説明

マルチレートPON親局装置

【課題】マルチレートTDMA−PONシステムにおける親局装置を得ること。
【解決手段】伝送路から異なる伝送速度の信号が波長多重された上り光信号が入力された場合に、上り光信号を上り高速光信号と上り低速光信号に分離して出力し、一方、異なる伝送速度の下り光信号が入力された場合に、下り高速光信号と下り低速光信号とを合波して伝送路へ出力するフィルタ部10と、フィルタ部10から受信した上り高速光信号を電気信号に変換して出力し、また、電気信号を下り高速光信号に変換してフィルタ部10へ出力する10G光送受信部20と、フィルタ部10から受信した上り低速光信号を電気信号に変換して出力し、また、電気信号を下り低速光信号に変換してフィルタ部10へ出力する1G光送受信部50を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マルチレートTDMA−PON(Time Division Multiple Access−Passive Optical Network)システムにおける親局装置に関する。
【背景技術】
【0002】
近年、親局装置と複数の子局装置が、分岐装置(スプリッタ)を介して一芯の伝送路(光ファイバ)で接続されるPON(Passive Optical Network)システムの開発が行われている。現在、上り下りともに1Gbpsクラスの伝送速度でデ−タ通信を行う1G−PON(1gigabit−Passive Optical Network)システムが急速に普及しており、この普及を受けて、上り下りの伝送速度を10Gbpsクラスに高速化した10G−PON(10gigabit−Passive Optical Network)システムの検討が始められている。10G−PONシステムの普及はユ−ザごとの各PONシステムへの加入状況に依存するため、新たなPONシステムへの移行はユ−ザ単位で進行する。そのため、新たなPONシステムへの移行期では、1G−PONと10G−PONとの併用状況が発生する。
【0003】
1G−PONシステム、特に子局装置では、上り通信の光信号の光源として低コストで波長占有帯域の広いFP−LD(Fabry-Perot Laser Diode)が用いられている。そのため、PONシステムの移行期における1G−PONと10G−PONの混在PONシステムでは、1G子局装置と10G子局装置からの各上り信号の波長が重なる可能性が高い。そこで、下記特許文献1において、TDMA(Time Division Multiple Access)波長多重された1Gbpsクラスの光信号と10Gbpsクラスの光信号を一括で受信し、光信号受信後に1Gbpsクラスの信号と10Gbpsクラスの信号を分離する機能を有するマルチレート受信器が提案されている。
【0004】
【特許文献1】特開平08−008954号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、上記従来の技術によれば、従来の1G上り信号と10G上り信号の波長帯域が重なる混在PONシステムでは、1G上り信号と10G上り信号をTDMA方式で多重する必要がある。そのため、1G上り帯域と10G上り帯域の双方で帯域制限を受けてしまう、という問題点があった。
【0006】
また、上記従来の技術によれば、前記混在PONシステムでは、1G上り信号と10G上り信号をTDMA方式で多重する必要がある。すなわち、同一の制御部によって1G上り信号のタイムスロットと10G上り信号のタイムスロットを割り当てる必要があり、マルチレート用PONMACが必要となる。そのため、既に普及している1G−PONMACを使用できず敷設コストがかかる、という問題点があった。また、マルチレート用PONMACは、単一伝送レ−ト用のPONMACと比較して技術的難易度が高く開発費用が上昇する、という問題点があった。
【0007】
また、上記従来の技術によれば、前記混在PONシステムでは、受信器において同一受光素子で異なる伝送速度の信号を一括で受信する必要がある。そのため、単一伝送レ−ト用の受信器と比較して設計的難易度が高く開発費用が上昇する、という問題点があった。
【0008】
また、上記従来の技術によれば、前記混在PONシステムでは、親局装置としてマルチレート受信器が必要となる。そのため、既に普及している1G−PON親局装置を取り外し、マルチレート受信器を具備した親局装置へ置き換えるため敷設コストがかかる、という問題点があった。
【0009】
本発明は、上記に鑑みてなされたものであって、1G/10G混在のマルチレートPONシステムにおいて、上り信号の帯域制限を受けず、かつ、新規10G−PON親局装置の増設を容易にし、マルチレートTDMA−PONシステムから10G−PONシステム単体へのシステム移行も容易に実現可能なマルチレートPON親局装置を得ることを目的とする。
【課題を解決するための手段】
【0010】
上述した課題を解決し、目的を達成するために、本発明は、複数の子局装置と親局装置が分岐装置を介して一芯の伝送路である光ファイバで接続され、異なる伝送速度の上り光信号と異なる伝送速度の下り光信号がそれぞれ異なる波長帯域で波長多重されたマルチレートTDMA−PONシステム、における前記親局装置であって、前記伝送路から異なる伝送速度の信号が波長多重された上り光信号が入力された場合に、当該上り光信号を伝送速度が速い上り高速光信号と伝送速度が遅い上り低速光信号に分離して出力し、一方、異なる伝送速度の下り光信号が入力された場合に、伝送速度が速い方の光信号である下り高速光信号と伝送速度が遅い方の光信号である下り低速光信号とを合波して前記伝送路へ出力するフィルタ手段と、前記フィルタ手段から受信した上り高速光信号を電気信号に変換して出力し、また、電気信号を下り高速光信号に変換して前記フィルタ手段へ出力する高速光信号送受信手段と、前記フィルタ手段から受信した上り低速光信号を電気信号に変換して出力し、また、電気信号を下り低速光信号に変換して前記フィルタ手段へ出力する低速光信号送受信手段と、を備えることを特徴とする。
【発明の効果】
【0011】
この発明によれば、上り信号の帯域制限を受けず、かつ、新規10G−PON親局装置の増設を容易にできる、という効果を奏する。
【発明を実施するための最良の形態】
【0012】
以下に、本発明にかかるマルチレートPON親局装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
【0013】
実施の形態1.
本実施の形態のマルチレートPON親局装置(以下、親局装置とする)は、複数の子局装置と、分岐装置を介して一芯の伝送路である光ファイバで接続されており、異なる伝送速度の上り光信号と異なる伝送速度の下り光信号がそれぞれ異なる波長帯域で波長多重されたマルチレートTDMA−PONシステムを構成する。図1は、本実施の形態の親局装置の構成例を示す図である。親局装置は、フィルタ部10と、10G光送受信部20と、10G−PONMAC部30と、10G−L2スイッチ部40と、1G光送受信部50と、1G−PONMAC部60と、1G−L2スイッチ部70と、を備える。
【0014】
フィルタ部10は、受信した1G/10G上り信号を分岐し、また、1G下り信号と10G下り信号を合波して伝送路へ出力する。フィルタ部10は、1:2ポ−トのフィルタモジュール部11を備える。フィルタモジュール部11は、受信した1G/10G上り信号を分岐する。また、1G下り信号と10G下り信号を合波して伝送路へ出力する。詳細には、フィルタモジュール部11は、図2に示す波長帯域で透過を行う。図2は、1G上り下り信号と10G上り下り信号の波長配置と各フィルタの特性を示す図である。図2に示すように、フィルタモジュール部11は、1G上り信号と1G下り信号の帯域を一方のポートへ透過(出力)する特性を持つ。また、10G上り信号と10G下り信号の帯域を他方のポートへ透過(出力)する特性を持つ。なお、図2における、他の特性等については後述する。
【0015】
10G光送受信部20は、10G−PONシステムにおける光信号を送受信する。10G光送受信部20は、10G−BIDI(Bi Directional)部21と、送信部22と、受信部23と、BCDR(Burst Clock and Data Recovery)部24と、を備える。本実施の形態では、10G光モジュールとして、10G−BIDI部21を備える。10G−BIDI部21は、自装置から送信する信号を電気信号から光信号に変換して出力する。また、フィルタ部10からの光信号を受信し電気信号に変換する。10G−BIDI部21は、WDM(Wavelength Division Multiplexing)部211と、発光部212と、受光部213と、コネクタ部214と、を備える。WDM部211は、図2に示す波長帯域で透過および反射を行う。発光部212からの高い周波数帯の光信号をフィルタ部10へ透過し、フィルタ部10からの低い周波数帯の光信号を受光部213へ反射する。発光部212は、送信部22から電気信号を受信し、光信号に変換してフィルタ部10へ出力する。受光部213は、フィルタ部10からの光信号を受光し、電気信号に変換して受信部23へ出力する。コネクタ部214は、フィルタ部10からの光信号を10G−BIDI部21内部へ入力し、10G−BIDI部21内部からの光信号をフィルタ部10へ出力する有線(光ファイバ)との接合部である。送信部22は、10G−PONMAC部30からの電気信号に基づいて発光部212を駆動する送信処理を行う。受信部23は、受光部213からの電気信号に対して増幅処理を行う。BCDR部24は、バースト的に受信した電気信号からクロックとデータの分離をし、ビット同期を行う。
【0016】
10G−PONMAC部30は、10G−PONシステムにおける送受信を制御する。具体的には、送信時はTDMAにおける帯域の割り当てを行い、受信時は電気信号からデータを抽出し復調処理を行う。10G−L2スイッチ部40は、10G−PONシステムにおいて、インターネットやコンテンツを提供するサーバと送受信を行う。
【0017】
1G光送受信部50は、1G−PONシステムにおける光信号を送受信する。1G光送受信部50は、1G−BIDI部51と、送信部52と、受信部53と、BCDR部54と、を備える。本実施の形態では、1G光モジュールとして、1G−BIDI部51を備える。1G−BIDI部51は、自装置から送信する信号を電気信号から光信号に変換する。また、フィルタ部10からの光信号を受信し電気信号に変換する。1G−BIDI部51は、WDM部211と、発光部512と、受光部513と、コネクタ部514を備える。発光部512は、送信部52から電気信号を受信し、光信号に変換してフィルタ部10へ出力する。受光部513は、フィルタ部10からの光信号を受信し、電気信号に変換して送信部53へ出力する。コネクタ部514は、フィルタ部10からの光信号を1G−BIDI部51内部へ入力し、1G−BIDI部51内部からの光信号をフィルタ部10へ出力する有線(光ファイバ)との接合部である。送信部52は、1G−PONMAC部60からの電気信号に基づいて発光部512を駆動する送信処理を行う。受信部53は、受光部513からの電気信号に対して増幅処理を行う。BCDR部54は、バースト的に受信した電気信号からクロックとデータの分離をし、ビット同期を行う。
【0018】
1G−PONMAC部60は、1G−PONシステムにおける送受信を制御する。具体的には、送信時はTDMAにおける帯域の割り当てを行い、受信時は電気信号からデータを抽出し復調処理を行う。1G−L2スイッチ部70は、1G−PONシステムにおいて、インターネットやコンテンツを提供するサーバと送受信を行う。
【0019】
つぎに、本実施の形態で使用する各信号の波長帯域を説明する。図2に示すように、ここでは、10G上り信号には1260〜1275nm、1G上り信号には1285〜1360nm、1G下り信号には1480〜1500nm、10G下り信号には1574〜1580nm、を波長帯域として割り当てる。なお、本実施の形態において、Video信号は具体的な処理として扱わないが、後述する隣接信号(1G下り信号および10G下り信号)とのガイドバンドの関係から1550〜1560nmを波長帯域として割り当てる。
【0020】
本来、IEEE802.3−2005で規定されているGE−PON(Gigabit Ethernet(登録商標)−Passive Optical Network)では、上り信号として1260〜1360nm、下り信号として1480〜1500nmの波長帯域が割り当てられている。また、IEEE802.3av Draft2.0 PR30で規定されている10G−EPON(10Gigabit−Ethernet(登録商標) Passive Optical Network)では、上り信号として1260〜1280nm、下り信号として1574〜1580nmの波長帯域が割り当てられている。本実施の形態では、1G上り信号用の光源として短波長側(1260〜1385nm)を使用しない光源を用い、10G上り信号用の光源として長波長側(1275〜1380nm)を使用しない光源を用いることで、図2に示す波長配置を可能とする。なお、本波長配置は、1G−PONの代表例であるGE−PONと、10G−PONの代表例である10G−EPONの波長配置に基づいているが、一例であり、この波長帯域に限定するものではない。
【0021】
図2に示す特性を実現するため、たとえば、フィルタモジュール部11は、分岐/合波を行うガードバンドが1275〜1285nm間の10nmでアイソレーション40dB以上、ガードバンドが1500〜1550nm間の40nm程度でアイソレーション40dB以上のフィルタを用いる。また、WDM部211は、ガードバンドが1360〜1480nm間の40nm程度でアイソレーション40dB以上のフィルタを用いる。
【0022】
つづいて、親局装置における光信号の送受信処理について説明する。まず、親局装置が1G/10G混在の上り信号を受信した場合の受信処理について説明する。本実施の形態における1G/10Gの混在システムでは、1G上り信号と10G上り信号の波長が異なるため、各1G子局装置と各10G子局装置からの光信号は、各PONMAC部(1G−PONMAC部60,10G−PONMAC部30)によってタイムスロットが割り当てられ、TDMA多重されている。親局装置は、1G/10G間では非同期で波長多重された1G上り信号と10G上り信号を受信する。
【0023】
親局装置が10G上り信号を受信する場合、フィルタ部10のフィルタモジュール部11が10G上り信号を分岐し、10G光送受信部20の10G−BIDI部21へ出力する。10G−BIDI部21は、WDM部211によって、10G光信号を反射して受光部213(たとえば、APD:Avalanche Photo Diode)へ分配する。受光部213は、10G上り信号である光信号を受光し、光電変換して電気信号を受信部23へ出力する。その後、受信部23が電気信号を増幅処理し、BCDR部24がクロックとデータを分離してビット同期をしてから10G−PONMAC部30へ出力する。10G−PONMAC部30は、受信した上り信号からデータを抽出して復調するデータ処理を行う。10G−L2スイッチ部40は、復調したデータに付されているMACアドレスに基づいてインターネットやコンテンツを提供するサーバと送受信を行う。
【0024】
一方、親局装置が1G上り信号を受信する場合、フィルタ部10のフィルタモジュール部11が1G上り信号を分岐し、10G光送受信部20の10G−BIDI部21へ出力したポートと異なるポートから、1G光送受信部50の1G−BIDI部51へ出力する。1G−BIDI部51は、WDM部211によって、1G光信号を反射して受光部513(たとえば、APD)へ分配する。受光部513は、1G上り信号である光信号を受光し、光電変換して電気信号を受信部53へ出力する。その後、受信部53が電気信号を増幅処理し、BCDR部54がクロックとデータを分離してビット同期をしてから1G−PONMAC部60へ出力する。1G−PONMAC部60は、受信した上り信号からデータを抽出して復調するデータ処理を行う。1G−L2スイッチ部70は、復調したデータに付されているMACアドレスに基づいてインターネットやコンテンツを提供するサーバと送受信を行う。
【0025】
つぎに、親局装置が10G下り信号または1G下り信号を送信する場合の送信処理について説明する。親局装置が10G下り信号を送信する場合、10G−L2スイッチ部40は、インターネットやコンテンツを提供するサーバから10G下り信号が入力されると10G−PONMAC部30へ転送する。10G−PONMAC部30は、TDMAにおける帯域割り当てを行い、送信部22へ出力する。送信部22は、割り当てられた帯域に従って、10G−BIDI部21の発光部212(たとえば、EA/LD:Electro Absorption/Laser Diode)を駆動し、発光部212が10G下り信号である光信号を出力する。10G−BIDI部21のWDM部211は、発光部212からの10G下り光信号を透過して、フィルタ部10へ出力する。フィルタ部10のフィルタモジュール部11は、ここで、10G下り光信号と1G下り光信号を合波して伝送路へ出力する。
【0026】
一方、親局装置が1G下り信号を送信する場合、1G−L2スイッチ部70は、インターネットやコンテンツを提供するサーバから1G下り信号が入力されると1G−PONMAC部60へ転送する。1G−PONMAC部60は、TDMAにおける帯域割り当てを行い、送信部52へ出力する。送信部52は、割り当てられた帯域に従って、1G−BIDI部51の発光部512(たとえば、DFB−LD:Distributed Feed Back−Laser Diode)を駆動し、発光部512が1G下り信号である光信号を出力する。1G−BIDI部51のWDM部211は、発光部512からの1G下り光信号を透過して、フィルタ部10へ出力する。フィルタ部10のフィルタモジュール部11は、ここで、1G下り光信号と10G下り光信号を合波して伝送路へ出力する。
【0027】
以上説明したように、本実施の形態では、1G−PON用親局装置をそのまま使用しつつ、新たに波長分離/合波するフィルタ部と10G−PON用親局装置を適用することとした。これにより、1G/10G混在のマルチレートTDMA−PONシステムにおいて、1G/10Gそれぞれの上り信号に対して帯域が制限されない親局装置が可能となる。
【0028】
また、10G光モジュールおよび1G光モジュールとしてBIDIを適用し、フィルタ部としてバンドパスフィルタおよびバンドリジェクションフィルタの機能を有する1つのフィルタのみを適用することとした。これにより、低コスト化、省スペース化が可能となるうえ、ロスバジェットの厳しい10G上り下り信号に対して、フィルタ挿入による損失を最小とする親局装置の構成が可能となる。
【0029】
なお、L2スイッチ部を1G用と10G用で異なる構成としているがこれに限定するものではない。たとえば、1Gと10Gの処理が同時に可能な1つの1G/10G−L2スイッチ部を用いてもよい。図3は、親局装置の構成例を示す図である。10G−L2スイッチ部40と1G−L2スイッチ部70に代えて、1G/10G−L2スイッチ部80を備える点が図1の親局装置と異なる。1G/10G−L2スイッチ部80は、1G−PONシステムおよび10G−PONシステムの両方について、インターネットやコンテンツを提供するサーバと送受信を行う。1つのL2スイッチを使用することで、全体として簡易な構成が可能となる。なお、1G/10G−L2スイッチ部80を用いた場合の各PONシステムにおける送受信の処理は、上記で説明した処理と同様である。
【0030】
実施の形態2.
本実施の形態では、10G光モジュールとして、10G−TOSA部および10G−ROSA部を備える。実施の形態1と異なる部分について説明する。
【0031】
図4は、本実施の形態の親局装置の構成例を示す図である。親局装置は、フィルタ部10aと、10G光送受信部20aと、10G−PONMAC部30と、10G−L2スイッチ部40と、1G光送受信部50と、1G−PONMAC部60と、1G−L2スイッチ部70と、を備える。
【0032】
フィルタ部10aは、受信した1G/10G上り信号を分岐し、また、1G下り信号と10G下り信号を合波して伝送路へ出力する。フィルタ部10aは、1:2ポ−トのフィルタモジュール部12,13を備える。フィルタモジュール部12は、受信した1G/10G上り信号を分岐する。また、合波された1G/10G下り信号を伝送路へ出力する。フィルタモジュール部13は、1G上り信号を1G光送受信部50へ出力する。また、1G下り信号と10G下り信号を合波してフィルタモジュール部12へ出力する。詳細には、フィルタモジュール部12,13は、図5に示す波長帯域で透過を行う。図5は、1G上り下り信号と10G上り下り信号の波長配置と各フィルタの特性を示す図である。図5に示すように、フィルタモジュール部12は、10G上り信号の帯域を一方のポートへ透過(出力)し、10G上り信号以外の帯域を他方のポートへ透過(出力)する特性を持つ。フィルタモジュール部13は、10G下り信号の帯域を一方のポートへ透過(出力)し、10G下り信号の帯域を他方のポートへ透過(出力)する特性を持つ。
【0033】
図5に示す特性を実現するため、たとえば、フィルタモジュール部12は、分岐/合波を行うガードバンドが1260nmより短波長側の10nm程度でアイソレーション40dB以上、ガードバンドが1275〜1285nm間の10nmでアイソレーション40dB以上のフィルタを用いる。また、フィルタモジュール部13は、分岐/合波を行うガードバンドが1560〜1574nm間の10nmでアイソレーション40dB以上、ガードバンドが1580nmより長波長側の10nm程度でアイソレーション40dB以上のフィルタを用いる。
【0034】
10G光送受信部20aは、10G−PONシステムにおける光信号を送受信する。10G光送受信部20aは、10G−TOSA(Transmitter Optical Sub−Assembly)部25と、送信部22と、10G−ROSA(Receiver Optical Sub−Assembly)部26と、受信部23と、BCDR部24と、を備える。本実施の形態では、10G光モジュールとして、10G−TOSA部25と10G−ROSA部26を備える。10G−TOSA部25は、自装置から送信する信号を電気信号から光信号に変換して出力する。10G−TOSA部25は、発光部251と、コネクタ部252を備える。発光部251は、送信部22から電気信号を受信し、光信号に変換してフィルタ部10aへ出力する。コネクタ部252は、10G−TOSA部25内部からの光信号をフィルタ部10aへ出力する有線(光ファイバ)との接合部である。10G−ROSA部26は、フィルタ部10aからの光信号を受光し電気信号に変換する。10G−ROSA部26は、受光部261と、コネクタ部262を備える。受光部261は、フィルタ部10aからの光信号を受光し、電気信号に変換して受信部23へ出力する。コネクタ部262は、フィルタ部10aからの光信号を10G−ROSA部26内部へ入力する有線(光ファイバ)との接合部である。
【0035】
つづいて、親局装置における光信号の送受信処理について説明する。まず、親局装置が1G/10G混在の上り信号を受信した場合の受信処理について説明する。親局装置が10G上り信号を受信する場合、フィルタ部10aのフィルタモジュール部12が10G上り信号を分岐し、10G光送受信部20aの10G−ROSA部26へ出力する。10G−ROSA部26では、受光部261(たとえば、APD)が、10G上り信号である光信号を受光し、光電変換して電気信号を受信部23へ出力する。以降の処理は実施の形態1と同様である。
【0036】
一方、親局装置が1G上り信号を受信する場合、フィルタ部10aのフィルタモジュール部12が1G上り信号を分岐し、10G光送受信部20aの10G−ROSA部26へ出力したポートと異なるポートからフィルタモジュール部13へ出力する。さらに、フィルタモジュール部13が1G上り信号を分岐し、1G光送受信部50の1G−BIDI部51へ出力する。以降の処理は実施の形態1と同様である。
【0037】
つぎに、親局装置が10G下り信号または1G下り信号を送信する場合の送信処理について説明する。親局装置が10G下り信号を送信する場合、送信部22は、割り当てられた帯域に従って、10G−TOSA部25の発光部251(たとえば、EA/LD)を駆動し、発光部251が10G下り信号である光信号をフィルタ部10aへ出力する。フィルタ部10aのフィルタモジュール部13は、ここで、10G下り信号と1G下り信号を合波してフィルタモジュール部12へ出力する。フィルタモジュール部12は、合波された光信号を伝送路へ出力する。
【0038】
一方、1G下り信号を送信する場合、1G−BIDI部51のWDM部211は、発光部512からの1G下り信号である光信号を、フィルタ部10aへ出力する。フィルタ部10aのフィルタモジュール部13は、ここで、1G下り信号と10G下り信号を合波してフィルタモジュール部12へ出力する。フィルタモジュール部12は、合波された光信号を伝送路へ出力する。
【0039】
以上説明したように、本実施の形態では、1G−PON用親局装置をそのまま使用しつつ、新たに波長分離/合波するフィルタ部と10G−PON用親局装置を適用することとした。これにより、1G/10G混在のマルチレートTDMA−PONシステムにおいて、1G/10Gそれぞれの上り信号に対して帯域が制限されない親局装置が可能となる。
【0040】
また、10G光モジュールとしてTOSA/ROSAを適用し、1G光モジュールとしてBIDIを適用し、フィルタ部としてバンドパスフィルタおよびバンドリジェクションフィルタの機能を有する2つのフィルタを適用することとした。これにより、10G光送受信部を柔軟に構成することが可能となるうえ、ロスバジェットの厳しい10G上り信号に対して、最もフィルタ挿入による損失が少ないフィルタ構成を取ることが可能となる。
【0041】
実施の形態3.
本実施の形態では、フィルタ部として2つのWDM部を備える。実施の形態2と異なる部分について説明する。
【0042】
図6は、本実施の形態の親局装置の構成例を示す図である。親局装置は、フィルタ部10bと、10G光送受信部20aと、10G−PONMAC部30と、10G−L2スイッチ部40と、1G光送受信部50と、1G−PONMAC部60と、1G−L2スイッチ部70と、を備える。
【0043】
フィルタ部10bは、受信した1G/10G上り信号を分岐し、また、1G下り信号と10G下り信号を合波して伝送路へ出力する。フィルタ部10bは、1:2ポ−トのWDM部14,15を備える。WDM部14は、受信した1G/10G上り信号を分岐する。また、合波された1G/10G下り信号を伝送路へ出力する。WDM部15は、1G上り信号を1G光送受信部50へ出力する。また、1G下り信号と10G下り信号を合波してWDM部14へ出力する。詳細には、WDM部14,15は、図7に示す波長帯域で透過および反射を行う。図7は、1G上り下り信号と10G上り下り信号の波長配置と各フィルタの特性を示す図である。図7に示すように、WDM部14は、10G上り信号を反射させる特性を持つ。また、10G上り信号よりも大きい帯域の信号を透過させる特性を持つ。WDM部15は、10G下り信号を透過させる特性を持つ。また、10G下り信号よりも小さい帯域の信号を反射させる特性を持つ。
【0044】
図7に示す特性を実現するため、たとえば、WDM部14は、分岐/合波を行うガードバンドが1275〜1285nm間の10nmでアイソレーション40dB以上のフィルタを用いる。また、WDM部15は、分岐/合波を行うガードバンドが1560〜1574nm間の10nmでアイソレーション40dB以上のフィルタを用いる。
【0045】
つづいて、親局装置における光信号の送受信処理について説明する。まず、親局装置が1G/10G混在の上り信号を受信した場合の受信処理について説明する。親局装置が10G上り信号を受信する場合、フィルタ部10bのWDM部14が10G上り信号を反射して分岐し、10G光送受信部20aの10G−ROSA部26へ出力する。以降の処理は実施の形態2と同様である。
【0046】
一方、親局装置が1G上り信号を受信する場合、フィルタ部10bのWDM部14が1G上り信号を透過して分岐し、10G光送受信部20aの10G−ROSA部26へ出力したポートと異なるポートからWDM部15へ出力する。さらに、WDM部15が1G上り信号を反射して、1G光送受信部50の1G−BIDI部51へ出力する。以降の処理は実施の形態2と同様である。
【0047】
つぎに、親局装置が10G下り信号または1G下り信号を送信する場合の送信処理について説明する。親局装置が10G下り信号を送信する場合、送信部22は、割り当てられた帯域に従って、10G−TOSA部25の発光部251を駆動し、発光部251が10G下り信号である光信号をフィルタ部10bへ出力する。フィルタ部10bのWDM部15は、ここで、10G下り信号と1G下り信号を合波してWDM部14へ出力する。WDM部14は、合波された光信号を伝送路へ出力する。
【0048】
一方、1G下り信号を送信する場合、1G−BIDI部51のWDM部211は、発光部512からの1G下り信号である光信号を、フィルタ部10bへ出力する。フィルタ部10bのWDM部15は、ここで、1G下り信号と10G下り信号を合波してWDM部14へ出力する。WDM部14は、合波された光信号を伝送路へ出力する。
【0049】
以上説明したように、本実施の形態では、1G−PON用親局装置をそのまま使用しつつ、新たに波長分離/合波するフィルタ部と10G−PON用親局装置を適用することとした。これにより、1G/10G混在のマルチレートTDMA−PONシステムにおいて、1G/10Gそれぞれの上り信号に対して帯域が制限されない親局装置が可能となる。
【0050】
また、10G光モジュールとしてTOSA/ROSAを適用し、1G光モジュールとしてBIDIを適用し、フィルタ部としてWDMフィルタ2個を適用することとした。これにより、10G光送受信部を柔軟に構成することが可能となるうえ、ロスバジェットの厳しい10G上り信号に対して、最もフィルタ挿入による損失が少ないフィルタ構成を取ることが可能となる。
【0051】
実施の形態4.
本実施の形態では、1G光モジュールとして、1G−TOSA部および1G−ROSA部を備え、さらにフィルタ部として3つのWDM部を備えて、10G上り下り信号、1G上り下り信号、全ての光信号について異なるポートで入出力を行う。実施の形態3と異なる部分について説明する。
【0052】
図8は、本実施の形態の親局装置の構成例を示す図である。親局装置は、フィルタ部10cと、10G光送受信部20aと、10G−PONMAC部30と、10G−L2スイッチ部40と、1G光送受信部50aと、1G−PONMAC部60と、1G−L2スイッチ部70と、を備える。
【0053】
フィルタ部10cは、受信した1G/10G上り信号を分岐し、1G下り信号と10G下り信号を合波して伝送路へ出力する。フィルタ部10cは、WDM部14,15,211を備える。WDM部211は、1G上り信号を反射して1G−ROSA部56へ出力する。また、1G下り信号を透過してWDM部15へ出力する。各WDM部の特性は実施の形態3(図7参照)と同様である。
【0054】
1G光送受信部50aは、1G−PONシステムにおける光信号を送受信する。1G光送受信部50aは、1G−TOSA部55と、送信部52と、1G−ROSA部56と、受信部53と、BCDR部54と、を備える。本実施の形態では、1G光モジュールとして、1G−TOSA部55と1G−ROSA部56を備える。1G−TOSA部55は、自装置から送信する信号を電気信号から光信号に変換して出力する。1G−TOSA部55は、発光部551と、コネクタ部552を備える。発光部551は、送信部52から電気信号を受信し、光信号に変換してフィルタ部10cへ出力する。コネクタ部552は、1G−TOSA部55内部からの光信号をフィルタ部10cへ出力する有線(光ファイバ)との接合部である。1G−ROSA部56は、フィルタ部10cからの光信号を受光し電気信号に変換する。1G−ROSA部56は、受光部561と、コネクタ部562を備える。受光部561は、フィルタ部10cからの光信号を受光し、電気信号に変換して受信部53へ出力する。コネクタ部562は、フィルタ部10cからの光信号を1G−ROSA部56内部へ入力する有線(光ファイバ)との接合部である。
【0055】
つづいて、親局装置における光信号の送受信処理について説明する。まず、親局装置が1G/10G混在の上り信号を受信した場合の受信処理について説明する。親局装置が10G上り信号を受信する場合、フィルタ部10cのWDM部14が10G上り信号を反射して分岐し、10G光送受信部20aの10G−ROSA部26へ出力する。以降の処理は実施の形態3と同様である。
【0056】
一方、親局装置が1G上り信号を受信する場合、フィルタ部10cのWDM部14が1G上り信号を透過して分岐し、10G光送受信部20aの10G−ROSA部26へ出力したポートと異なるポートからWDM部15へ出力する。つぎに、WDM部15が1G上り信号を反射して、WDM部211へ出力する。さらに、WDM部211が1G上り信号を反射して、1G光送受信部50aの1G−ROSA部56へ出力する。1G−ROSA部56では、受光部561(たとえば、APD)が、1G上り信号を受光し、光電変換して電気信号を受信部53へ出力する。以降の処理は実施の形態3と同様である。
【0057】
つぎに、親局装置が10G下り信号または1G下り信号を送信する場合の送信処理について説明する。親局装置が10G下り信号を送信する場合、送信部22は、割り当てられた帯域に従って、10G−TOSA部25の発光部251を駆動し、発光部251が10G下り信号である光信号をフィルタ部10cへ出力する。フィルタ部10cのWDM部15は、ここで、10G下り信号と1G下り信号を合波してWDM部14へ出力する。WDM部14は、合波された光信号を伝送路へ出力する。
【0058】
一方、1G下り信号を送信する場合、送信部52は、割り当てられた帯域に従って、1G−TOSA部55の発光部551(たとえば、EA/LD)を駆動し、発光部551が1G下り信号である光信号をフィルタ部10cへ出力する。フィルタ部10cのWDM部211は、1G下り信号を透過してWDM部15へ出力する。WDM部15は、ここで、1G下り信号と10G下り信号を合波してWDM部14へ出力する。WDM部14は、合波された光信号を伝送路へ出力する。
【0059】
以上説明したように、本実施の形態では、1G−PON用親局装置をそのまま使用しつつ、新たに波長分離/合波するフィルタ部と10G−PON用親局装置を適用することとした。これにより、1G/10G混在のマルチレートTDMA−PONシステムにおいて、1G/10Gそれぞれの上り信号に対して帯域が制限されない親局装置が可能となる。
【0060】
また、10G光モジュールおよび1G光モジュールとしてTOSA/ROSAを適用し、フィルタ部としてWDMフィルタ3個を適用することとした。これにより、10G光送受信部および1G光送受信部、ともに柔軟に構成することが可能となるうえ、ロスバジェットの厳しい10G上り信号に対して、最もフィルタ挿入による損失が少ないフィルタ構成を取ることが可能となる。
【産業上の利用可能性】
【0061】
以上のように、本発明にかかるマルチレートPON親局装置は、PONシステムに有用であり、特に、1G/10Gの混在するPONシステムに適している。
【図面の簡単な説明】
【0062】
【図1】マルチレートPON親局装置の構成例を示す図である。
【図2】各信号の波長配置とフィルタの特性を示す図である。
【図3】マルチレートPON親局装置の構成例を示す図である。
【図4】マルチレートPON親局装置の構成例を示す図である。
【図5】各信号の波長配置とフィルタの特性を示す図である。
【図6】マルチレートPON親局装置の構成例を示す図である。
【図7】各信号の波長配置とフィルタの特性を示す図である。
【図8】マルチレートPON親局装置の構成例を示す図である。
【符号の説明】
【0063】
10,10a,10b,10c フィルタ部
11,12,13 フィルタモジュール部
14,15 WDM部
20,20a 10G光送受信部
21 10G−BIDI部
22 送信部
23 受信部
24 BCDR部
25 10G−TOSA部
26 10G−ROSA部
30 10G−PONMAC部
40 10G−L2スイッチ部
50,50a 1G光送受信部
51 1G−BIDI部
52 送信部
53 受信部
54 BCDR部
55 1G−TOSA部
56 1G−ROSA部
60 1G−PONMAC部
70 1G−L2スイッチ部
80 1G/10G−L2スイッチ部
211 WDM部
212,251,512,551 発光部
213,261,513,561 受光部
214,252,262,514,552,562 コネクタ部

【特許請求の範囲】
【請求項1】
複数の子局装置と親局装置が分岐装置を介して一芯の伝送路である光ファイバで接続され、異なる伝送速度の上り光信号と異なる伝送速度の下り光信号がそれぞれ異なる波長帯域で波長多重されたマルチレートTDMA−PONシステム、における前記親局装置であって、
前記伝送路から異なる伝送速度の信号が波長多重された上り光信号が入力された場合に、当該上り光信号を伝送速度が速い上り高速光信号と伝送速度が遅い上り低速光信号に分離して出力し、一方、異なる伝送速度の下り光信号が入力された場合に、伝送速度が速い方の光信号である下り高速光信号と伝送速度が遅い方の光信号である下り低速光信号とを合波して前記伝送路へ出力するフィルタ手段と、
前記フィルタ手段から受信した上り高速光信号を電気信号に変換して出力し、また、電気信号を下り高速光信号に変換して前記フィルタ手段へ出力する高速光信号送受信手段と、
前記フィルタ手段から受信した上り低速光信号を電気信号に変換して出力し、また、電気信号を下り低速光信号に変換して前記フィルタ手段へ出力する低速光信号送受信手段と、
を備えることを特徴とするマルチレートPON親局装置。
【請求項2】
前記高速光信号送受信手段は、高速用BIDI型光モジュールを備え、当該高速用BIDI型光モジュールを用いて、前記フィルタ手段から受信した上り高速光信号を電気信号に変換して出力し、また、電気信号を下り高速光信号に変換して前記フィルタ手段へ出力し、
前記低速光信号送受信手段は、低速用BIDI型光モジュールを備え、当該低速用BIDI型光モジュールを用いて、前記フィルタ手段から受信した上り低速光信号を電気信号に変換して出力し、また、電気信号を下り低速光信号に変換して前記フィルタ手段へ出力する、
ことを特徴とする請求項1に記載のマルチレートPON親局装置。
【請求項3】
前記フィルタ手段は、
前記上り高速光信号を前記高速光信号送受信手段内の高速用BIDI型光モジュールへ出力し、前記上り低速光信号を前記低速光信号送受信手段内の低速用BIDI型光モジュールへ出力し、
また、前記高速用BIDI型光モジュールからの下り高速光信号と前記低速用BIDI型光モジュールからの下り低速光信号とを合波して前記伝送路へ出力する、
ことを特徴とする請求項2に記載のマルチレートPON親局装置。
【請求項4】
前記高速光信号送受信手段は、高速用TOSA型光モジュールおよび高速用ROSA型光モジュールを備え、当該高速用TOSA型光モジュールを用いて電気信号を下り高速光信号に変換して前記フィルタ手段へ出力し、また、当該高速用ROSA型光モジュール手段を用いて前記フィルタ手段から受信した上り高速光信号を電気信号に変換して出力し、
前記低速光信号送受信手段は、低速用BIDI型光モジュールを備え、当該低速用BIDI型光モジュールを用いて、前記フィルタ手段から受信した上り低速光信号を電気信号に変換して出力し、また、電気信号を下り低速光信号に変換して前記フィルタ手段へ出力する、
ことを特徴とする請求項1に記載のマルチレートPON親局装置。
【請求項5】
前記フィルタ手段は、
前記上り高速光信号を前記高速光信号送受信手段内の高速用ROSA型光モジュールへ出力し、前記上り低速光信号を前記低速光信号送受信手段内の低速用BIDI型光モジュールへ出力し、
また、前記高速光信号送受信手段内の高速用TOSA型光モジュールからの下り高速光信号と前記低速用BIDI型光モジュールからの下り低速光信号とを合波して前記伝送路へ出力する、
ことを特徴とする請求項4に記載のマルチレートPON親局装置。
【請求項6】
前記高速光信号送受信手段は、高速用TOSA型光モジュールおよび高速用ROSA型光モジュールを備え、当該高速用TOSA型光モジュールを用いて電気信号を下り高速光信号に変換して前記フィルタ手段へ出力し、また、当該高速用ROSA型光モジュールを用いて前記フィルタ手段から受信した上り高速光信号を電気信号に変換して出力し、
前記低速光信号送受信手段は、低速用TOSA型光モジュールおよび低速用ROSA型光モジュールを備え、当該低速用TOSA型光モジュールを用いて電気信号を下り低速光信号に変換して前記フィルタ手段へ出力し、また、当該低速用ROSA型光モジュールを用いて前記フィルタ手段から受信した上り低速光信号を電気信号に変換して出力する、
ことを特徴とする請求項1に記載のマルチレートPON親局装置。
【請求項7】
前記フィルタ手段は、
前記上り高速光信号を前記高速光信号送受信手段内の高速用ROSA型光モジュールへ出力し、前記上り低速光信号を前記低速光信号送受信手段内の低速用ROSA型光モジュールへ出力し、
また、前記高速光信号送受信手段内の高速用TOSA型光モジュールからの下り高速光信号と前記低速光信号送受信手段内の低速用TOSA型光モジュールからの下り低速光信号とを合波して前記伝送路へ出力する、
ことを特徴とする請求項6に記載のマルチレートPON親局装置。
【請求項8】
前記フィルタ手段は、
複数のフィルタ構成を多段従属接続することによって所望の波長帯域の信号を合波または分離する場合、上り高速光信号、下り高速光信号、上り低速光信号および下り低速光信号のうちの最もロスバジェットの厳しい光信号に対して、最もロスの小さな多段従属接続のフィルタ構成を適用することを特徴とする請求項4〜7のいずれか1つに記載のマルチレートPON親局装置。
【請求項9】
さらに、
サービスを提供するサーバと通信を行う高速用中継処理手段と、
前記高速光信号送受信手段から電気信号が入力された場合に、データ復号処理を実行して前記高速用中継処理手段へ出力し、また、前記高速用中継処理手段から電気信号が入力された場合に、下り高速光信号を送信する波長帯域において帯域の割り当てを実行して前記高速光信号送受信手段へ出力する高速光信号制御手段と、
サービスを提供するサーバと通信を行う低速用中継処理手段と、
前記低速光信号送受信手段から電気信号が入力された場合に、データ復号処理を実行して前記低速用中継処理手段へ出力し、また、前記低速用中継処理手段から電気信号が入力された場合に、下り低速光信号を送信する波長帯域において帯域の割り当てを実行して前記低速光信号送受信手段へ出力する低速光信号制御手段と、
を備えることを特徴とする請求項1〜8のいずれか1つに記載のマルチレートPON親局装置。
【請求項10】
さらに、
サービスを提供するサーバと通信を行う中継処理手段と、
前記高速光信号送受信手段から電気信号が入力された場合にデータ復号処理を実行して前記中継処理手段へ出力し、また、前記中継処理手段から電気信号が入力された場合に下り高速光信号を送信する波長帯域において帯域の割り当てを実行して前記高速光信号送受信手段へ出力する高速光信号制御手段と、
前記低速光信号送受信手段から電気信号が入力された場合にデータ復号処理を実行して前記中継処理手段へ出力し、また、前記中継処理手段から電気信号が入力された場合に下り低速光信号を送信する波長帯域において帯域の割り当てを実行して前記低速光信号送受信手段へ出力する低速光信号制御手段と、
を備えることを特徴とする請求項1〜8のいずれか1つに記載のマルチレートPON親局装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2010−161568(P2010−161568A)
【公開日】平成22年7月22日(2010.7.22)
【国際特許分類】
【出願番号】特願2009−1784(P2009−1784)
【出願日】平成21年1月7日(2009.1.7)
【出願人】(000006013)三菱電機株式会社 (33,312)
【Fターム(参考)】