説明

マイクロ科学装置の流体操作方法、及びマイクロ科学装置

【課題】複数の流体同士を、安定な多層流状態で合流させて均一に反応又は混合することができ、且つ装置の小型化や流量の広範囲化が可能となる。
【解決手段】
複数の流体を流体供給配管22、24から、マイクロ科学装置本体内に形成されたそれぞれの第1、第2液体供給流路18、20に供給して1本の反応流路28に多層状に合流させることにより、複数の流体を混合又は反応させるマイクロ科学装置の流体操作方法であって、それぞれの第1、第2液体供給流路18、20の少なくとも1つにおいて、第1、第2液体供給流路18、20を流れる流体の圧力損失を増加させてから反応流路28に合流させる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マイクロ科学装置の流体操作方法、及びマイクロ科学装置に係り、特に、層流を安定に形成させて複数種類の流体同士を反応又は混合させるマイクロ科学装置の流体操作方法、及びマイクロ科学装置に関する。
【背景技術】
【0002】
マイクロ空間内では単位体積あたりの表面積が大きくなる特徴から、反応流体の反応界面を多く形成でき、温度制御も容易にできるので、流体間の反応や混合の高効率化又は高速化ができる技術として注目されている。
【0003】
このようなマイクロ空間を利用したマイクロ科学装置において、反応や混合を均一且つ効率よく行うためには、反応流体同士を安定した多層流状態で合流させることが重要である。そして、均一な多層流の界面積や層厚みを精密に制御することにより、界面での分子拡散を制御しながら均一な反応を行うことができる。
【0004】
例えば、特許文献1では、内軸管と該内軸管の側面から導入する外軸管により形成される多重同軸ノズルを備えた反応器を用いて、ハロゲン化銀乳剤を製造する方法が提案されている。
【0005】
また、特許文献2では、円筒状の主流路の側壁から主流路に合流する導入流路を備えた流通型微小反応流路が提案されている。これら特許文献1、2によれば、反応流体を同芯円筒層流で合流させることができるとされている。
【特許文献1】特開平4−139440号公報
【特許文献2】特開2002−292274号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、多層流の界面を精密且つ安定に形成することは容易ではないという問題があった。即ち、ポンプの脈動による供給流体の脈動や、合流部までの流路長の差等により、液液界面での2液間の速度に分布ができる。更に、製作精度(加工、組立精度)の問題で、均一な同芯円を作ることが難しく、圧力が不均一になり易かった。
【0007】
また、上記特許文献1、2のような多重同軸ノズルを備えた反応器、特に外層流を内層流の流れに対して直交する方向から供給する装置において、安定な多層流を形成して、均一に反応又は混合させることが困難であった。また、供給流量の広範囲化や装置の小型化も困難であった。
【0008】
例えば、図9は、従来の円筒層流型反応装置1の構造を説明する軸線方向の断面図である。図9の円筒層流型反応装置1は、反応流体L1、L2を流体供給配管2、3から流体供給流路5、6にそれぞれ供給して反応流路7で合流させることにより、混合又は反応させて吐出口8から反応生成物を回収する装置である。この反応流体L1、L2を反応流路7において安定な層流で合流させるためには、反応流体L1、L2の流通状態を整える必要があり、反応流体L1、L2が合流する前までに、ある一定長さ以上の整流領域(流体供給流路6、流路長QL)を設ける必要があった。このため、装置の小型化が困難であるという問題があった。
【0009】
また、装置内で安定な層流を形成するためには、供給する流体の流量範囲も制限される場合が多かった。
【0010】
本発明はこのような事情に鑑みてなされたもので、複数の流体同士を安定な多層流状態で合流させて均一に反応又は混合することができ、且つ装置の小型化や流量の広範囲化が可能なマイクロ科学装置の流体操作方法及びマイクロ科学装置を提供することを目的とする。
【課題を解決するための手段】
【0011】
本発明の請求項1は前記目的を達成するために、複数の流体を流体供給配管から、マイクロ科学装置本体内に形成されたそれぞれの供給流路に供給して1本の混合・反応流路に多層状に合流させることにより、前記複数の流体を混合又は反応させるマイクロ科学装置の流体操作方法であって、前記それぞれの供給流路の少なくとも1つにおいて、該供給流路を流れる流体の圧力損失を増加させてから前記混合・反応流路に合流させることを特徴とするマイクロ科学装置の流体操作方法を提供する。
【0012】
請求項1によれば、各流体の圧力損失を増加させて早期に整流できるので、複数種類の流体を合流させる前の整流領域を短縮することができる。したがって、複数の流体を安定な多層流状態で合流させて均一に反応又は混合することができ、且つ装置の小型化や流量の広範囲化が可能となった。
【0013】
請求項2は請求項1において、前記マイクロ科学装置本体は、外郭を形成する円筒部内に、前記供給流路が同芯軸多層円筒構造に形成されていることを特徴とする。
【0014】
このように、同芯軸多層円筒層流を安定に形成する場合において、本発明が特に有効である。
【0015】
請求項3は請求項1又は2において、前記複数の流体を供給する流体供給配管のうちの少なくとも1つは、前記供給流路に対して平行でない方向から流体を供給することを特徴とする。
【0016】
このように、混合・反応流路に供給する流体の流れが乱れ易い構造において、本発明が特に有効である。また、請求項3において、「平行でない」とは、供給流路に対して0°を超える範囲であり、より好ましくは90°以上の範囲である。
【0017】
請求項4は請求項1〜3の何れか1において、前記複数の流体同士が合流する前の流路の断面積を縮小させることにより前記流体の圧力損失を増加させることを特徴とする。
【0018】
請求項4は、流体の圧力損失を増加させる具体的な方法について示したものである。請求項4において、「流路の断面積を縮小させる」とは、例えば、供給流路の壁面に設けられた邪魔板、流路内に固定されたハニカム構造体、多孔質構造体、流路内に充填されたビーズ、オリフィス等により、流体が流通する断面積を縮小することをいう。
【0019】
請求項5は請求項1〜4の何れか1において、前記流体の圧力損失を増加させた後、前記流体を整流することを特徴とする。
【0020】
圧力損失を増加させると僅かに流れがランダムになり、円周方向の速度ベクトル(例えば、渦流等)が生じることがある。しかし、整流構造を流路に長く形成するだけでは、上記の円周方向の速度ベクトルは消すことはできなかった。請求項5によれば、渦流等の円周方向の速度ベクトルを効率よく打ち消すことができる。したがって、複数の流体同士を安定な多層流状態で合流させて均一に反応又は混合することができ、且つ装置の小型化や流量の広範囲化が可能となる。ここで、整流構造の流れ方向長さは、圧力損失を増加させた後の流体の層厚みの1/10以上であることが好ましく、圧力損失を増加させた後の流体の層厚みの1倍以上であることがより好ましく、圧力損失を増加させた後の流体の層厚みの2倍以上であることが更に好ましい。
【0021】
本発明の請求項6は前記目的を達成するために、複数の流体を流体供給配管から、マイクロ科学装置本体内に形成されたそれぞれの供給流路に供給して1本の混合・反応流路に多層状に合流させることにより、前記複数の流体を混合又は反応させるマイクロ科学装置であって、前記それぞれの供給流路の少なくとも1つに、該供給流路の圧力損失を増加させるための圧力損失増加手段を備えたことを特徴とするマイクロ科学装置を提供する。
【0022】
請求項6によれば、複数の流体同士を、安定な多層流状態で合流させて均一に反応又は混合することができ、且つ装置の小型化や流量の広範囲化が可能となる。また、流路内において整流構造を長くしただけでは、渦流のような円周方向の速度ベクトルを消すことができなかったが、圧力損失増加手段を加えることで、これらの速度ベクトルを打ち消すことができる。ここで、圧力損失増加手段としては、流路断面積を縮小させる手段が挙げられ、例えば、供給流路の壁面に設けられた邪魔板、流路内に固定されたハニカム構造体、多孔質構造体、流路内に充填されたビーズ、オリフィス等が含まれる。また、混合・反応流路は、円相当直径が1mm以下であることが好ましい。
【0023】
請求項7は請求項6において、前記それぞれの供給流路の少なくとも1つにおいて、前記圧力損失増加手段の後段に、前記流体を整流するための整流手段を備えたことを特徴とする。
【0024】
請求項7によれば、整流手段により、圧力損失を増加させた後の流体の流れを流れ方向に揃えることができる。したがって、複数の流体同士を安定な多層流状態で合流させて均一に反応又は混合することができ、且つ装置の小型化や流量の広範囲化が可能となった。
【発明の効果】
【0025】
本発明によれば、複数の流体同士を、安定な多層流状態で合流させて均一に反応又は混合することができ、且つ装置の小型化や流量の広範囲化が可能となる。
【発明を実施するための最良の形態】
【0026】
以下、添付図面に従って、本発明に係るマイクロ科学装置の流体操作方法及びマイクロ科学装置の好ましい実施の形態について説明する。
【0027】
[第一実施形態]
図1は、本実施形態における同芯軸多層円筒層流型マイクロ科学装置10の構成の一例を説明する断面図である。このうち、図1(A)は、図1の同芯軸多層円筒層流型マイクロ科学装置10の軸方向の断面図であり、図1(B)は、図1(A)のA−A’線断面図である。以下、液体L1、L2間で反応生成物LMを生成する液液反応の例について説明するが、本発明はこれに限定されるものではない。また、本実施形態では、同芯軸多層円筒型のマイクロ科学装置において、1本の混合・反応流路が円管状に形成されている例について説明するが、これらに限定されるものではない。
【0028】
図1に示されるように、同芯軸多層円筒層流型マイクロ科学装置10は、全体として略円筒状に形成されており、主に、装置の外殻部を構成する円筒状の円管部12を備えている。
【0029】
円管部12の径方向断面の円相当直径Dは、1mm以下であることが好ましく、500μm以下であることがより好ましい。本実施形態では、同芯軸多層流路及び1本の混合・反応流路の断面形状が円形である例を示すが、これに限定されるものではなく、例えば、矩形、V字型等でもよい。
【0030】
円管部12の先端面には液体L1、L2が反応した後の反応生成液LMの吐出口14が開口している。
【0031】
円管部12内には、円管部12内の空間を軸方向に沿って区画する円筒状の隔壁部材16が円管部12と同軸的に設けられ、隔壁部材16の基端面が円管部12の基端部に固着されている。この隔壁部材16は、円管部12内の断面円の空間を同軸的に2分割するように区画されている。
【0032】
なお、図示しないが、円管部12の内周面と隔壁部材16の外周面との間に複数個のスペーサを介装してもよい。これにより、隔壁部材16が十分な強度で円管部12に連結固定され、液体L1、L2の液圧の影響により所定位置から変移したり、変形したりすることが防止される。
【0033】
隔壁部材16により区画された断面円及び断面円環状の空間は、軸心側から順に第1流体供給流路18、第2流体供給流路20とされる。また、円管部12の基端面には、それぞれの第1、2流体供給流路18、20に液体L1、L2を供給する流体供給配管22、24が接続される。
【0034】
ここで、第2流体供給流路20内には、液体L1と液体L2とを安定な同芯軸多層円筒層流を形成するために、液体L1、L2が合流する前の領域に圧力損失増加手段としての多孔質構造体26が設けられている。上記多孔質構造体26は、液体L1、L2が合流する前に、液体L1又はL2の圧力損失を増加させて整流させるものである。
【0035】
このような圧力損失増加手段としては、流路断面積を縮小させる構造体(以下、「流路断面積縮小構造体」という)が使用でき、この具体例として、上記の多孔質構造体26、ハニカム構造体、網目構造体、邪魔板、ビーズ充填、オリフィス等が使用できる。本実施形態では、流路断面積縮小構造体の一例として多孔質構造体26を用いることとする。
【0036】
圧力損失増加手段の第2流体供給流路20内への固定方法としては、第2流体供給流路20内に充填するだけの方法や、接着剤等で流路壁面に固定する方法、その他微細加工技術を用いて固定する方法がある。
【0037】
上記圧力損失は、圧力損失増加手段として邪魔板を使用する場合は、形状や大きさ、間隔、材質(濡れ性や表面粗さ等)等で調節することができる。また、ハニカム構造体を使用する場合は、材質、孔径、ハニカム密度等で調節することができる。また、多孔質構造体を使用する場合は、空隙率、充填体積等で調節することができる。また、ビーズを使用する場合は、ビーズの粒径、材質、充填量等で調節することができる。また、オリフィスを使用する場合は、孔径、材質、長さ等により調節することができる。また、圧力損失の増加量は、流体が流れる範囲であれば、任意に設定できる。
【0038】
また、圧力損失増加手段としての多孔質構造体26と合流領域との間の隔壁部材16(図1における領域R)は、第2流体供給流路20における整流手段として機能する。これにより、圧力損失を増加させた後の流れを、更に整流することができる。
【0039】
また、流体供給配管22、24を通して、第1、第2流体供給流路18、20には、マイクロ科学装置10の上流側に設置された2個の流体供給手段(図示せず)から加圧状態とされた液体L1、L2が供給される。
【0040】
また、円管部12内において、隔壁部材16よりも先端側には、第1、第2流体供給流路18、20からそれぞれ供給された液体L1、L2が合流し、反応流路28が形成される。
【0041】
図1(A)に示されるように、第1流体供給流路18及び第2流体供給流路20から反応流路28内へ開口する第1流体供給口30が形成される。これらの流体供給口30は、軸心Sを中心とする円軌跡に沿って断面円環状に開口し、互いに同心円状となるように配設されている。ここで、開口幅W1、W2は、それぞれ流体供給口30の開口面積を規定し、この流体供給口30の開口面積と液体L1、L2の供給量に応じて、流体供給口30を通して反応流路28内へ導入される液体L1、L2の初期流速が定まる。
【0042】
円管部12内における反応流路28よりも先端側の空間には、反応流路28内で液体L1、L2の反応が行われた反応生成液LMが、吐出口14に向かって流れる排出液路が形成される。ここで、反応生成液LMが液体L1、L2の反応により生成される場合には、反応流路28内の出口部で液体L1、L2の反応が完了している必要がある。従って、反応流路28の液体L1、L2の流通方向に沿った路長RL(図1参照)は、液体L1、L2の反応が完了する長さに設定する必要がある。尚、マイクロ科学装置10内には、常に、液体L1、L2及びこれらの反応された反応生成液LMが隙間なく充填され、吐出口14側へ流通しているものとする。
【0043】
マイクロ科学装置10を構成する部材の材質としては、加工性に優れ、強度が高く、腐食防止性があり、原料流体の流動性を高くするものが好ましい。例えば、金属(鉄、アルミ、ステンレス鋼、チタン、その他の各種金属)、樹脂(フッ素樹脂、アクリル樹脂等)、ガラス(石英等)、セラミックス(シリコン等)等が好ましく使用できる。
【0044】
マイクロ科学装置10を製作するには、微細加工技術が適用される。適用可能な微細加工技術としては、例えば、X線リソグラフィを用いるLIGA(Roentgen−Lithographie Galvanik Abformung)技術、EPON SU−8(商品名)を用いた高アスペクト比フォトリソグラフィ法、マイクロ放電加工法(μ−EDM(Micro Electro Discharge Machining))、Deep RIE(Reactive Ion Etching)によるシリコンの高アスペクト比加工法、Hot Emboss加工法、光造形法、レーザー加工法、イオンビーム加工法、及びダイアモンドのような硬い材料で作られたマイクロ工具を用いる機械的マイクロ切削加工法等がある。これらの技術を単独で用いてもよいし、組み合わせて用いてもよい。好ましい微細加工技術は、X線リソグラフィを用いるLIGA技術、EPON SU−8を用いた高アスペクト比フォトリソグラフィ法、マイクロ放電加工法(μ−EDM)、及び機械的マイクロ切削加工法である。
【0045】
要素間や部材間の接合方法は、高温加熱による材料の変質や変形による流路等の破壊を伴わず、寸法精度を保った精密な方法が望ましく、製作材料との関係から固相接合(例えば圧接接合や拡散接合等)や液相接合(例えば、溶接、共晶接合、はんだ付け、接着等)を選択することが好ましい。例えば、材料にシリコンを使用する場合にシリコン同士を接合するシリコン直接接合や、ガラス同士を接合する融接、シリコンとガラスを接合する陽極接合、金属同士を接合する拡散接合等が挙げられる。セラミックスの接合については、金属のようなメカニカルなシール技術以外の接合技術が必要であり、アルミナに対してglass solderなる接合剤をスクリーン印刷で、80μm程度の膜厚に印刷し、圧力をかけずに440〜500℃で熱処理する方法がある。また、新しい技術として、表面活性化接合、水素結合を用いた直接接合、HF(フッ化水素)水溶液を用いた接合等がある。
【0046】
本実施形態における流体供給手段としては、各種マイクロポンプ、無脈流プランジャーポンプ、シリンジポンプ等を好適に使用することができる。これらのポンプは、第1、第2流体供給流路18、20やこれに連通する流路内は全て液体L1、L2で満たされ、外部に用意した流体供給手段によって液体全体を駆動する方式であり、第1、第2流体供給流路18、20に供給する液体L1、L2の供給圧力、供給流量を、特に無脈流プランジャーポンプ、シリンジポンプの場合は無脈流にて安定に制御することができる。
【0047】
また、本実施形態に使用される流体としては、液体、気体、液固混相流体、気固混相流体等が挙げられる。
【0048】
次に、本実施形態のマイクロ科学装置10の作用について説明する。図2は、マイクロ科学装置10の反応流路28内の流体の径方向断面の状態を説明する摸式図である。
【0049】
先ず、流体供給配管22、24を通して、第1、第2流体供給流路18、20には、マイクロ科学装置10の上流側に設置された2個の流体供給源(図示せず)から加圧状態とされた液体L1及びL2が供給される。
【0050】
次いで、液体L1は第1流体供給流路18内を流れ、液体L2はその外周に形成された第2流体供給流路20内を流れる。このとき、液体L2は、第2流体供給流路20内に構築された多孔質構造体26内を流通することにより、一旦圧力損失が高められた後、反応流路28内に供給される。
【0051】
このとき、液体L1と液体L2とが合流する前に、液体L2の流動状態が整えられるので、図2に示されるように、軸心側から液体L1、L2が同芯軸多重円筒状に多層流を形成することができる。これにより、液体L1、L2を均一に拡散又は混合、反応させることができる。
【0052】
また、これにより、従来例の図9における流体供給流路5、6の流路長を短縮できるので、装置の小型化が可能となる。
【0053】
このように、本発明を適用することにより、複数の流体同士を安定な多層流状態で合流させて均一に反応又は混合することができ、且つ装置の小型化や流量の広範囲化が可能となる。
【0054】
また、本実施形態では、同芯軸多層円筒層流型マイクロ科学装置10において、2液を反応させる例について説明したが、2液以上の複数の流体を反応させる場合にも本発明を適用できる。
【0055】
また、多孔質構造体26の配置については、図1の様態に限られず、例えば、図3に示されるように、第2流体供給流路20のさらに上流側に配置してもよい。これにより、第2流体供給流路20の長さを更に短縮することができ、装置の更なる小型化が可能となる。
【0056】
また、圧力損失増加手段として多孔質構造体26の例で説明したが、上記の形態に限られることはなく、例えば、微小なビーズを第2流体供給流路20内に充填してもよい。
【0057】
次に、本実施形態における圧力損失増加手段の変形例について説明する。図4及び図5は圧力損失増加手段の別の態様を説明する断面図である。このうち、図4(A)は、軸線方向からの断面図であり、図4(B)はA−A’線断面図であり、図4(C)はB−B’線断面図である。
【0058】
図4に示されるように、合流領域の上流側の第2流体供給流路20の壁面(即ち、隔壁部材16の外周面と円管部12の内周面)に、複数の邪魔板32…が形成されてもよい。
【0059】
また、図5に示されるように、合流領域の上流側の第2流体供給流路20の一部分がオリフィス34になっていてもよい。
【0060】
なお、図3及び図4に示されるように、上記した多孔質構造体26、邪魔板32等の圧力増加損失手段と合流領域との間の隔壁部材16(図3及び図4における領域R)は、既述したのと同様に、第2流体供給流路20における整流手段として機能する。これにより、圧力損失を増加させた後の流れを、更に整流することができる。
【0061】
以上のように、曲がり流路を介して第2流体供給流路20内を流れる反応流体の圧力損失を即時に高め、反応流路28において複数の流体同士を安定な多層流状態で合流させることができる。
【0062】
したがって、複数の流体同士を安定な多層流状態で合流させて均一に反応又は混合することができ、且つ装置の小型化や流量の広範囲化が可能となる。また、高流量で流体を供給する場合でも、急激な流れ方向の変化による流速のばらつきを抑制し、安定に多層流を形成できる。
【0063】
[第二実施形態]
図6は、本発明のマイクロ科学装置の第二実施形態の斜視図であり、薄片状の多層流を形成する薄片状流型マイクロ科学装置50の一例である。尚、各図において、第一実施形態と同一の部材や機能を有するものは、同一の符号を付し、その詳細な説明は省略する。また、流体流路としては、流路幅が1mm以下の微細な流路の例で説明すると共に、流体としては、液液反応を行う2種類の液体L1、L2の例で以下に説明する。
【0064】
図6に示されるように、薄片状流型マイクロ科学装置50は、主として、流体流路52が内部に形成された薄片状の流体流路プレート56と、流体流路52に液体L1を供給する第1流体供給手段58と、流体流路52に液体L2を供給する第2流体供給手段60と、を備えている。
【0065】
図7は薄片状の流体流路プレート56の装置本体を説明する説明図である。図7(A)は上面図、図7(B)は図7(A)のA−A’線に沿った断面図である。
【0066】
図7に示されるように、流体流路プレート56は、本体部材62と蓋部材64とで構成され、本体部材62には2種類の液体L1、L2の液液反応を行う流体流路52と該流体流路52に液体L1、L2を合流させる2本の流体供給流路66、66とから成るY字型流体流路68が形成されている。また、流体流路52の終端位置には、液液反応による反応生成液LMを排出させる液体排出口70が形成される。一方、蓋部材64には2本の流体供給流路66、66に液体L1、L2を導入する2個の流体導入口72、72が形成され、2個の流体導入口72、72に液体L1、L2を供給する一対の流体供給手段58、60が2本の流体供給管74、74(図6参照)を介してそれぞれ接続される。
【0067】
流体流路52は、流路幅W3が1mm(1000μm)以下、好ましくは500μm以下、流路深さ1mm以下、好ましくは500μm以下のマイクロチャンネル状の微細な流路であることが好ましい。流体流路52は、径方向の断面形状が矩形のものが一般的であるが、これに限定されるものではなく、円形(半円含む)であってもよい。
【0068】
また、流体供給流路66、66を2本で構成する場合には、1本の流体供給流路66の流路幅W3は、流体流路52の半分になるように設計することが好ましい。例えば、径方向断面が四角形状の流体流路の幅を500μm、深さを200μmとした場合には、1本の流体供給流路66の幅を250μm、深さを200μmとする。また、流体流路の長さRL’(図7参照)は、液液反応が終了するに足る長さに設定され、液液反応の種類によって異なる。
【0069】
また、合流する前の第1、第2流体供給流路66、66に圧力損失増加手段としての多孔質構造体26が設けられている。このような圧力損失増加手段としては、第一実施形態と同様の流路断面積縮小構造体が使用できるが、本実施形態では、その一例として多孔質構造体26を第1、第2流体供給流路66、66内に設けた例を示す。
【0070】
薄片状の流体流路プレート56を構成する部材の材質や製造方法は、第一実施形態と同様である。
【0071】
また、以下に説明するY字型流路68において、特に本発明が有効である。
【0072】
図8は、本実施形態の薄片状の流体流路プレート56におけるY字型流路68の別態様を説明する上面図である。図8(A)は、第1、第2流体供給流路66、66の合流角αが90°の場合を示し、図8(B)は、第1、第2流体供給流路66、66の合流角αが180°の場合を示す。
【0073】
図8(A)に示されるように、混合及び反応する流体流路52に対して略直交する角度から合流する第2流体供給流路66内(液体L2側)に多孔質構造体26を充填させている。これと同様に、図8(B)に示されるように、第1、2流体供給流路66、66内に多孔質構造体26を充填させている。このように、流体供給流路の合流角αが0°を超える範囲、好ましくは90°以上の範囲において本発明が特に有効である。
【0074】
また、圧力損失増加手段としての多孔質構造体26と合流領域との間の隔壁部(図8における領域R)は、第1、第2流体供給流路66、66における整流手段として機能する。これにより、圧力損失を増加させた後の流れを、更に整流することができる。
【0075】
次に、本実施形態のマイクロ科学装置50の作用について説明する。
【0076】
先ず、流体供給配管74、74を通して、第1、第2流体供給流路66、66には、マイクロ科学装置50の上流側に設置された2個の流体供給手段58、60から加圧状態とされた液体L1及びL2が供給される。
【0077】
次いで、液体L1、L2はそれぞれ流体供給流路66、66内を流れる。このとき、液体L1、L2は、それぞれ第1、第2流体供給流路66、66内に構築された多孔質構造体26、26内を貫通し、圧力損失が高められて整流された後、Y字型流路68内に供給される。
【0078】
このとき、液体L1と液体L2とが合流する前に、迅速に流動状態が整えられるので、Y字型流路68において、液体L1、L2が安定な層流を形成することができる。これにより、液体L1、L2を均一に拡散又は混合、反応させることができる。また、第1、第2流体供給流路66、66の流路長QLを短縮することができる。
【0079】
このように、本発明を適用することにより、複数の流体同士を安定な多層流状態で合流させて均一に反応又は混合することができ、且つ装置の小型化や流量の広範囲化が可能となる。また、高流量で流体を供給する場合でも、急激な流れ方向の変化による流速のばらつきを抑制し、安定に多層流を形成できる。
【0080】
以上、本発明に係るマイクロ科学装置の流体操作方法、及びマイクロ科学装置の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、各種の態様が採り得る。
【0081】
第一実施形態では、第2流体供給流路内のみに多孔質構造体26を備えた例を示したが、第1流体供給流路18内にも多孔質構造体26を備えてもよい。これにより、より効率よく各流体を整流することができる。
【0082】
また、第一実施形態では、第2流体供給配管24のみが円管部12の側面から挿入された構成の例で説明したが、第1流体供給配管22も同様に円管部12の側面から挿入された構成であってもよい。このように、各流体供給配管が円管部12の軸方向に対して直交するような角度から挿入される場合、各流体供給配管内を流れる流体は、曲がり流路内を流通するため、反応流路28に供給するまでに整流させておくことが必要である。このような場合に、特に、本発明を適用することが有効である。
【0083】
本発明は、各種混合及び反応装置、各種分析装置等及びそれらの流体操作方法に適用可能である。例えば、各種塗料、インクジェット用インク、電子写真用トナー、カラーフィルタ等の顔料微粒子や磁性粒子等の微粒子を製造する微粒子製造装置及びその流体操作方法に適用可能である。
【図面の簡単な説明】
【0084】
【図1】第一実施形態における同芯軸多層円筒層流型マイクロ科学装置の断面図である。
【図2】第一実施形態における同芯軸多層円筒層流型マイクロ科学装置の作用を説明する断面図である。
【図3】第一実施形態における同芯軸多層円筒層流型マイクロ科学装置の変形例を説明する断面図である。
【図4】第一実施形態における同芯軸多層円筒層流型マイクロ科学装置の変形例を説明する断面図である。
【図5】第一実施形態における同芯軸多層円筒層流型マイクロ科学装置の変形例を説明する断面図である。
【図6】第二実施形態における薄片状流型マイクロ科学装置を説明する斜視図である。
【図7】第二実施形態における流路プレートの構成を説明する図である。
【図8】第二実施形態におけるY字型流路の別態様を説明する上面図である。
【図9】従来の円筒層流型マイクロ科学装置の構成を説明する断面図である。
【符号の説明】
【0085】
10…同芯軸多層円筒層流型マイクロ科学装置、12…円管部、14…吐出口、16…隔壁部材、18…第1流体供給流路、20…第2流体供給流路、22、24…流体供給配管、26…多孔質構造体、28…反応流路、30…流体供給口、32…邪魔板、34…オリフィス、50…薄片状流型マイクロ科学装置、52…流体流路、56…流体流路プレート、62…基板、64…蓋板、66…流体供給流路、68…Y字型流路、70…液体排出口、72…流体導入口

【特許請求の範囲】
【請求項1】
複数の流体を流体供給配管から、マイクロ科学装置本体内に形成されたそれぞれの供給流路に供給して1本の混合・反応流路に多層状に合流させることにより、前記複数の流体を混合又は反応させるマイクロ科学装置の流体操作方法であって、前記それぞれの供給流路の少なくとも1つにおいて、該供給流路を流れる流体の圧力損失を増加させてから前記混合・反応流路に合流させることを特徴とするマイクロ科学装置の流体操作方法。
【請求項2】
前記マイクロ科学装置本体は、外郭を形成する円筒部内に、前記供給流路が同芯軸多層円筒構造に形成されていることを特徴とする請求項1のマイクロ科学装置の流体操作方法。
【請求項3】
前記複数の流体を供給する流体供給配管のうちの少なくとも1つは、前記供給流路に対して平行でない方向から流体を供給することを特徴とする請求項1又は2のマイクロ科学装置の流体操作方法。
【請求項4】
前記複数の流体同士が合流する前の流路の断面積を縮小させることにより前記流体の圧力損失を増加させることを特徴とする請求項1〜3の何れか1のマイクロ科学装置の流体操作方法。
【請求項5】
前記流体の圧力損失を増加させた後、前記流体を整流することを特徴とする請求項1〜4の何れか1のマイクロ科学装置の流体操作方法。
【請求項6】
複数の流体を流体供給配管から、マイクロ科学装置本体内に形成されたそれぞれの供給流路に供給して1本の混合・反応流路に多層状に合流させることにより、前記複数の流体を混合又は反応させるマイクロ科学装置であって、
前記それぞれの供給流路の少なくとも1つに、該供給流路の圧力損失を増加させるための圧力損失増加手段を備えたことを特徴とするマイクロ科学装置。
【請求項7】
前記それぞれの供給流路の少なくとも1つにおいて、前記圧力損失増加手段の後段に、前記流体を整流するための整流手段を備えたことを特徴とする請求項6のマイクロ科学装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2007−268488(P2007−268488A)
【公開日】平成19年10月18日(2007.10.18)
【国際特許分類】
【出願番号】特願2006−100300(P2006−100300)
【出願日】平成18年3月31日(2006.3.31)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】