次元ディスプレイである。
【0019】
図2は、アンテナ要素200のインピーダンス状態に応じて変化する位相で電磁放射を反射するべく動作する(図1のアンテナ要素80に対応した)反射アンテナ要素200の断面図を示している。反射アンテナ要素200は、アンテナ(パッチアンテナ220a)と非理想的なスイッチング装置(表面実装電界効果トランジスタ「FET」222)を含んでいる。
【0020】
反射アンテナ要素200は、プリント回路ボード基板214の上部及び内部に形成されており、表面実装FET222、パッチアンテナ220a、ドレインバイア(drain via)232、接地プレーン236、及びソースバイア(source via)238を含んでいる。表面実装FET222は、プレーナーパッチアンテナ(planar patch antennas,平面状のパッチアンテナ)220aとは反対側のプリント回路ボード基板214の面上に取り付けられており、接地プレーン236が、プレーナーパッチアンテナ220aと表面実装FET222の間に配置されている。ドレインバイア232が、表面実装FET222のドレイン228をプレーナーパッチアンテナ220aに接続しており、ソースバイア238が、表面実装FET222のソース226を接地プレーン236に接続している。
【0021】
稼働製品においては、反射器アンテナアレイは、駆動電子回路を含むコントローラボード240に接続されている。図2には、コントローラボードの例240も示されており、これは、接地プレーン244、駆動信号ビア246、及び駆動電子回路242を含んでいる。コントローラボード240は、反射器アンテナアレイのコネクタ250と互換性を有するコネクタ248をも含んでいる。2つのボードのコネクタ248及び250は、例えば、ウェーブソルダリングを使用して相互接続可能である。その他の実施例においては、FET222は、プレーナーパッチアンテナ220aと同一のプリント回路ボード基板214の面上に表面実装可能であることを理解されたい。又、駆動電子回路242は、反射アンテナ要素200が構築されるのと同一のプリント回路ボードに直接はんだ付けすることも可能である。
【0022】
パッチアンテナ要素220aは、反射アンテナ要素200のインピーダンスレベルに応じて大きな又は小さな位相シフトによって反射するべく動作する。反射アンテナ要素200は、アンテナ設計パラメータの関数であるインピーダンス特性を具備している。アンテナの設計パラメータは、構造の誘電材料、誘電材料の厚さ、アンテナの形状、アンテナの長さ及び幅、給電場所、アンテナ金属レイヤの厚さなどの物理的な属性(但し、これらに限定されない)を含んでいる。
【0023】
FET230(非理想的なスイッチング装置)は、その抵抗状態を変化させることによって反射アンテナ要素200のインピーダンス状態を変化させる。低抵抗状態(例えば、閉じた状態すなわち「短絡」)は、低インピーダンスになる。逆に、高抵抗状態(例えば、開いた状態)は、高インピーダンスになる。理想的な性能特性を有するスイッチング装置(以下、これを「理想的」なスイッチング装置と呼ぶ)は、その抵抗がその最低状態にある場合に、事実上、ゼロインピーダンス(Z=0)を生成し、その抵抗がその最大状態にある場合に、事実上、無限インピーダンス(Z=∞)を生成する。本明細書において説明するスイッチング装置は、そのインピーダンスがその最低状態にある場合に、「オン」であり(例えば、Zon=0)、そのインピーダンスがその最大状態にある場合に、「オフ」である(例えば、Zoff=∞)。理想的なスッチング装置のオン及びオフインピーダンス状態は、実質的にZon=0及びZoff=∞なので、理想的なスイッチング装置は、電磁放射の吸収を伴うことなしに、オン状態及びオフ状態間における最大位相シフトを実現することができる。即ち、理想的なスイッチング装置は、0度と180度の位相状態間でスイッチングを実現することができる。理想的なスイッチング装置の場合には、有限な非ゼロのインピーダンスを示すアンテナによって最大位相−振幅性能を実現可能である。
【0024】
理想的なスッチング装置とは対照的に、「非理想的」なスイッチング装置は、それぞれ、Zon=0及びZoff=∞でオン及びオフのインピーダンス状態を示さないスイッチング装置である。むしろ、非理想的なスイッチング装置のオン及びオフインピーダンス状態は、通常、例えば、0<|Zon|<|Zoff|<∞の間のどこかに位置している。但し、アプリケーションの中には、オン及びオフのインピーダンス状態が|Zoff|<=|Zon|のアプリケーションも存在している。非理想的なスイッチング装置は、特定の周波数レンジ(例えば、<10GHz)においては、理想的なインピーダンス特性を示し、その他の周波数レンジ(例えば、>20GHz)においては、きわめて非理想的なインピーダンス特性を示し得る。
【0025】
非理想的なスイッチング装置のオン及びオフインピーダンス状態は、Zon=0とZoff=∞との間のどこかに位置しているため、非理想的なスイッチング装置は、必ずしも、対応するアンテナのインピーダンスと無関係に最大位相状態性能を得ることはできない。ここで、最大位相状態性能は、0度から180度の位相状態間におけるスイッチングを必要とするものである。本発明によれば、図2の反射アンテナ要素200は、最適な位相性能を提供するべく特別に設計されており、この場合に、反射アンテナ要素の最適な位相状態性能とは、反射要素が0度と180度の位相−振幅状態間のスイッチングに最も近接したポイントである。一実施例においては、最適な位相状態性能を実現するべく、非理想的なスイッチング装置(FET230)のインピーダンスの関数としてアンテナ要素200は構成されている。例えば、アンテナ要素200は、アンテナ要素200のインピーダンスがFET230のインピーダンス特性の関数となるように設計されている。
【0026】
又、アンテナ要素200は、オン状態における非理想的なスイッチング装置(FET230)のインピーダンスZonと、オフ状態における非理想的なスイッチング装置230のインピーダンスZoffの関数として構成されている。特定の実施例においては、オン及びオフインピーダンス状態Zon及びZoffにある際に、アンテナ要素200のインピーダンスが非理想的なスイッチング装置230のインピーダンスの平方根の共役となるようにアンテナ要素200が構成された場合に、反射アンテナ要素200の位相状態性能が最適化される。具体的には、アンテナ要素200のインピーダンスは、対応する非理想的なスイッチング装置230のオン及びオフインピーダンス状態Zon及びZoffの幾何平均の複素共役である。この関係は、次のように表される。
【数1】

【0027】
ここで、()は、複素共役を表している。この関係は、ソースインピーダンス(source impedance)と負荷インピーダンス間の複素反射係数の周知の式を使用して導出される。アンテナ200をソースとして選択し、非理想的なスイッチング装置230を負荷として選択することにより、オン状態反射係数がオフ状態反射係数の正反対に等しく設定され、式(1)が得られる。
【0028】
最適な位相/振幅性能を示すアンテナ要素200の設計には、反射アンテナ要素200に使用される特定の非理想的なスイッチング装置(この場合には、FET230)のオン及びオフインピーダンスZon及びZoffを決定しなければならない。次いで、アンテナ要素200の設計パラメータを操作し、前述の式(1)に表されている関係に整合したインピーダンスを有するアンテナ要素200を生成する。Zon及びZoffが異なる値になるように決定される限り、式(1)を満足するアンテナ要素200は、設計可能である。
【0029】
対象の周波数帯域にわたって非理想的なインピーダンス特性を示す図2に示されている表面実装FET230以外の別のタイプのスイッチング装置は、表面実装ダイオードである。但し、表面実装ダイオードは、表面実装FETと比べて、対象の周波数帯域にわたって改善されたインピーダンス特性を示すが、表面実装FETは、相対的に廉価であり、反射器アンテナアレイ用途に使用するべく個別にパッケージ化可能である。
【0030】
FETを非理想的なスイッチング装置として利用する反射器アンテナアレイにおいては、実現可能なビーム走査速度は、信号対雑音比、クロストーク、及びスイッチング時間を含むいくつかの要因によって左右される。FETの場合には、スイッチング時間は、ゲート容量、ドレイン/ソース容量、及びチャネル抵抗(即ち、ドレイン/ソース抵抗)によって左右される。チャネル抵抗は、実際には、空間と時間の両方に依存している。インピーダンス状態間におけるスイッチング時間を極小化するには、FETのドレインを常にDC短絡しておくのが好ましい。ドレインをフローティング状態にすると、オフ状態チャネル抵抗が大きく、パッチアンテナの巨大な平行プレート面積に起因してドレイン/ソース容量が大きいため、ドレインを常にDC短絡しておくのが好ましい。これは、アンテナをDC短絡するのが好ましいが、ソースにおいては、アンテナが「高周波短絡」のみを観察することが望ましいことを意味している。従って、付加的なアンテナ/ドレイン短絡は、アンテナの混乱(perturb)を最小化するべく最適に配置しなければならない。
【0031】
反射アンテナ要素200内においては、パッチアンテナ220aの代わりに、その他のタイプのアンテナも使用可能であることを理解されたい。一例として、その他のアンテナタイプは、ダイポール、モノポール、ループ、及び誘電体共振器タイプのアンテナを含んでいる(但し、これらに限定されない)。又、その他の実施例においては、反射アンテナ要素200は、FET230を可変コンデンサ(例えば、BST(Barium Strontium Titanate)コンデンサ)によって置換することによる連続位相シフトアンテナ要素200であってよい。可変コンデンサが実装されたパッチによれば、FETが実装されたパッチによって生成される2値位相シフトの代わりに、それぞれのアンテナ要素200ごとに、連続した位相シフトを実現可能である。連続フェーズドアレイを調節することにより、ビーム走査パターン内の任意の方向に向かってマイクロ波ビームを操縦するべく、望ましい位相シフトを提供可能である。
【0032】
図3は、本発明の実施例によるマイクロ波放射を反射する模範的なアレイ50の平面図の概略図である。図3において、マイクロ波源60から送信されたマイクロ波放射のソースビーム300は、アレイ50内の様々なアンテナ要素80によって受信されている。マイクロ波源60は、点源、ホーンアンテナ、及びその他のタイプのアンテナを含む(但し、これらに限定されない)アレイ50を照射するのに十分な任意の供給源であってよい。アレイ50内のアンテナ要素80は、それぞれ、ターゲット155に向かって反射マイクロ波放射の送信ビーム310を導く個別の位相シフトによってプログラムされている。位相シフトは、ターゲット155において、反射マイクロ波放射のビーム310内のマイクロ波線のすべての間においてポジティブ(建設的)な干渉が生成されるように、選択されている。理想的には、アンテナ要素80のそれぞれの位相シフトは、ターゲット155に向かう供給源(アンテナ要素80)からの反射マイクロ波放射310のそれぞれのマイクロ波線ごとに同一の位相遅延を提供するべく調節されている。
【0033】
同様に、図3に示されているように、ターゲット155から反射され、アレイ50において受信されるマイクロ波放射の反射ビーム320は、反射マイクロ波放射の受信ビーム330としてマイクロ波受信機40に向かって反射可能である。この場合にも、位相シフトは、マイクロ波受信機40において反射マイクロ波放射のビーム330内のマイクロ波線のすべての間においてポジティブ(建設的)な干渉が生成されるように、選択されている。マイクロ波受信機40は、マイクロ波源60とは異なる空間的場所に位置するものとして示されているが、その他の実施例においては、マイクロ波源60は、マイクロ波受信機40と同一の空間的場所において、別個のアンテナとして、又は、マイクロ波受信機40の一部として位置することが可能であることを理解されたい(例えば、共焦点画像生成システム)。
【0034】
図4A及び図4Bは、アレイ内の反射アンテナ要素をプログラムする模範的な位相シフトパターンを示している。図4Aは、マイクロ波源からのマイクロ波放射をターゲットに向かって反射する位相シフトの送信パターン115aを示しており、図4Bは、ターゲットからのマイクロ波放射をマイクロ波受信機に向かって反射する位相シフトの受信パターン115bを示している。それぞれのパターン115a及び115bのサイズは、アレイと同一のサイズであり、それぞれのパターン内のそれぞれの要素(ボックス)は、アレイ内の対応するアンテナ要素の位相シフト400を含んでいる。わかりやすくするために、図4A及び図4Bのパターンは、1と0の2値パターンである。但し、本発明の実施例は、その他のタイプの量子化されたアレイ及び連続可変アレイにも等しく適用可能であることを理解されたい。
【0035】
パターン115a内のそれぞれのボックスは、パターン115b内の対応するボックスを具備しており、これらは、いずれも、アレイ内の同一のアンテナ要素に関連付けられている。例えば、図4Aの左上隅のボックスは、図4Bの左上隅のボックスと同一のアンテナ要素に対応している。図4A及び図4Bからわかるように、図4Aの左上隅のボックス内の位相シフト400は、図4Bの左上隅のボックス内の位相シフト400と異なっている。従って、送信パターン115aの左上隅のボックスに対応したアンテナ要素の位相シフトは、受信パターン115b内の同一のアンテナ要素の位相シフトと異なっている。同様の位相シフトの矛盾を図4A及び図4Bのパターン115a及び115b内において見出すことができる。
【0036】
しかしながら、マイクロ波源からのマイクロ波放射をターゲットに向かって反射すると共にターゲットからのマイクロ波放射をマイクロ波受信機に向かって反射してターゲットのマイクロ波画像を取得するべく単一の反射器アンテナアレイを使用するためには、画像取得プロセス全体においてそれぞれのアンテナ要素にプログラム可能な位相シフト値は、1つのみである。送信及び受信パターン115a及び115b内の特定のアンテナ要素(例えば、左上隅のボックスに対応したアンテナ要素)用の2つの位相シフト値が互いに矛盾している場合に、画像取得の際にその特定のアンテナ要素に使用できるのは、送信パターン115a又は受信パターン115bからの位相シフト値のいずれかのみである。
【0037】
本発明の実施例によれば、送信及び受信パターン間における位相シフトの対立を回避するために、送信パターンの一部を受信パターンの一部とインターリーブし、これにより、マイクロ波源からのマイクロ波放射をターゲットに反射するか、又はターゲットからのマイクロ波放射をマイクロ波受信機に反射するべく、アレイ内のそれぞれのアンテナ要素をプログラム可能である。インターリーブパターンの設計においては、オリジナルの送信及び受信パターンの設計と比べた場合に、解像度が多少低下するが、全体的なパターンアレイカバレージが同一であるため、物体上のAFOV(Addressable Field−Of−View)は、送信及び受信パターンとインターリーブパターン間において、不変である。
【0038】
その他の実施例においては、インターリーブパターンは、複数の送信パターン及び/又は複数の受信パターンから形成可能であることを理解されたい。例えば、複数のマイクロ波源を使用して反射器アレイを照射し、それぞれのマイクロ波源がアレイ上に異なるパターンを必要としている場合には、複数送信パターンのインターリーブパターンによって反射器アレイをプログラム可能である。同様に、反射器アレイがマイクロ波放射を複数のマイクロ波受信機に向かって反射し、それぞれのマイクロ波受信機がアレイ上に異なるパターンを必要としている場合には、複数受信パターンのインターリーブパターンによって反射器アレイをプログラム可能である。
【0039】
図5は、送信パターン115a及び受信パターン115bの一部を含むインターリーブパターン115cの一例を示している。図5において、送信パターン115aは、対角線ストライプのボックスとして表されており、受信パターン115bは、ドットのボックスとして表されている。パターン115C内のそれぞれのボックスは、図4A及び図4Bのパターン115a及び115b内の対応するボックスを具備しており、これらのすべては、アレイ内の同一のアンテナ要素に関連付けられている。例えば、図4Aの左上隅のボックスは、図4Bの左上隅のボックスと同一のアンテナ要素、並びに、図5の左上隅のボックスと同一のアンテナ要素と対応している。
【0040】
図5に示されているインターリーブパターン115cは、1つのパターン(例えば、送信パターン115a)からの位相シフト値が、もう一方のパターン(例えば、受信パターン115b)からの位相シフト値と、直交の関係で隣接し(すなわち、横隣接と縦隣接)、同一のパターン(例えば、送信パターン115a)からの位相シフト値とは、対角の関係で隣接するように、送信パターン115aからの位相シフト値と受信パターン115bからの位相シフト値の間で交互に変化している。従って、図5に示されているインターリーブパターン115cは、送信パターン115aと受信パターン115bの直接インターリーブパターンである。この結果、アレイ内の一方のすべてのアンテナ要素は、マイクロ波放射をターゲットに向かって反射するべくプログラムされており(送信パターン)、アレイ内の残りのアンテナ要素は、マイクロ波放射をマイクロ波受信機に向かって反射するようにプログラムされている(受信パターン)。
【0041】
例えば、図5の左上隅のボックスは、対角線ストライプのボックスであるため、図5の左上隅のボックス内の位相シフト値は、図4Aの左上隅のボックス内の位相シフト値である(送信パターン)。従って、図4Aの値を使用しており、図5の左上隅のボックス内の位相シフト値は「1」である。同様に、図5の左上隅のボックスの直ぐ下のボックスは、ドットのボックスであり、従って、このボックス内の位相シフト値は、図4Bの対応するボックス内の位相シフト値である。従って、図5の左上隅のボックスの直ぐ下のボックス内の位相シフト値は「0」である。同様に、図5に示されているインターリーブパターン115cには、アレイ内のそれぞれのアンテナ要素が送信パターン115a又は受信パターン115bからの位相シフト値によって交互に変化する(インターリーブされた)パターンにプログラムされるように、図4A及び図4Bからの位相シフト値を完全に入力可能である。
【0042】
図5に示されている直接インターリーブパターンは、送信及び受信パターンの中のいずれかのみの位相シフト値によってそれぞれのアンテナ要素をプログラムできるようにすることによって送信及び受信パターン間の位相シフトの対立を解決した単純であって効果的なパターンであるが、その他のインターリーブパターンも可能である。一般に、本発明の実施例は、結果的に、画像を取得するべく、送信位相シフトによってアンテナ要素の第1部分を、そして、受信位相シフトによってアンテナ要素の第2部分(残りの部分)をプログラムすることになるあらゆるインターリーブパターンを含んでおり、第1及び第2部分は、実質的に等しくなっている(即ち、送信位相シフトによってプログラムされるアンテナ要素の数は、受信位相シフトによってプログラムされるアンテナ要素の数と実質的に等しい)。インターリーブパターンは、ランダムパターンであるか、或いは、マイクロ波画像生成システムの1つ又は複数のパラメータを最適化するべく設計された特定のパターンであってよい。
【0043】
例えば、次に図6を参照すれば、本発明の実施例によるプログラム可能なアンテナアレイを使用したマイクロ波源とマイクロ波受信機間における模範的な反射マイクロ波線が示されている。図6においては、マイクロ波源60から送信されたマイクロ波放射のソースビーム300は、アンテナ要素によって受信されており、わかりやすくするべく、この中から、アレイ50内の80a、80b、80c、及び80dと表記された4つのもののみが示されている。アンテナ要素80a、80b、80c、及び80dは、それぞれ、反射マイクロ波放射の送信ビーム310をターゲット155に向かって導く個別の位相シフトによってプログラムされている。位相シフトは、ターゲット155において、それぞれ、アンテナ要素80a、80b、80c、及び80dのそれぞれからのr、r、r、及びrと表記されたマイクロ波線のすべての間においてポジティブ(建設的)な干渉が生成されるように、選択されている。
【0044】
同様に、図6に示されているように、ターゲット155から反射され、アレイ50内のアンテナ要素80a、80b、80c、及び80dにおいて受信されたマイクロ波放射の反射ビーム320を、反射マイクロ波放射の受信ビーム330として、マイクロ波受信機40に向かって反射可能である。この場合にも、位相シフトは、マイクロ波受信機40において、それぞれ、アンテナ要素80a、80b、80c、及び80dのそれぞれからのr、r、r、及びrと表記されたマイクロ波線のすべての間においてポジティブ(建設的)な干渉が生成されるように、選択されている。
【0045】
送信ビーム310について、それぞれの個別のアンテナ要素80a、80b、80c、及び80dにプログラムされる位相シフトと、受信ビームについて、それぞれの個別のアンテナ要素80a、80b、80c、及び80dにプログラムされる位相シフト間における対立を回避するべく、インターリーブパターン内において、送信ビーム310にのみ寄与するようにアンテナ要素80a、80b、80c、及び80dの一部をプログラムすると共に、受信ビーム330にのみ寄与するようにアンテナ要素の残りのものをプログラム可能である。
【0046】
先程定義したように、特定のターゲットについてアレイ内のアンテナ要素に割り当てられたすべての位相シフトの組み合わせがパターンを形成している。それぞれのアンテナ要素が2つの位相シフトのいずれかのみを導入可能な2値アレイの場合には、パターンは、1と0のアレイとして表現可能である。図6のアンテナ要素80a、80b、80c、及び80dをプログラムする2値のインターリーブパターンの例が、図7A〜図7Cに示されている。図7Aは、アンテナ要素80a、80b、80c、及び80dをプログラムする送信位相シフト400aの第1送信パターン115aと、アンテナ要素80a、80b、80c、及び80dをプログラムする受信位相シフト400bの第1受信パターン115bを示している。
【0047】
例えば、アンテナ要素80aは、第1送信パターン115aの0度の位相シフト400aと、第1受信パターン115bの180度の位相シフト400bとにプログラムされる。又、アンテナ要素80bは、第1送信パターン115aの180度の位相シフト400aと、第1受信パターン115bの0度の位相シフト400bとにプログラムされる。又、アンテナ要素80dは、第1送信パターン115aの180度の位相シフト400aと、第1受信パターン115bの0度の位相シフト400bとにプログラムされる。第1送信パターン115aと第1受信パターン115bとの間において、位相シフトの対立を具備していない唯一のアンテナ要素は、アンテナ要素80cである。アンテナ要素80cは、第1送信パターン115aと第1受信パターン115bのいずれにおいても、0度の位相シフト400a及び400bにプログラムされる。
【0048】
第1送信パターン115aと第1受信パターン115bの位相シフト400a及び400b間における位相シフトの対立を回避するべく、第1送信パターン115a及び第1受信パターン115bのそれぞれの一部を第1インターリーブパターン115cに含むことができる。わかりやすくするべく、第1インターリーブパターン115cは、第1送信パターン115aと第1受信パターン115b間における直接インターリーブパターンである。従って、図7Aに示されているように、第1インターリーブパターン115c内においては、アンテナ要素80aは、0度の送信位相シフト400aによってプログラムされており、アンテナ要素80bは、0度の受信位相シフト400bによってプログラムされており、アンテナ要素80cは、0度の送信位相シフト400aによってプログラムされており、アンテナ要素80dは、180度の受信位相シフト400bによってプログラムされている。
【0049】
従って、図6のアンテナ要素80a及び80cは、それぞれ、マイクロ波線r及びrをターゲットに向かって導くべくプログラムされており、アンテナ要素80b及び80dは、それぞれ、マイクロ波線r及びrをマイクロ波受信機に向かって導くようにプログラムされている。図6のアンテナ要素80b及び80dは、それぞれ、マイクロ波線r及びrをターゲットに向かって寄与しておらず、アンテナ要素80a及び80cは、マイクロ波受信機に向かって、それぞれマイクロ波線r及びrを寄与していない。従って、図6の送信ビーム310は、マイクロ波線r及びrのみを含んでおり、受信ビーム330は、マイクロ波線r及びrのみを含んでいる。但し、アンテナ要素80c用の位相シフト400a及び400bは、第1送信パターン115a及び第1受信パターン115bにおいて同一であるため(即ち、いずれも0度である)、0度の位相シフトによってアンテナ要素80cをプログラムすることにより、アンテナ要素80cが、それぞれ、送信ビーム310と受信ビーム330のマイクロ波線r及びrの両方を生成可能であることを理解されたい。
【0050】
図7Aに示されている第1インターリーブパターン115cを使用し、第1ターゲット155の画像を取得する。しかしながら、人物又はその他の物体を走査する際には、人物又は物体の完全なマイクロ波画像を得るべく、人物又は物体上の複数のターゲットの画像を生成する。従って、それぞれのターゲット(3D空間内のアドレス指定可能な点)ごとに、プログラマは、個別の送信パターン及び個別の受信パターンを設計する。例えば、図7Bに示されているように、第2送信及び受信パターン115a及び115bは、別のターゲットとの間において、それぞれ、マイクロ波ビーム310及び330を導くように、示されている。アンテナ要素80a、80b、80c、及び80dをプログラムする送信位相シフト400aの第2送信パターン115aは、新しい送信ビーム310を別のターゲットに向かって導き、アンテナ要素80a、80b、80c、及び80dをプログラムする受信位相シフト400bの第2受信パターン115bは、ターゲットからの新しい受信ビーム330をマイクロ波受信機に向かって反射する。
【0051】
第2送信及び受信パターン115a及び115bが、それぞれ、(図7Aに示されているものに類似した)第2の直接インターリーブパターンとして組み合わせられた場合には、アンテナ要素80aは、180度の位相シフト(第2送信パターン115aからの送信位相シフト400a)にプログラムされ、アンテナ要素80bは、0度の位相シフト(第2受信パターン115bからの受信位相シフト400b)にプログラムされ、アンテナ要素80cは、180度の位相シフト(第2送信パターン115aからの送信位相シフト400a)にプログラムされ、アンテナ要素80dは、180度の位相シフト(第2送信パターン115bからの受信位相シフト400b)にプログラムされることになろう。
【0052】
第1の直接インターリーブパターン115cと、このような第2の直接インターリーブパターン(図7Bには、具体的に図示されてはいない)の間の位相シフトを比較すれば、アンテナ要素80a及び80cの両方にプログラムされた位相シフトが、第1の直接インターリーブパターン115cとこのような第2の直接インターリーブパターンの間において、切り替わっているのがわかる。即ち、第1の直接インターリーブパターン内においてアンテナ要素80aにプログラムされる位相シフトは、0度であり、第2の直接インターリーブパターン内においてアンテナ要素80aにプログラムされる位相シフトは、180度であり、これは、アンテナ要素80cについても同様である。
【0053】
人物又はその他の物体の走査に使用されるパターンのペア間における位相変化の数が増大するに伴って、ターゲットにおけるメインローブの周りのサイドローブの面積も増大する。又、連続マイクロ波画像間における位相変化が多くなるほど、アレイ内のアンテナ要素を駆動するデジタル回路に必要な電力も増大する。このため、本発明の実施例によれば、インターリーブパターン(例えば、インターリーブパターン115c及び115c)間における最少の変化を結果的にもたらす送信及び受信パターンの一部分をインターリーブパターン用に選択することにより、連続マイクロ波画像間の位相変化の数の極小化を実現可能である。
【0054】
図7Bからわかるように、第2のインターリーブパターン115c内においては、アンテナ要素80aは、0度の受信位相シフト400bにプログラムされており、アンテナ要素80bは、0度の受信位相シフト400bにプログラムされており、アンテナ要素80cは、180度の送信位相シフト400aにプログラムされており、アンテナ要素80dは、180度の送信位相シフト400aにプログラムされている。従って、図6のアンテナ要素80a及び80bは、それぞれ、マイクロ波線r及びrをマイクロ波受信機に向かって導くべくプログラムされており、アンテナ要素80c及び80dは、それぞれ、マイクロ波線r及びrをターゲットに向かって導くべくプログラムされている。
【0055】
図7Aに示されている第1のインターリーブパターン115cと、図7Bに示されている第2のインターリーブパターン115cの間の位相シフトを比較すると、第1のインターリーブパターン115cと第2のインターリーブパターン115cの間において、アンテナ要素80cにプログラムされた位相シフトのみが変化していることがわかる。この結果、インターリーブパターン115c及び115cを使用した位相シフト変化の合計数は、1に過ぎず、2つの直接インターリーブパターンを使用した位相シフト変化の合計数は、2となろう。連続マイクロ波画像間の位相シフト変化の数を極小化するべく、それぞれのインターリーブパターンを設計することにより、ターゲットにおけるメインローブの周りのサイドローブの面積を低減可能であり、人物又はその他の物体を走査する際のアンテナ要素を制御するデジタル回路を駆動するのに必要な電力が減少する。
【0056】
同様に、図7Cにおいては、インターリーブパターン115cは、インターリーブパターン115c及び115cの間の位相シフト変化の数を極小化するべく設計されている。即ち、第2のインターリーブパターン115cにおいては、アンテナ要素80aは、(第3送信パターン115aに示されている)0度の送信位相シフト400aにプログラムされており、アンテナ要素80bは、(第3受信パターン115bに示されている)0度の受信位相シフト400bにプログラムされており、アンテナ要素80cは、(第3受信パターン115bに示されている)180°の受信位相シフト400bにプログラムされており、アンテナ要素80dは、(第3送信パターン115aに示されている)0度の送信位相シフト400aにプログラムされている。従って、図6のアンテナ要素80a及び80dは、それぞれ、マイクロ波線r及びrをターゲットに向かって導くべくプログラムされており、アンテナ要素80b及び80cは、それぞれ、r及びrをマイクロ波受信機に向かって導くべくプログラムされている。インターリーブパターン115c及び115cを使用した位相シフト変化の合計数は、この場合にも、1に過ぎず(即ち、アンテナ要素80dの位相シフトが変化している)、これは、それぞれ、第3の送信及び受信パターン115a及び115bを使用して実現可能な位相シフト変化の最小数(minimum number)である。
【0057】
別の実施例においては、最適化対象のパラメータは、送信ビーム310と受信ビーム330の振幅である。次に図8Aを参照すれば、図6に示されているそれぞれの送信ビーム310のマイクロ波線(r、r、r、及びr)を、フェーザー(phasor)として表し、特定の大きさと位相によって表現可能である。例えば、マイクロ波線rは、r(j*phase1)として表し、実数部(Re)及び虚数部(Im)成分を含む2次元の複素平面内のフェーザーとして表現可能である。図8Aにおいて、マイクロ波線r、r、r、及びrは、フェーザーr,位相、r,位相、r,位相、及びr,位相として表現可能である。フェーザーr,位相、r,位相、r,位相、及びr,位相のすべての合計が、ターゲットにおけるマイクロ波放射のビームの振幅を決定する。ターゲットにおける振幅を極大化するには、アンテナ要素のそれぞれからのマイクロ波線r、r、r、及びrが同一の位相を具備している。連続フェーズドアレイの場合には、それぞれのアンテナ要素を連続可変位相シフトによってプログラムすることにより、同一位相ですべてのマイクロ波線をアライメント可能である。
【0058】
しかしながら、それぞれのアンテナ要素を特定数の量子化された位相シフトの中の1つによってのみプログラム可能な量子化されたアレイにおいては、マイクロ波線の位相は、部分的にしかアライメントできない。例えば、2値アレイにおいては、それぞれのアンテナ要素は、2つの異なる2値状態(例えば、0度の位相シフト又は180度の位相シフト)のいずれかにしかプログラムできない。従って、それぞれのアンテナ要素の位相シフトは、ターゲットにおいて建設的な干渉を極大化させると共に破壊的な干渉を極小化(又は、防止)するべくプログラムされるのみである。ターゲットにおける破壊的な干渉を防止するには、理想的な位相(図8Aのライン800に沿って示されているもの)を選択し、理想的な位相800においてマイクロ波放射のビームを集合的に形成する個別のマイクロ波線を生成する(例えば、ターゲットにおけるすべてのマイクロ波線の合計が、理想的な位相800におけるフェーザーとなる)特定の量子化された位相シフトによってすべてのアンテナ要素をプログラムする。
【0059】
図8Aからわかるように、理想的な位相800を選択したら、理想的な位相800に直交する量子化ライン810を使用し、すべてのマイクロ波線の理想的な位相800への加算を可能にするべく、それぞれの個別のマイクロ波線に適用する位相シフトを判定可能である。図8Aにおいては、マイクロ波線r及びrは、理想的な位相800と同一の量子化ライン810の側に位置している。従って、これらの放射線のそれぞれの現在の位相を維持するべく、マイクロ波線r及びrに0度の2値位相シフトを適用する。しかしながら、マイクロ波線r及びrは、理想的な位相800とは異なる量子化ライン810の側に位置している。この結果、これらのマイクロ波線の位相を理想的な位相800と同一の量子化ラインの側に切り換えるべく、マイクロ波線r及びrに180度の2値位相シフトを適用する。マイクロ波線r、r、r、及びrの合計が、理想的な位相800におけるマイクロ波放射の送信ビーム310である。但し、マイクロ波線のそれぞれの位相が完全にアライメントされないため、ターゲットにおけるマイクロ波放射のビームの振幅は、連続可変フェーズドアレイによって実現可能なものを下回ることになろう。
【0060】
同様に、図8Bからわかるように、図6に示されている受信ビーム330内のそれぞれのマイクロ波線(r、r、r、及びr)を、フェーザーとして表し、特定の大きさ及び位相によって表現可能である。図8Bにおいては、マイクロ波線r及びrは、理想的な位相800と同一の量子化ライン810の側に位置している。従って、これらの放射線のそれぞれの現在の位相を維持するべく、マイクロ波線r及びrに0度の2値位相シフトを適用する。しかしながら、マイクロ波線r及びrは、理想的な位相800とは反対の量子化ライン810の側に位置している。この結果、これらのマイクロ波線の位相を理想的な位相800と同一の量子化ラインの側に切り換えるべく、マイクロ波線r及びrに180度の2値位相シフトを適用する。マイクロ波線r、r、r、及びrの合計が、理想的な位相800におけるマイクロ波放射の受信ビーム330である。
【0061】
再度図8Aを参照すれば、マイクロ波線r及びrは、マイクロ波線r及びrよりも、理想的な位相800からの大きな位相オフセットを具備している。従って、マイクロ波線r及びrは、ターゲットにおけるマイクロ波放射の振幅に対して最も寄与し(これらのマイクロ波線が、理想的な位相800に最も近接し、量子化ライン810から最も離れているため)、マイクロ波線r及びrは、ターゲットにおけるマイクロ波放射の振幅に対する寄与が最も少ない(これらのマイクロ波線が量子化ライン810に最も近接しているため)。
【0062】
同様に、図8Bにおいては、マイクロ波線r及びrは、マイクロ波線r及びrよりも、理想的な位相800からの大きな位相オフセットを具備している。従って、マイクロ波線r及びrは、マイクロ波受信機におけるマイクロ波放射の振幅に対して最も寄与し(これらのマイクロ波線が理想的な位相800に最も近接し、量子化ライン810から最も離れているため)、マイクロ波線r及びrは、マイクロ波受信機におけるマイクロ波放射の振幅に対する寄与が最も少ない(これらのマイクロ波線が量子化ライン810に最も近接しているため)。
【0063】
結果的に送信ビーム及び受信ビームの最大振幅をもたらすアレイの送信及び受信パターンのインターリーブパターンを設計するには、送信パターン及び受信パターンから選択される位相シフトが、理想的な位相800に対して最も近接し、量子化ライン810から最も離れたマイクロ波線を生成する位相シフトであればよい。
【0064】
図6、図8A、及び図8Bに示されているマイクロ波線r、r、r、及びrを生成するアンテナ要素80a、80b、80c、及び80dを含むアレイの一部分の模範的な2値位相シフトパターン115a及び115bが、図9に示されている。送信パターン115aは、送信ビーム310を形成するマイクロ波線r、r、r、及びrを生成するアンテナ要素80a、80b、80c、及び80dをプログラムする送信位相シフト400aを含んでおり、受信パターン115bは、受信ビーム330を形成するマイクロ波線r、r、r、及びrを生成するアンテナ要素80a、80b、80c、及び80dをプログラムする受信位相シフト400bを含んでいる。
【0065】
送信パターン115aと受信パターン115bは、図8A及び図8Bに示されている位相シフトに対応している。従って、アンテナ要素80aは、送信パターン115a内の0度の位相シフト400aと、受信パターン115b内の0度の位相シフト400bによってプログラムされ、アンテナ要素80bは、送信パターン115a内の180度の位相シフト400aと、受信パターン115b内の0度の位相シフト400bによってプログラムされ、アンテナ要素80cは、送信パターン115a内の180度の位相シフト400aと、受信パターン115b内の180度の位相シフト400bによってプログラムされ、アンテナ要素80dは、送信パターン115a内の0度の位相シフト400aと、受信パターン115b内の180度の位相シフト400bによってプログラムされる。
【0066】
図6の送信ビーム310及び受信ビーム330の振幅を極大化するには、マイクロ波線r及びrを生成するアンテナ要素80a及び80d用の送信位相シフト400aを含むように、インターリーブパターン115cを設計する。前述のように、マイクロ波線r及びrは、ターゲットにおけるマイクロ波放射の振幅に最も寄与する(これらのマイクロ波線が、理想的な位相800に最も近接し、量子化ライン810から最も離れているため)。従って、マイクロ波線r及びrを生成するアンテナ要素80a及び80d用の送信位相シフトを含むようにインターリーブパターン115cを設計することにより、送信ビーム310の振幅が極大化する。
【0067】
更には、マイクロ波線r及びrを生成するアンテナ要素80b及び80c用の受信位相シフト400bをインターリーブパターン115c内に含めることにより、受信ビーム330の振幅も極大化する。前述のように、マイクロ波線r及びrは、マイクロ波受信機におけるマイクロ波放射の振幅に最も寄与する(これらのマイクロ波線が、理想的な位相800に最も近接し、量子化ライン810から最も離れているため)。従って、マイクロ波線r及びrを生成するアンテナ要素80b及び80c用の受信位相シフトを含むようにインターリーブパターン115cを設計することにより、受信ビーム330の振幅が極大化する。この実施例においては、インターリーブパターン内の送信又は受信位相シフトの選択は、送信及び受信ビームの振幅を極大化するべく行われており、必ずしも最大振幅を生成するためではない。送信及び受信パターン内の位相シフトに応じて、送信ビーム及び受信ビームの両方について、絶対最大振幅を生成できない場合があろう。
【0068】
更なる実施例においては、最適化対象のパラメータは、ターゲットにおけるマイクロ波放射の建設的な干渉とマイクロ波受信機におけるマイクロ波放射の破壊的な干渉の比率であってよい。マイクロ波源からマイクロ波受信機への迷光放射(stray radiation)の結果生じる背景雑音は、マイクロ波画像生成システムの信号対雑音比(SNR)を低下させる。受信機における迷光放射の破壊的な干渉を増大させることにより、SNRが向上する。従って、本発明の実施例によれば、インターリーブパターン内のそれぞれのアンテナ要素にプログラムされる位相シフトを、ターゲットにおける十分な建設的な干渉を維持しつつ、受信機における破壊的な干渉を極大化するべく設計可能である。
【0069】
次に図10を参照すれば、マイクロ波源60とマイクロ波受信機40間における漏れ(迷光)マイクロ波放射が示されている。図6と同様に、図10においては、マイクロ波源(アンテナ)60から送信されたマイクロ波放射のビーム300が、アレイ50内の様々なアンテナ要素80によって受信されている。アンテナ要素80は、それぞれ、ターゲット155に向かって反射マイクロ波放射のビーム310を導く個別の位相シフトによってプログラムされている。位相シフトは、ターゲット155において、反射マイクロ波放射のビーム310内のr、r、r、及びrと表記されているマイクロ波線のすべての間においてポジティブ(建設的)な干渉が生成されるように選択されている。しかしながら、供給源60からのマイクロ波放射の一部が、迷光マイクロ波放射のビーム1000として、アレイ50からマイクロ波受信機40に向かって反射されている。受信機40における迷光マイクロ波放射1000の影響を極小化する(即ち、SNRを向上させる)べく、ターゲットにおける建設的な干渉の比例した減少を伴うことなしに、マイクロ波受信機における破壊的な干渉を増大させることができる。
【0070】
再度図8Aを参照すれば、前述のように、マイクロ波線r及びrは、マイクロ波線r及びrよりも理想的な位相800からの大きな位相オフセットを具備している。従って、マイクロ波線r及びrは、ターゲットにおけるマイクロ波放射の振幅に最も寄与し(これらのマイクロ波線が、理想的な位相800に最も近接し、量子化ライン810から最も離れているため)、マイクロ波線r及びfは、ターゲットにおけるマイクロ波放射の振幅に対する寄与が最も少ない(これらのマイクロ波線が量子化ライン810に最も近接しているため)。
【0071】
同様に、図8Bにおいては、マイクロ波線r及びrは、マイクロ波線r及びrよりも理想的な位相800からの大きな位相オフセットを具備している。従って、マイクロ波線r及びrは、マイクロ波受信機におけるマイクロ波放射の振幅に最も寄与し(これらのマイクロ波線が、理想的な位相800に最も近接し、量子化ライン810から最も離れているため)、マイクロ波線r及びrは、マイクロ波受信機におけるマイクロ波放射の振幅に対する寄与が最も少ない(これらのマイクロ波線が量子化ライン810に最も近接しているため)。
【0072】
従って、理想的な位相800からの最も大きな位相オフセットを有するマイクロ波線(即ち、マイクロ波線r及びr)を送信位相シフトが生成するアンテナ要素の受信位相シフトをインターリーブパターンに含むように選択することにより、ターゲットにおける建設的な干渉の大きな変化を生成することなしに、受信機における破壊的な干渉を増強可能である。例えば、図9を再度参照すれば、インターリーブパターン115cは、理想的な位相800からの最も大きな位相オフセットを有するマイクロ波線r及びrを生成するアンテナ要素80b及び80cの受信位相シフト400bを含むように設計可能である。従って、インターリーブパターン115cは、ターゲットにおける建設的な干渉を比例して減少させることなしに、マイクロ波受信機における破壊的な干渉を増大させるべく、アンテナ要素80a及び80cの送信位相シフト400aとアンテナ要素80b及び80cの受信位相シフト400bを含むように設計可能である。その他の実施例においては、同一の原理を適用し、ターゲットにおけるメインローブ内の十分な建設的な干渉を維持しつつ、ターゲットにおけるサイドローブ内の破壊的な干渉を増大させることにより、サイドローブの面積を極小化可能であることを理解されたい。
【0073】
動作の際には、パターン(送信又は受信)とアンテナ要素の関連付けを選択するプロセスは、直接インターリーブパターンを生成した後に、ターゲットにおけるマイクロ波放射の振幅に対して大きく寄与しないそれぞれのアンテナ要素の位相を一度に1つずつ変更することを反復することによって実行可能である。それぞれの変更のたびに、マイクロ波受信機において結果的に生成される放射パターンを演算する。1つのアンテナ要素の位相シフトの変更により、マイクロ波受信機における破壊的な干渉が減少した場合には、その位相シフトの変更を含むように、インターリーブパターンを調節する。一方、位相シフトの変化によって、マイクロ波受信機における破壊的な干渉が減少しない場合には、インターリーブパターンをそのまま維持する(即ち、そのアンテナ要素の位相シフトを変更しない)。
【0074】
本発明の実施例によって最適化可能な別のパラメータは、パターンの圧縮と関連するメトリックである。パターンを、それぞれが区域内の要素の合計数を下回るエントロピーを有する複数の要素の区域に分割可能である場合には、パターンを圧縮することにより、パターンの保存に必要なメモリ空間の量を低減し、パターンデータの処理速度を向上させることができる。
【0075】
例えば、図11Aには、正方形の要素400の2x2の様々な区域1100が示されている。それぞれの区域1100は、3のエントロピーを具備しており、これは、4つの要素400を表すのに3ビットが必要であることを意味している。別の例として、図11Bには、正方形の要素100の4x4の様々な区域1110が示されている。それぞれの区域1110は、10のエントロピーを有しており、これは、16個の要素400を表すのに10ビットが必要であることを意味している。区域1100又は1110のエントロピーを低減する(従って、圧縮を増大する)には、可能な区域1100又は1110の数、又は要素400の特定のサイズブロックを低減しなければならない。図11A及び図11Bのいずれにおいても、区域は、最も頻繁に使用されている左上から最も使用頻度が少ない右下に向かう状態で示されている。最も使用頻度の少ない区域を可能性として除去可能である場合には、区域1100又は1110内の要素400を表すのに必要なビットの数が減少する(エントロピーが減少する)。これは、高圧縮比率を有する(但し、「可逆圧縮」よりも歪が大きい)「非可逆圧縮」に結び付くことになる。
【0076】
例えば、図11Aの最下位行の区域1100が可能性として除去された場合には、除去された区域の1つ又は複数のものを含むインターリーブパターン内の1つ又は複数の要素400の位相シフトを変更しなければならない。再度、図4A及び図4Bを参照すれば、送信パターン115aが、図5に示されているように、受信パターン115bと直接インターリーブされた場合には、最下位左の要素400の2x2の正方形ブロックは、図11Aの最下位区域1100の1つ、具体的には、最下位の右から2番目に似ている。従って、エントロピーを低減し、パターン115の圧縮を増大させるには、図5の要素400の最下位左の2x2の正方形ブロック内の要素400の少なくとも1つの位相シフトを、要素400のブロックが図11Aの残りの可能な区域1100の1つに似るように変更しなければならない。
【0077】
このメトリックの代わりに(又は、これに加えて)、その他の圧縮メトリックを使用することも可能であることを理解されたい。例えば、変更を要する個別のアンテナ要素又はアンテナ要素のブロックを判定するべく、ターゲットにおけるマイクロ波放射の振幅に対するそれぞれのアンテナ要素又はアンテナ要素のブロックの寄与度を非可逆圧縮用の重み付けメトリックとして使用可能である。
【0078】
図12は、本発明の実施例によるインターリーブされた送信/受信位相シフトパターンを使用してターゲットのマイクロ波画像を取得する模範的なプロセス1200を示すフローチャートである。まず、ブロック1210において、プログラム可能なマイクロ波アンテナ要素のアレイを提供する。ブロック1220において、アレイ内のアンテナ要素のそれぞれに対して、マイクロ波放射のビームをターゲットに向かって導く個別の位相シフトが割り当てられるように、アレイ用の位相シフトの送信パターンを設計する。ブロック1230において、アレイ内のアンテナ要素のそれぞれに対して、ターゲットから反射されたマイクロ波放射ビームをマイクロ波受信機に向かって導く個別の位相シフトが割り当てられるように、アレイ用の位相シフトの受信パターンを設計する。ブロック1240において、設計した送信パターンの一部と設計した受信パターンの一部を含むインターリーブパターン内の個別の位相シフトによってアンテナ要素をプログラムする。インターリーブパターンは、送信及び受信パターンの直接インターリーブパターン、ランダムインターリーブパターン、又は、マイクロ波画像生成システムの1つ又は複数のパラメータを最適化するべく設計された特定のインターリーブパターンであってよい。
【0079】
当業者であれば、本出願に記述されている革新的な概念が、様々なアプリケーションにおいて変更及び変形可能であることを認識するであろう。従って、特許対象の範囲は、説明した特定の模範的な開示内容のいずれかに限定されるものではなく、添付の請求項によって規定されているとおりである。
【図面の簡単な説明】
【0080】
【図1】本発明の実施例によるプログラム可能なアンテナアレイを含む単純な模範的なマイクロ波画像生成システムの概略図である。
【図2】本発明の実施例による反射器アレイ内において使用する受動的アンテナ要素の断面図である。
【図3】本発明の実施例によるマイクロ波放射を反射する反射アンテナ要素を内蔵する模範的な反射器アレイの平面図の概略図である。
【図4A】反射器アレイをプログラムする送信及び受信位相シフトパターンの模範的な一部分である。
【図4B】反射器アレイをプログラムする送信及び受信位相シフトパターンの模範的な一部分である。
【図5】本発明の実施例による反射器アレイをプログラムする送信及び受信位相シフトパターンを直接インターリーブした模範的なインターリーブパターンを示している。
【図6】本発明の実施例によるプログラム可能なアンテナアレイを使用したマイクロ波源とマイクロ波受信機間におけるマイクロ波放射の反射を示す概略図である。
【図7A】本発明の実施例による反射器アレイをプログラムする送信及び受信位相シフトパターンの一部分を含む模範的なインターリーブパターンを示している。
【図7B】本発明の実施例による反射器アレイをプログラムする送信及び受信位相シフトパターンの一部分を含む模範的なインターリーブパターンを示している。
【図7C】本発明の実施例による反射器アレイをプログラムする送信及び受信位相シフトパターンの一部分を含む模範的なインターリーブパターンを示している。
【図8A】マイクロ波線と位相シフトされたマイクロ波線のフェーザー表現である。
【図8B】マイクロ波線と位相シフトされたマイクロ波線のフェーザー表現である。
【図9】本発明の実施例による反射器アレイをプログラムする送信及び受信位相シフトパターンの一部分を含む別の模範的なインターリーブパターンを示している。
【図10】マイクロ波源とマイクロ波受信機間における漏れマイクロ波放射を示す概略図である。
【図11A】
【図11B】位相シフトパターンの模範的な圧縮可能部分を示している。
【図12】本発明の実施例によるインターリーブされた送信/受信位相シフトパターンを使用してターゲットのマイクロ波画像を取得する模範的なプロセスを示すフローチャートである。
【符号の説明】
【0081】
10 マイクロ波画像生成システム
20 受信ビーム
40 マイクロ波受信機
50 反射器アレイ
70 送信ビーム
80 反射アンテナ要素
115a 第1パターン
115b 第2パターン
115c インターリーブパターン
150 物体
155 ターゲット
400 位相シフト
800 理想的な位相

【特許請求の範囲】
【請求項1】
物体のマイクロ波画像を取得するマイクロ波画像生成システムにおいて使用する反射器アレイであって、
それぞれがマイクロ波放射の第1ビームを第1ターゲットに向かって導くように第1パターンの個別の位相シフトをプログラム可能であり、且つ、それぞれがマイクロ波放射の第2ビームを第2ターゲットに向かって導くように第2パターンの個別の位相シフトをプログラム可能である複数の反射アンテナ要素を有し、
前記複数のアンテナ要素は、前記物体の前記マイクロ波画像を取得するべく、前記第1パターンの一部及び前記第2パターンの一部を含むインターリーブパターンで個別の位相シフトをプログラムされる、アレイ。
【請求項2】
前記インターリーブパターンは、前記第1パターンと前記第2パターンの直接インターリーブパターンである、請求項1記載のアレイ。
【請求項3】
前記第1ターゲットは、画像生成対象の前記物体と関連付けられているターゲットであり、前記第2ターゲットは、マイクロ波受信機であり、前記第1パターンは、前記マイクロ波放射の第1ビームを送信ビームとして前記ターゲットに向かって導く送信パターンであり、前記第2パターンは、前記ターゲットから反射された前記マイクロ波放射の第2ビームを受信ビームとして前記マイクロ波受信機に向かって反射する受信パターンであり、前記マイクロ波画像は、前記ターゲットのマイクロ波画像である、請求項1記載のアレイ。
【請求項4】
前記インターリーブパターン内の前記送信パターンの前記一部と前記受信パターンの前記一部は、それぞれ、前記物体の前記ターゲットにおける建設的な干渉の相応した減少を伴うことなしに、前記マイクロ波受信機における破壊的な干渉を増大させるべく選択されている、請求項3記載のアレイ。
【請求項5】
前記第1パターン及び前記第2パターンにおける前記複数のアンテナ要素のそれぞれの前記位相シフトは、理想的な位相に基づいて選択されており、前記インターリーブパターン内の前記第1パターンの前記一部と前記第2パターンの前記一部は、それぞれ、前記複数のアンテナ要素のそれぞれごとに、前記理想的な位相からの位相オフセットに基づいて量子化誤差を極小化するべく選択されている、請求項4記載のアレイ。
【請求項6】
前記インターリーブパターン内の前記第1パターンの前記一部と前記第2パターンの前記一部は、それぞれ、連続マイクロ波画像間における前記アレイ内の位相シフト変化の数を極小化するべく選択されている、請求項5記載のアレイ。
【請求項7】
前記インターリーブパターン内に含まれている前記第1パターンの前記一部と前記第2パターンの前記一部は、それぞれ、前記インターリーブパターンのデジタル圧縮と関連したメトリックを最適化するべく選択されている、請求項1記載のアレイ。
【請求項8】
ターゲットのマイクロ波画像を取得する方法であって、
複数の反射アンテナ要素を含むアレイを提供するステップと、
マイクロ波源からのマイクロ波放射のビームを前記ターゲットに向かって導くべく、前記反射アンテナ要素のそれぞれごとに、個別の位相シフトの送信パターンを設計するステップと、
前記ターゲットから反射されたマイクロ波放射の反射ビームをマイクロ波受信機に向かって反射するべく、前記反射アンテナ要素のそれぞれごとに、個別の位相シフトの受信パターンを設計するステップと、
前記送信パターンの一部と前記受信パターンの一部とを含むインターリーブパターンで個別の位相シフトを前記マイクロ波アンテナ要素のそれぞれにプログラムするステップと、
を含む方法。
【請求項9】
前記プログラムするステップは、前記送信パターンの前記一部と前記受信パターンの前記一部を前記インターリーブパターンで選択し、前記ターゲットにおける建設的な干渉の相応した減少を伴うことなしに、前記マイクロ波受信機における破壊的な干渉を増大させるステップを含んでいる、請求項8記載の方法。
【請求項10】
前記送信パターンを設計する前記ステップと、前記受信パターンを設計する前記ステップは、理想的な位相に基づいて、前記送信パターン及び前記受信パターンにおける前記複数のアンテナ要素のそれぞれの前記位相シフトを選択するステップを含んでおり、前記プログラムするステップは、前記複数のアンテナ要素のそれぞれごとに、前記理想的な位相からの位相オフセットに基づいて、量子化誤差を極小化するべく、前記送信パターンの前記一部と前記受信パターンの前記一部を前記インターリーブパターンで選択するステップを更に含んでいる、請求項8記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図7C】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11A】
image rotate

【図11B】
image rotate

【図12】
image rotate


【公開番号】特開2006−270955(P2006−270955A)
【公開日】平成18年10月5日(2006.10.5)
【国際特許分類】
【出願番号】特願2006−75793(P2006−75793)
【出願日】平成18年3月20日(2006.3.20)
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.フロッピー
【出願人】(399117121)アジレント・テクノロジーズ・インク (710)
【氏名又は名称原語表記】AGILENT TECHNOLOGIES, INC.
【住所又は居所原語表記】395 Page Mill Road Palo Alto,California U.S.A.
【Fターム(参考)】