説明

リチウム電池

【課題】固体電解質を用いながらも、高容量で生産性に優れるリチウム電池およびその製造方法を提供する。
【解決手段】正極層13と、負極層14と、これら両層13,14の間に介在される硫化物固体電解質層(SE層15)とを基板(正極集電体層11)上に具えるリチウム電池である。このリチウム電池1は、正極層13が、気相堆積法により形成されており、正極層13と硫化物固体電解質層15との間に、これら両層13,15の界面近傍におけるリチウムイオンの偏りを緩衝する緩衝層16を備える。緩衝層16は、ArのプラズマまたはArと酸素の混合プラズマを利用した気相堆積法により成膜されることでArを0.1〜5mol%含有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、固体電解質層を備えるリチウム電池に関するものである。
【背景技術】
【0002】
携帯機器といった比較的小型の電気機器の電源に、リチウムイオン二次電池(以下、単にリチウム電池と呼ぶ)が利用されている。リチウム電池は、正極層と負極層と、これら層の間でリチウムイオンの伝導を媒介する電解質層とを備える。
【0003】
近年、このリチウム電池として、正・負極間のリチウムの伝導に有機電解液を用いない全固体型リチウム電池が提案されている。全固体型リチウム電池は、電解質層として固体電解質層を使用しており、有機溶媒系の電解液を用いることに伴う不都合、例えば、電解液の漏れによる安全性の問題、高温時に有機電解液がその沸点を超えて揮発することによる耐熱性の問題などを解消することができる。この固体電解質層には、リチウムイオン伝導性が高く、絶縁性に優れる硫化物系の物質が広く利用されている。
【0004】
上述した利点を有する一方で、固体電解質層を用いた全固体型リチウム電池は、有機電解液を使用したリチウム電池と比較して、容量が低い(即ち、出力特性が悪い)という問題を有していた。このような問題点の原因は、リチウムイオンが、固体電解質層の硫化物イオンよりも正極層の酸化物イオンに引き寄せられ易いため、硫化物固体電解質の正極層側領域に、リチウムイオンが欠乏した層(空乏層)が形成されるためである(非特許文献1を参照)。この空乏層は、リチウムイオンが欠乏しているために電気抵抗値が高く、電池の容量を低下させる。
【0005】
このような問題点を解決する技術として、非特許文献1では、正極活物質の表面にリチウムイオン伝導性の酸化物をコーティングしている。このコーティングにより、リチウムイオンの移動が制限され、硫化物固体電解質層において空乏層が形成されることを抑制し、その結果、リチウム電池の出力特性の向上を実現している。
【0006】
【非特許文献1】Advanced Materials 2006.18,2226-2229
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかし、上記非特許文献1のリチウム電池は、生産性が悪いため、近年の携帯機器の発達に伴うリチウム電池の需要拡大に対して不利である。具体的には、この文献では、静電噴霧法により活物質表面にコーティングを形成しているが、この静電噴霧法によるコートは、技術的に難しく、また煩雑である。つまり、この文献に記載されるリチウム電池は、生産コストが高く、生産効率も悪いので、リチウム電池の需要拡大の要請に応えることが難しい。
【0008】
さらに、近年では、携帯機器に使用されるリチウム電池のさらなる薄型化が求められているが、上記非特許文献1のリチウム電池では、容量を維持したまま薄型化することが難しいという問題もある。具体的には、上記非特許文献1のリチウム電池では、正極活物質の表面に形成されるコーティングの分だけ正極層に占める正極活物質の量が減少する。また、この文献のリチウム電池では、表面にコーティングを施した粉末状の正極活物質で正極層を形成しており、正極層に活物質同士をつなぐ結着材を含有させていると考えられ、結着材の分も、正極層に占める活物質の量が減少する。つまり、この文献のリチウム電池は、容量を維持しようとすると、正極層の厚さを厚くしなければならない。
【0009】
本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、固体電解質を用いながらも、高容量で生産性に優れるリチウム電池を提供することにある。また、本発明の目的の一つは、容量を維持しつつ、薄型化することができるリチウム電池を提供することにある。
【課題を解決するための手段】
【0010】
本発明リチウム電池は、正極層と、負極層と、これら両層の間でリチウムイオンの伝導を媒介する硫化物固体電解質層とを基板上に具える。そして、この電池は、正極層が、気相堆積法により形成されており、正極層と硫化物固体電解質層との間に、これら両層の界面近傍におけるリチウムイオンの偏りを緩衝する緩衝層を備え、この緩衝層にArが0.1〜5mol%含有されていることを特徴とする。
【0011】
正極層と硫化物固体電解質層との間に緩衝層を設けることにより、硫化物固体電解質層における空乏層の形成を抑制することができるので、有機電解液を使用した従来のリチウム電池に匹敵する容量を備えるリチウム電池とすることができる。また、緩衝層にArが所定量含有されていることにより、緩衝層の電子伝導度を低下させることができる。さらに、緩衝層にArが所定量含有されていることにより、緩衝層のリチウムイオン伝導性が向上する効果もある。
【0012】
ここで、本発明のリチウム電池は、緩衝層の分だけ従来の全固体型リチウム電池よりも厚くなるが、本発明のリチウム電池と同量の活物質を用意して、その表面にコーティングを施して作製した非特許文献1の電池よりもはるかに厚さを薄くすることができる。さらに、本発明リチウム電池は、正極層に結着材を含まないので、正極層に占める正極活物質の量を多くすることができるので、所定の容量を確保しつつ、薄型のリチウム電池とすることができる。
【0013】
また、本発明のリチウム電池の製造方法は、正極層と、負極層と、これら両層の間でリチウムイオンの伝導を媒介する硫化物固体電解質層とを基板上に具えるリチウム電池の製造方法であって、気相堆積法により、前記正極層を形成する工程と、前記正極層の上に、正極層と固体電解質層との間の界面近傍におけるリチウムイオンの偏りを緩衝する緩衝層を形成する工程とを備える。そして、前記緩衝層の形成に、ArのプラズマあるいはArと酸素との混合プラズマを利用した気相堆積法を使用して、緩衝層に0.1〜5mol%のArを含有させることを特徴とする。
【0014】
緩衝層を形成する方法としては、ArのプラズマあるいはArと酸素との混合プラズマを利用する気相堆積法であれば良く、例えば、RFスパッタリングなどの物理的蒸着法や、ECRプラズマCVDなどの化学的蒸着法などを利用することができる。緩衝層に含有させるArの濃度を調節するには、後述する実施の形態に記載のように、成膜装置に供給する電力や、成膜室に導入するArの雰囲気圧力などを変化させれば良い。このような気相堆積法は、活物質表面にコーティングを施すよりもはるかに簡単に行なうことができるため、リチウム電池を生産性よく製造することができる。
【0015】
本発明のリチウム電池に備わる緩衝層としては、リチウムイオン伝導性酸化物が好適である。リチウムイオン伝導性の化合物としては、酸化物と硫化物とが一般的であるが、緩衝層を硫化物から製造すると、緩衝層における正極層側に空乏層が生じる虞がある。そのため、緩衝層として、酸化物を選択することが好ましい。
【0016】
また、リチウムイオン伝導性酸化物としては、LixLa(2-x)/3TiO3(x=0.1〜0.5)、Li4Ti5O12、Li3.6Si0.6P0.4O4、Li1.3Al0.3Ti1.7(PO4)3、Li1.8Cr0.8Ti1.2(PO4)3、LiNbO3、LiTaO3、Li1.4In0.4Ti1.6(PO4)3などを挙げることができる。緩衝層を構成するこれらの化合物は、正極層中に拡散していることが好ましい。上記化合物が正極層に拡散していると、正極層における電荷の偏りが緩衝され空乏層の形成が抑制されると共に、正極層と緩衝層との密着性が向上する。なお、これらの化合物は、単独あるいは組み合わせて利用することができる。
【0017】
上記酸化物のうち、LixLa(2-x)/3TiO3(x=0.1〜0.5)は、リチウムイオンの伝導度が高いため、緩衝層として採用したときに、容量の大きなリチウム電池とすることができる。また、緩衝層としてLiNbO3を採用することも、リチウム電池の容量を向上させる効果を奏する。ここで、緩衝層がLiNbO3を含有する場合は、正極層における緩衝層との界面から厚さ25nmの点での緩衝層から拡散したNbの濃度が1×10-3原子%(10ppm)以上25原子%以下であることが好ましい。上記のような拡散状態であれば、正極層における空乏層の形成が効果的に抑制されると共に、緩衝層と正極層との密着性が高い。
【0018】
また、上記酸化物のなかには、結晶状態よりもアモルファス状態のときにリチウムイオン伝導性が良くなるものが存在する。例えば、LixLa(2-x)/3TiO3、LiNbO3、LiTaO3などは、アモルファス状態で高いリチウムイオン伝導性を示す。特に、LixLa(2-x)/3TiO3は、結晶状態およびアモルファス状態の両方で、高いリチウムイオン伝導性を示す。緩衝層がアモルファス状態であることを示す指標としては、X線回折を利用したものが挙げられる。例えば、LiNbO3を含む緩衝層がアモルファス状態であることを具体的に示す指標としては、緩衝層のX線回折において、2θが22〜25°の範囲で半値幅が5°以下のピークが存在しないことが代表的である。
【0019】
上記緩衝層の厚さは、1μm以下とすることが好ましい。ここで、緩衝層にリチウムイオン伝導性があるとはいえ、リチウムイオンの輸送に特化した固体電解質層に比べて緩衝層のリチウムイオン伝導度は低い。そのため、緩衝層厚さが1μm超の場合、この緩衝層によりリチウムイオンの移動が阻害されるので、好ましくない。また、薄型でありながら、用途に応じた容量を有する電池を製造するために、正極層の厚さをできるだけ大きくしたいというニーズがあり、この観点からも緩衝層厚さは、1μm以下とすることが好ましい。一方で、緩衝層厚さが、薄すぎると、固体電解質層における電荷の偏りを抑制する効果が小さくなるので、緩衝層厚さは、2nm以上とすることが好ましい。
【0020】
また、緩衝層は、その電子伝導度が1×10-5S/cm以下であることが好ましい。緩衝層の電子伝導度が高いと、この層において分極が生じて空乏層が形成される虞がある。
【0021】
その他、正極層を構成する化合物の結晶配向性を規定することで、正極/緩衝層/固体電解質層の間のリチウムイオン伝導性を向上させ、空乏層の形成を抑制することができる。具体的には、正極層におけるab軸配向がc軸配向よりも強くなるようにする。例えば、正極層に含有される正極活物質が、結晶化したときに層状岩塩型構造をとる化合物、例えば、LiCoO2、LiNiO2、LiNi0.5Mn0.5O2などである場合、(101)配向が強い結晶構造とすることで、上記層間のリチウムイオン伝導性を向上させることができる。より具体的な指標としては、正極層の面指数の比が、(003)/(101)<10を満たすようにすることが挙げられる。
【発明の効果】
【0022】
本発明リチウム電池は、正極層と固体電解質層との間に配置される緩衝層により、固体電解質層における空乏層の形成を抑制することができる。その結果、本発明リチウム電池は、従来の全固体型電池よりも容量が高く、有機電解液を使用した従来の電池に匹敵する容量の電池とすることができる。また、本発明リチウム電池は、製造が容易で生産性に優れると共に、上記非特許文献1の電池よりも電池の厚さを薄くすることができる。さらに、緩衝層にArを所定量含有させることで、緩衝層の電子伝導度を下げ、リチウムイオン伝導性を向上させることができるので、電池特性に優れたリチウム電池とすることができる。
【発明を実施するための最良の形態】
【0023】
以下、本発明の実施形態を図に基づいて説明する。
【0024】
本発明リチウム電池は、一般的なリチウム電池に備わる正極集電体層、正極層、固体電解質層、負極層、負極集電体層に加えて、さらに正極層と固体電解質層との間に配置される緩衝層を備える。これらの層を備えるリチウム電池は、各層の配置状態により大別して3つの構成に分けられる。具体的には、リチウム電池を平面視したときに、[1]正極層と負極層の一方が、他方に完全に重なる完全積層構造、[2]正極層と負極層の一部が互いに重なる部分積層構造、[3]正極層と負極層とが互いに全く重ならない非積層構造、の3つである。以下、完全積層構造を例に本発明の実施形態を説明すると共に、電池に備わる各層の構成についても詳細に説明する。
【0025】
≪全体構成≫
図1は、本実施の形態におけるリチウム電池の縦断面図である。このリチウム電池1は、正極集電体層11の上に、正極層13、緩衝層16、固体電解質層(SE層)15、負極層14、負極集電体層12の順に積層された構成を有している。
【0026】
≪各構成部材≫
(正極集電体層)
正極集電体層11は、所定の厚さを有する金属製の薄板であり、後述する各層を支持する基板の役割を兼ねている。正極集電体層11としては、アルミニウム(Al)、ニッケル(Ni)、これらの合金、ステンレスから選択される1種が好適に利用できる。金属膜からなる集電体11は、PVD法(物理的蒸着法)やCVD法(化学的蒸着法)により形成することができる。特に、所定のパターンに金属膜(集電体)を形成する場合、適宜なマスクを用いることで、容易に所定のパターンの集電体を形成することができる。その他、金属箔を絶縁性の基板に圧着することで、正極集電体層を形成しても良い。
【0027】
(正極層)
正極層13は、リチウムイオンの吸蔵及び放出を行う活物質を含む層である。特に、酸化物、例えばコバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)、オリビン型鉄リン酸リチウム(LiFePO4)またはLiNi0.5Mn0.5O2、若しくはこれらの混合物を好適に使用することができる。これらの化合物を含む正極層は、その結晶構造を規定することで、リチウムイオン伝導性を向上させることができる。例えば、正極層の活物質として層状岩塩型構造をとる化合物(例えば、LiCoO2、LiNiO2、LiNi0.5Mn0.5O2)を採用する場合、当該正極層の面指数の比を(003)/(101)<10とすることが好ましい。
【0028】
また、正極層13には、後述する緩衝層16に含まれる化合物が拡散していることが好ましい。例えば、正極層13のうち、緩衝層16との界面から所定の厚さにおける化合物の濃度を測定すると、緩衝層16から正極層13への前記化合物の拡散の度合いを特定することができる。拡散の度合いを特定する具体的な数値については緩衝層の項目で述べる。
【0029】
正極層13は、さらに導電助剤を含んでいても良い。導電助剤としては、例えば、アセチレンブラックといったカーボンブラック、天然黒鉛、熱膨張黒鉛、炭素繊維、酸化ルテニウム、酸化チタン、アルミニウムやニッケルなどの金属繊維からなるものが利用できる。特に、カーボンブラックは、少量で高い導電性を確保できて好ましい。
【0030】
上述した正極層13の形成方法としては、PVD法やCVD法などの気相堆積法を使用できる。例えば、蒸着法、イオンプレーティング法、スパッタリング法、レーザーアブレーション法等を使用できる。本発明のリチウム電池は、上述した非特許文献1のように、粉末状の活物質を固めて正極層を形成する方法、例えば、塗布法などを使用して形成しない。従って、正極層には、結着材が含まれないので、正極層に種々の用途に使用可能な量の正極活物質を含ませても、正極層の厚さを薄くすることができる。
【0031】
(負極集電体層)
負極集電体層12は、負極層14の上に形成される金属膜である。負極集電体層12としては、銅(Cu)、ニッケル(Ni)、鉄(Fe)、クロム(Cr)、及びこれらの合金から選択される1種が好適に利用できる。なお、負極集電体層12も、正極集電体層11の場合と同様に、PVD法やCVD法で形成することができる。
【0032】
(負極層)
負極層14は、リチウムイオンの吸蔵及び放出を行う活物質を含む層で構成する。例えば、負極層14として、Li金属及びLi金属と合金を形成することのできる金属よりなる群より選ばれる1つ、若しくはこれらの混合物又は合金が好適に使用できる。Liと合金を形成することのできる金属としては、アルミニウム(Al)、シリコン(Si)、錫(Sn)、ビスマス(Bi)、及びインジウム(In)よりなる群より選ばれる少なくとも一つ(以下、合金化材料という)が良い。
【0033】
このような元素を含有した負極層は、負極層自体に集電体としての機能を持たせることができ、かつリチウムイオンの吸蔵・放出能力が高く好ましい。特に、シリコン(Si)はリチウムを吸蔵・放出する能力がグラファイト(黒鉛)よりも大きく、電池のエネルギー密度を高くすることができる。
【0034】
上述した負極層14の形成方法は、気相堆積法が好ましい。その他、金属箔をSE層の上に重ねて、プレスあるいは電気化学的手法によりSE層上に密着させ、負極層を形成しても良い。
【0035】
(固体電解質層)
固体電解質層(SE層)15は、硫化物で構成されるリチウムイオン伝導体である。このSE層15は、リチウムイオン伝導度(20℃)が10-5S/cm以上あり、かつLiイオン輸率が0.999以上であることが好ましい。特に、リチウムイオン伝導度が10-4S/cm以上あり、かつリチウムイオン輸率が0.9999以上であれば良い。また、SE層15は、電子伝導度が10-8S/cm以下であることが好ましい。SE層15の材質としては、硫化物、例えば、Li、P、S、OからなるLi-P-S-Oや、Li2SとP2S5とからなるLi-P-Sのアモルファス膜あるいは多結晶膜などで構成することが好ましい。特に、Li2SとP2S5とからなるLi-P-Sで構成したSE層とすると、このSE層と負活物質層との間の界面抵抗値を低下させることができ、その結果、電池の性能を向上させることができる。
【0036】
SE層15の形成方法としては、固相法や気相堆積法を使用することができる。固相法としては、例えば、メカニカルミリング法を使用して原料粉末を作製し、この原料粉末を焼結して形成することが挙げられる。一方、気相堆積法としては、例えば、PVD法、CVD法が挙げられる。具体的には、PVD法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、レーザアブレーション法が、CVD法としては、熱CVD法、プラズマCVD法などが挙げられる。気相堆積法によりSE層を形成した場合、固相法によりSE層を形成した場合よりも、SE層の厚さを薄くすることができる。
【0037】
(緩衝層)
緩衝層16は、上記SE層15から正極層13にリチウムイオンが大量に移動することを防止して、SE層15と正極層13との界面において電荷の偏りを緩衝し、この界面近傍のSE層15に空乏層が生じることを防止する層である。緩衝層16は、酸化物からなることが好ましく、具体的には、LixLa(2-x)/3TiO3(x=0.1〜0.5)、Li4Ti5O12、Li3.6Si0.6P0.4O4、Li1.3Al0.3Ti1.7(PO4)3、Li1.8Cr0.8Ti1.2(PO4)3、LiNbO3、LiTaO3または、Li1.4In0.4Ti1.6(PO4)3などを単独あるいは組み合わせて使用できる。また、緩衝層16には、Arが0.1〜5mol%含有されており、Arが所定量含有されていることにより、Arが含有されていない場合よりも、緩衝層16の電気抵抗が低減し、かつ、緩衝層16のリチウムイオン伝導性が向上する効果を奏する。この効果は、Ar含有量が、0.1mol%程度から顕著になり、5mol%程度で頭打ち状態になる。緩衝層におけるArの含有量が5mol%を大きく超えると、緩衝層としての役割(空乏層の形成抑制)が低下する。
【0038】
上段に列挙した緩衝層を構成するための化合物の一部、例えば、LixLa(2-x)/3TiO3、LiNbO3、LiTaO3は、アモルファスの状態とすると、リチウム伝導度が向上する。上記酸化物の中でも、LixLa(2-x)/3TiO3(x=0.1〜0.5)は、結晶状態およびアモルファスの状態の両方でリチウムイオン伝導度が約10-3S/cmという非常に優れたリチウムイオン伝導性を有するので、緩衝層16として採用したときに、電池の性能を向上させることができる。その他、LiNbO3も、アモルファスの状態でリチウムイオン伝導度が10-5S/cm以上という非常に優れたリチウムイオン伝導性を有する。LiNbO3がアモルファスの状態であることを示す指標としては、X線回折において、2θが22〜25°の範囲で半値幅が5°以下のピークが存在しないことが挙げられる。なお、緩衝層の形成時に上記化合物が結晶構造をとる温度とすると、緩衝層を構成する化合物が正極層に拡散しすぎて、緩衝層がもろくなる虞がある。
【0039】
正極層に接する緩衝層を構成する化合物は、その一部が正極層中に拡散していることが好ましい。上記化合物の正極層への拡散度合いを調節することで、空乏層の形成を抑制できると共に、正極層と緩衝層との密着性を向上させることができる。例えば、緩衝層がLiNbO3を含有する場合は、正極層のうち、緩衝層との界面から厚さ25nmの点における緩衝層から拡散したNbの濃度を1×10-3原子%以上25原子%以下とすることが挙げられる。なお、Nb濃度は、例えばSIMS(secondary ion mass spectrometry)などで測定することができ、正極層がLiCoO2の場合、測定地点における原子量の比、即ち、Nb/(Nb+O+Li+Co)のことである。
【0040】
また、緩衝層の厚さは、1μm以下であることが好ましい。緩衝層膜厚が厚すぎると、リチウム電池の薄型化の障害になる。空乏層の形成を抑制するには、2nm以上あれば十分であるので、この値を下限値とする。より確実に空乏層の形成を抑制したいのであれば、緩衝層厚さを5nm以上とすると良い。
【0041】
さらに、緩衝層の電子伝導度は、1×10-5S/cm以下であることが好ましい。電子伝導度を上記のように規定することで、緩衝層における分極を抑制し、もって空乏層の形成を抑制することができる。なお、上記の化合物を採用すれば、上記の電子伝導度をほぼ満たす緩衝層とすることができる。
【0042】
この緩衝層は、ArのプラズマあるいはArと酸素との混合プラズマを利用した気相堆積法、例えば、RFスパッタリングやECRプラズマCVDなどにより形成することができる。これら気相堆積法により、緩衝層に含有させるArの量を調節するには、成膜装置に供給する電力や、成膜室に導入するArの雰囲気圧力などを変化させれば良い。
【0043】
≪リチウム電池の製造方法≫
リチウム電池を製造するには、各層を支持する基板を兼ねる正極集電体層11の上に、正極層13、緩衝層16、SE層15、負極層14、負極集電体層12の順に積層することで作製する。また、正極集電体層11、正極層13、緩衝層16およびSE層15を積層した積層体を作製すると共に、この積層体とは別個に負極集電体層12と負極層14とからなる積層体を作製し、これら二つの積層体を重ね合わせることでリチウム電池1を作製しても良い。
【0044】
なお、上述した2つの積層体を重ね合わせるときは、積層体同士の接触面に、リチウム含有塩を溶解したイオン液体からなる溶液を塗布しても良い。この溶液としては、リチウムイオン伝導性が高く(好ましくは10-4S/cm以上)、電子伝導性が低い(好ましくは10-8S/cm以下)ものを使用する。この溶液は、電子伝導性がほとんど無く、イオン伝導性に優れるので、SE層15にピンホールが生じたとしても、正極と負極の短絡を防止することができる。
【0045】
≪実施形態1の効果≫
以上の構成を備えるリチウム電池1は、正極層13とSE層15との間に緩衝層16を設けるだけで、正極層13とSE層15との界面近傍におけるリチウムイオンの偏りを抑制し、SE層15において空乏層が形成されることを抑制することができる。また、緩衝層16は、正極層13上に積層するだけで良いので、非常に簡単かつ効率的にリチウム電池を作製することができる。
【実施例1】
【0046】
<緩衝層の評価>
まず、Arを含有する緩衝層を備える試験片1〜3と、Arを含有しない緩衝層を備える試験片10とを作製し、両者についてリチウムイオン伝導度の温度依存性および電子伝導度を調べた。
【0047】
(試験片1〜3)
導電性の基材を用意し、この基材上にLiNbO3からなる緩衝層を成膜した。緩衝層の成膜は、Ar雰囲気下でRFスパッタリング装置を利用して行った。試験片1〜3は、成膜装置に供給する電力と成膜室のAr濃度を調節することにより、緩衝層に含まれるArの含有量を変化させて作製した。成膜した緩衝層のリチウムイオン伝導度の温度依存性を交流インピーダンス法により測定した。また、緩衝層の電気抵抗値を測定した。成膜条件を表1に、測定結果を表2に示す。なお、各層の膜厚は、誘導結合プラズマ発光分光分析法で、Arの含有量は、ラザフォード後方散乱分析法で求めた。
【0048】
(試験片10)
試験片1〜3と同様に、導電性基材上にLiNbO3からなる緩衝層を成膜して試験片10を作製し、緩衝層の特性を測定した。但し、緩衝層の成膜にはレーザーアブレーション法を利用し、成膜雰囲気は酸素とした。成膜条件を表1に、測定結果を表2に示す
【0049】
【表1】

【0050】
【表2】

【0051】
表2に示すように、試験片1〜3と試験片10との比較により、緩衝層単体でのリチウムイオン伝導度は、緩衝層にArが含まれている方が高いことが明らかになった。また、緩衝層単体での電子伝導度は、緩衝層にArが含まれている方が低いことが明らかになった。従って、この緩衝層が正極層とSE層との間に形成されていたとしても、電池性能に優れたリチウム電池とすることができると考えられる。
【0052】
<リチウム電池の性能評価>
以下、実施の形態において説明した構成のコインセル型のリチウム電池(試料1、試料10および試料101〜104)を実際に作製し、電池の容量を測定することで、電池の性能を評価した。
【0053】
<試料1>
正極集電体11として、厚さ0.5mmのSUS304からなる薄板を用意した。この薄板は、各層を支持する基板の役割も兼ねる。
【0054】
電子ビーム蒸着法により、正極集電体11の上にLiCoO2を基板温度600℃で蒸着して正極層13を形成した。正極層13の厚さは、0.5μmであった。
【0055】
RFスパッタリング法により、正極層13の上に、LiNbO3を蒸着することで緩衝層16を形成した。緩衝層16の厚さは、20nmであった。緩衝層の成膜条件は、<緩衝層の評価>の項目で述べた試験片1と同じ方法、同じ条件(Ar雰囲気、RFスパッタリング)で実施した。但し、緩衝層の形成にあたり、RFスパッタリング法における温度条件を調節して、LiNbO3がアモルファス状態となるようにした。また、RFスパッタリング法で成膜した後、400℃×0.5h大気炉で酸素アニールを行うことで、緩衝層を構成する化合物を正極層に拡散させた。
【0056】
エキシマレーザーアブレーション法により、緩衝層16の上に、Li-P-S組成のSE層15を形成した。SE層15の形成の際は、硫化リチウム(Li2S)及び五硫化リン(P2S5)を原料とし、SE層15におけるLi/Pのモル比が2.0となるように調整した。SE層15の厚さは、3μmであった。
【0057】
負極集電体12として、厚さ0.5mmのSUS304の薄板を用意し、この薄板上に、抵抗加熱蒸着法により、SE層15の上に、Liを蒸着することで負極層14を形成した。負極層14の厚さは、0.5μmであった。
【0058】
最後に、正極側の積層体と負極側の積層体とを貼り合わせて、その外周を外装材で覆ってリチウム電池を作製した。リチウム電池は、集電体から端子を取れるようにしてある。
【0059】
<試料10>
試料1に対して、緩衝層にArを含有しない以外は、試料1と同様の構成を有する試料10を作製した。緩衝層の成膜方法は、<緩衝層の評価>の項目で述べた試験片10と同じ方法、同じ条件で実施した(酸素雰囲気、レーザーアブレーション)。
【0060】
<試料101〜104>
緩衝層の構成を種々変更した試料101〜104を作製した。試料101〜104は、緩衝層にArを含有しないこと(但し、試料101は緩衝層なし)と、以下に示す点以外は、試料1と同一の構成を有する。なお、以下の変更点は、各層を形成する際の温度条件などを調節することにより達成することができる。
試料101…緩衝層を成膜しなかった。
試料102…正極層を薄くする(具体的には50nm)ことでab軸配向が弱くなる傾向を利用し、正極層の面指数の比(003)/(101)が10を超えるようにした。
試料103…アニールを実施しないことで緩衝層を構成する化合物が正極層に拡散することを抑制した。
試料104…緩衝層成膜時、サンプル温度を500℃として成膜することで、緩衝層を結晶化させた。緩衝層が結晶化するように成膜すると、成膜の過程で緩衝層を構成する化合物が正極層に拡散し易い。
【0061】
上記試料1、試料10および試料101〜104の各層の構成を表3にまとめる。
【0062】
【表3】

【0063】
上述した試料のリチウム電池について、電池の全抵抗、充放電係数1Cおよび30Cにおける電池の容量を測定することで、電池の性能を評価した。この測定結果を表4に示す。
【0064】
【表4】

【0065】
表4の正極層における「XRD(X-ray diffraction)ピーク比」は、ab軸配向がc軸配向に対して優位であることを示す指標であり、X線回折により測定した正極層の(003)面と(101)面との比である(003)/(101)を示す。また、正極層の「拡散の有無」は、緩衝層を構成するLiNbO3が正極層中に拡散していることを示す指標であり、正極層の厚さにおける正極層と緩衝層との界面から25nmの点でのNbが1×10-3原子%以上の場合(拡散が十分である場合)を○、1×10-3原子%未満の場合(拡散が不十分である場合)を×とした。正極層におけるNb濃度の測定にはSIMS(secondary ion mass spectrometry)を利用した。さらに、緩衝層における「XRDピークの有無」は、緩衝層がアモルファス状態かどうかを示す指標であって、緩衝層のXRD観察において、2θが22〜25°の範囲で半値幅5°以下のピークが観察できたかを示し、前記ピークが観察できた場合(結晶構造をとる場合)を○、観察できなかった場合(アモルファス状態の場合)を×とした。「全抵抗」は、電池を4.0Vで放電させたときの電池の内部抵抗値(Ωcm2)を示す。
【0066】
表4に示すように、緩衝層にArを含有すると共に、この緩衝層がアモルファス状態であって、正極層のXRDピーク比が1.2、緩衝層を構成するLiNbO3が正極層の内部に拡散している試料1は、緩衝層にArを含有しない以外は試料1と同様である試料10よりも電池の全抵抗が低かった。一方で、試料1と試料10はともに、1Cおよび30C放電において容量140mAhを有していた。従って、試料1と試料10はともに優れた電池特性を有するが、総合的に見ると緩衝層にArを含有する試料1のリチウム電池の方が優れていることが判った。
【0067】
次いで、試料10と試料101〜104とを比較し、以下のことが明らかになった。
【0068】
緩衝層を有さない試料101は、試料10に比較して電池の全抵抗が高かった。これは、緩衝層を有さないため、正極層に空乏層が形成され、その結果、電池の全抵抗が高くなったためと推察される。電池の全抵抗が高いため、試料101は、1Cでの容量が非常に小さい上、30Cでは動作しなかった。
【0069】
正極層におけるXRDピーク比が10以上である試料102は、試料10に比較して正極層におけるリチウム伝導度が低いため、全抵抗も高くなったと推察される。その結果、試料102は、1Cでの容量が非常に小さい上、30Cでは動作しなかった。
【0070】
緩衝層を構成するLiNbO3の正極層への拡散が不十分な試料103は、試料10に比較して電池の全抵抗が高かった。その結果、試料103は、1Cでの容量が非常に小さい上、30Cでは動作しなかった。
【0071】
緩衝層を構成するLiNbO3が結晶構造をとる試料104は、試料10に比較して電池の全抵抗が高かった。これは、LiNbO3が結晶構造をとるため、緩衝層を構成するLiNbO3が過剰に正極層に拡散して、緩衝層と正極層の化合物が混じり合った拡散領域が厚くなり、この拡散領域により電池の全抵抗も高くなったと推察される。全抵抗が高いため、試料104は、1Cでの容量が非常に小さい上、30Cでは動作しなかった。
【0072】
以上のことから、「正極層の結晶状態」、「緩衝層の結晶状態」および「緩衝層を構成する化合物の正極層への拡散状態」が、電池の性能に影響を及ぼすことが明らかになった。ここで、表4には示していないが、試料101〜104にArを0.1〜5mol%含有させた試料は、Arを含有しない試料101〜104よりも全抵抗が低くなる傾向が認められた。さらに、これら試料101〜104にArを含有させた試料と、緩衝層についての全ての条件を満たす試料1とを比較したところ、試料1が最も優れた電池性能を有するリチウム電池であった。
【0073】
なお、上述した実施の形態は、本発明の要旨を逸脱することなく、適宜変更することが可能である。具体的には、リチウム電池を構成する正極層、固体電解質層、負極層の配置には、上述した実施の形態以外のものも考えられるが、どのような配置を選択しても、正極層と固体電解質層とが直接接触しないように、両層の間に緩衝層を設けるようにすれば良い。
【産業上の利用可能性】
【0074】
本発明リチウム電池は、携帯機器などの電源として好適に利用することができる。
【図面の簡単な説明】
【0075】
【図1】実施形態1に記載の本発明リチウム電池の縦断面図である。
【符号の説明】
【0076】
1 リチウム電池
11 正極集電体層 12 負極集電体層
13 正極層 14 負極層
15 固体電解質層(SE層) 16 緩衝層

【特許請求の範囲】
【請求項1】
正極層と、負極層と、これら両層の間でリチウムイオンの伝導を媒介する硫化物固体電解質層とを基板上に具えるリチウム電池であって、
前記正極層は、気相堆積法により形成されており、
前記正極層と固体電解質層との間に、これら両層の界面近傍におけるリチウムイオンの偏りを緩衝する緩衝層を備え、
上記緩衝層にArが0.1〜5mol%含有されていることを特徴とするリチウム電池。
【請求項2】
前記緩衝層は、リチウムイオン伝導性酸化物であることを特徴とする請求項1に記載のリチウム電池。
【請求項3】
前記リチウムイオン伝導性酸化物は、LixLa(2-x)/3TiO3(x=0.1〜0.5)、Li4Ti5O12、Li3.6Si0.6P0.4O4、Li1.3Al0.3Ti1.7(PO4)3、Li1.8Cr0.8Ti1.2(PO4)3、Li1.4In0.4Ti1.6(PO4)3、LiTaO3および、LiNbO3の少なくとも一種以上であることを特徴とする請求項2に記載のリチウム電池。
【請求項4】
前記緩衝層の膜厚が、1μm以下であることを特徴とする請求項1〜3のいずれか一項に記載のリチウム電池。
【請求項5】
前記緩衝層の電子伝導度が、1×10-5S/cm以下であることを特徴とする請求項1〜4のいずれか一項に記載のリチウム電池。
【請求項6】
前記緩衝層を構成する化合物が、前記正極層中に拡散していることを特徴とする請求項1〜5のいずれか一項に記載のリチウム電池。
【請求項7】
前記化合物の少なくとも一部がLiNbO3であり、
正極層における、緩衝層との界面から厚さ25nmの点でのNbの濃度が、1×10-3原子%以上25原子%以下であることを特徴とする請求項6に記載のリチウム電池。
【請求項8】
前記緩衝層がアモルファスの状態であることを特徴とする請求項1〜7のいずれか一項に記載のリチウム電池。
【請求項9】
前記緩衝層がLiNbO3からなり、
緩衝層のX線回折において、2θが22〜25°の範囲で半値幅が5°以下のピークが存在しないことを特徴とする請求項8に記載のリチウム電池。
【請求項10】
前記正極層において、ab軸配向がc軸配向よりも強いことを特徴とする請求項1〜9のいずれか一項に記載のリチウム電池。
【請求項11】
前記正極層の活物質が、結晶化したときに層状岩塩型構造をとる化合物からなり、
当該正極層の面指数の比が、(003)/(101)<10であることを特徴とする請求項10に記載のリチウム電池。
【請求項12】
正極層と、負極層と、これら両層の間でリチウムイオンの伝導を媒介する硫化物固体電解質層とを基板上に具えるリチウム電池の製造方法であって、
気相堆積法により、前記正極層を形成する工程と、
前記正極層の上に、正極層と固体電解質層との間の界面近傍におけるリチウムイオンの偏りを緩衝する緩衝層を形成する工程とを備え、
前記緩衝層の形成工程において、ArのプラズマあるいはArと酸素との混合プラズマを利用した気相堆積法を使用して、緩衝層に0.1〜5mol%のArを含有させることを特徴とするリチウム電池の製造方法。

【図1】
image rotate


【公開番号】特開2009−176644(P2009−176644A)
【公開日】平成21年8月6日(2009.8.6)
【国際特許分類】
【出願番号】特願2008−15852(P2008−15852)
【出願日】平成20年1月28日(2008.1.28)
【出願人】(000002130)住友電気工業株式会社 (12,747)
【Fターム(参考)】