説明

体内組織の光学的誘起処置

光ビームは、例えば、2個の回転板又は1個の回転可能な部品を介して、目標とする体内組織に供給される。1つの形態では、2個の回転板が、対象の組織において照射パターンを発生するように入射光ビームを偏向させる。また別の形態では、1個の回転可能な部品が、回転軸の回りに配列された複数の偏向用セクタを含み、各セクタは、光ビームを横切って回転するときに入射光ビームを偏向し、目標とする組織において照射パターンを発生する。プローブは人体内に光経路を保持し、偏向された光ビームを目標の組織に供給する。

【発明の詳細な説明】
【技術分野】
【0001】
関連出願の参照
本出願は、(a)2005年5月3日出願の米国仮特許出願第60/677,682号(発明の名称”Optically−Induced Treatment of Internal Tissue”「体内組織の光学的誘起処置」)の優先権、(b)2005年2月14日出願の米国仮特許出願第60/652,891号(発明の名称”High Efficiency, High Speed Optical Pattern Generator Using a Single Rotating Component”「単一の回転部品を用いた高効率で高速の光パターン生成装置」)の優先権、(c)2006年2月13日出願の米国実用新案出願(出願番号未定、発明の名称”Optically−Induced Treatment of Internal Tissue”「体内組織の光学的誘起処置」)の優先権、を米国特許法第35U.S.C.§119(e)条に基づいて主張するものであり、(d)2003年12月31日出願の米国特許出願第10/750,790号(発明の名称”High Speed, High Efficiency Optical Pattern Generator Using Rotating Optical Elements”「単一の回転部品を用いた高速で高効率の光パターン生成装置」)の一部継続(CIP)出願である2005年6月20日出願の米国特許CIP出願第11/158,907号(発明の名称”Optical Pattern Generator Using a Single Rotating Component”「単一の回転部品を用いた光パターン生成装置」)であり、このCIP出願はまた2005年2月14日出願の米国仮特許出願第60/652,891号(発明の名称 ”High Efficiency, High Speed Optical Pattern Generator Using a Single Rotating Componet”「単一の回転部品を用いた高効率で高速の光パターン生成装置」)の優先権を主張するもので、ここでその全体を参照することにより、その要旨を本明細書に組み込むものとする。
【0002】
本発明は、一般に、体内組織の治療及び/又は診断に関し、特に、レーザ光照射を体内組織に与えることによって、例えば、人体内の組織等の体内組織に施される光照射による治療及び/又は診断に関する。
【背景技術】
【0003】
レーザやその他の強力な光源は、体内組織の治療を含む種々の組織治療に利用される。例えば、レーザによる胸部外科手術、レーザによる腸の外科手術、レーザによる脳の外科手術、レーザ光線で内臓の組織を凝固させる光凝固法による外科処置、脳及び眼(網膜)の外科処置等が含まれる。これらの治療の多くは、治療対象である目標の組織を光ビームで照射する。基礎をなす物理的メカニズムが光吸収に基づいている場合は、光ビームは、目標とする組織で吸収される波長で典型的に効力を発揮する。水分が主要な光吸収材料である場合は、細胞質および間質の水分が光エネルギーを吸収し、それを熱エネルギーに変換する。熱エネルギーは組織の温度を上昇させ、望ましい効果的な作用を施す。例えば、目標組織を損傷する温度であるが、近傍の組織により回復可能とする温度まで加熱することが望ましい。殆どの場合は、目標組織の基礎を成す組織又は周囲の組織に損傷を与えないことが望ましい。このことは、望ましくない損傷を避けるだけでなく、回復処理を迅速化する。膠原繊維を含む組織の変成は、組織の収縮に効果的な作用を発揮することができる。更に、痔や直腸等の組織などの鬱血部を含む組織は、光凝固された後、解消される。
【0004】
体内組織の治療と(皮膚等の)体外組織の治療との相違点の1つは、体内組織の方がその部位に光ビームを到達させるのが体外組織よりも一層難しいことである。体内組織の場合は、光ビームを身体内部を通って目標の組織まで到達させねばならない。その結果、目標組織への光経路は、身体の解剖学的構造により制限されるため、遙かに制約されている。光経路は、体内にある目標組織の部位に到達するためには狭小で長くなることがよくある。更に、光経路はまた、例えば、放散される無駄な熱量又は除去される物質的堆積物の量を制限する熱的な制約やその他の制約があり得る。目標組織に対する治療素子の位置を決定したり、治療の効力について適応機能を得るために、治療素子の位置や動きを制御することも難しい。
【発明の開示】
【発明が解決しようとする課題】
【0005】
現在、組織治療用の多くのレーザ技術では単一の高出力レーザビームを利用しており、この単一の高出力レーザビームは、目標組織のある部位から別の部位に手動で移動されるか、又は、レーザビームが目標組織を横切って走査するときに治療経路を掃除する。しかしながら、この方法には多くの欠陥がある。例えば、高出力のレーザビームは本来非常に危険であり、もし間違った部位に伝送されれば、更に危険である。また、従来のシステムは、典型的には、もっと高価な種類のレーザに基づいて構成されるものであり、低出力で低価格の半導体レーザを利用するものではない。光導出用光学部品(又は「光学素子」)もまた、更に高出力を扱うように設計する必要があり、システムの価格及び複雑性を更に増大させている。また、単一のレーザビームを手動で目標組織の異なる部位に移動させる必要がある場合は、治療時間が長くなってしまうといった課題がある。
【0006】
従って、光ビームを方向付けすることで、体内の目標組織において照射パターンを生成することができ、好ましくは、前述の課題を解消できる装置及び方法に対する要望が高まりつつある。
【課題を解決するための手段】
【0007】
本発明は、体内の目標組織に光ビームを供給することで、従来技術の制約を解消するものである。1つの方法としては、人体内の目標組織に光ビームを供給するための装置は、2個の回転板と1個のプローブを備える。これらの回転板は、目標組織において照射パターンを発生するように入射光ビームを偏向させる。照射パターンは別の目的のためにも使用される。例えば、応用例としては、照射パターンは組織で吸収され、有用な効力を発揮することもできる。他の応用例としては、治療や診断のために組織を照射することも可能である。プローブは人体内に光経路を保持し、偏向された光ビームを目標組織に供給することを可能とする。
【0008】
プローブの例としては、内視鏡用、関節鏡検査用、及びカテーテルに基づくプローブ等がある。プローブは、元々からある人体の穴部や、切開等により人工的に形成された切口を通って、人体内に挿入される。1つの方法として、プローブは目標組織と直接接触した光窓を有し、光ビームは光窓を通過して目標組織を治療するように構成される。
【0009】
一実施態様では、装置は環状パターンの離散スポットを形成する。回転板は複数組の対応するファセットを有する。各組のファセットが前記入射光ビームを通過して回転するときに、環状パターンのスポットの1つの方向に入射光ビームを偏向する。特に、装置はN個のファセットを有する角錐状多角形を備えた構成であり、ここで、Nは円板上のファセットの組数である。円板上の各組のファセットは、角錐状多角形の対応するファセットの方向に入射光ビームを偏向し、光ビームを環状パターンのスポットの1つの方向に順次偏向する。
【0010】
回転板を使用する1つの利点は、複数のファセットを別々に設計できることである。これにより、不規則で非平面の照射パターンを実現することができる。他の利点は、円板を高速で回転することができ、処置時間を短縮できることである。
【0011】
本発明の別の態様では、(回転板以外の方法を含む)光パターン生成器は、光ビームを方向付けすることで照射パターンを形成し、未処置の目標組織によって分離された体内の目標組織に複数の顕微鏡的処置領域を生成する。プローブは、人体内に光経路を保持し、光ビームを目標とする組織に供給する。光パターン生成器は、人体の内部又は外部のいずれに配置してもよい。
【0012】
一変形態では、プローブは目標組織と直接接触した光窓を有し、光窓は熱伝導性であって、目標組織の加熱及び冷却を容易にしている。本発明の他の態様では、制御論理を用い、センサからのフィードバックに基づいて種々の演算パラメータを調整できる。例えば、プローブの動きに基づいて光ビーム及び/又は光パターン生成器を制御すること;波長、出力、パルス幅、パルスエネルギー、パルス波形、ビーム特性、デューティサイクル(衝撃係数)及びパルス繰返し数等の光ビームのパラメータを制御すること;光ビームの開口数、焦点距離や焦点位置等の焦点に関するパラメータを制御することが含まれる。これらパラメータは治療の過程で又は治療前又は一連の治療前に適応的に調整可能であるが、治療中は一定に保たれる。
【0013】
本発明の更に別の態様では、人体内の目標組織に光ビームを供給する装置は、回転面と回転軸を有する1個の回転可能な部品を備える。該回転可能な部品は回転軸の回りに、あるパターンで配列された複数の偏向用セクタを有する。各セクタは、入射光ビームと交差して回転するときに該光ビームを偏向し、目標組織において所定の照射パターンを生成する。また、装置は、人体内の目標組織に偏向光ビームを供給するために、光経路を人体内に保持するプローブを備える。
【0014】
好ましい形態では、回転可能な部品は、その回転面において第1次の偏向である実質的に一定の角度の偏向により、入射光ビームを偏向する。いくつかの変形態では、回転可能な部品は、回転軸の回りに配置された複数の離散構造を更に備える。これらの変形態では、各離散構造は少なくとも2個の反射面を有し、隣接構造からの反射面はセクタの対向反射面を形成する。
【0015】
本発明の他の態様は、前述の素子及び装置に対応する方法及びシステムを含むものである。
【0016】
本発明の更に他の利点及び特徴は、添付の図面を参照して、以下に述べる発明の詳細な説明と特許請求の範囲に記載された内容から更に明瞭となるであろう。なお、ここで記載する実施形態は、単に図示により例示したもので、本発明はこれらに限定されるものではない。
【発明を実施するための最良の形態】
【0017】
図1は本発明に係るシステム(又は「装置」)100の概略図である。システム100は、光源110と、光ファイバ120と、ハンドピース130を備える。ハンドピース130は、人体内に挿入用のプローブ部140を含む。ハンドピース130内の光学縱列部は、光ファイバ用の入力ポート150と、コリメータ光学素子152と、互いに逆向きに回転する一対の円板160A及び160B(以後、「逆向き回転円板160」又は「回転板160」とも呼ぶ)と、付加的な光送出用光学素子165を備える。プローブ140の先端近傍には透明窓145が設けられている。この例では、窓145はプローブ140の円筒部側に配置されている。
【0018】
システム100の動作について以下に説明する。例えばレーザ等の光源110から出力されたパルス化された光ビームは、光ファイバ120を介してハンドピース130に送出される。光ビームは入力ポート150を通ってハンドピースに入力され、コリメータレンズ等の光学素子152でコリメートされる。図2A〜2Cに示す回転板160A,160B(以後、参照番号は「160」で表記することもある)は、それらの周縁部に多数のファセット(小眼面)162(162A,162B)を有している。回転板160が互いに逆向きに回転すると、複数の異なるファセット162が光ビーム190を横切って移動し、該光ビームを別々の方向に偏向させる。偏向された光ビーム190は、光送出用光学素子165によって透明窓145から外部に導出される。回転板160が回転することで、透明窓145において光ビームの照射パターンを発生する。この例では、照射パターンは環状パターンである。即ち、一対の回転板160が互いに逆向きに回転することで、光軸を中心とした円形状に連続した多数の光スポットが生成される。
【0019】
プローブ140が人体内に挿入されたときに、窓145は目標組織と接触する位置にある。一対の円板160が互いに逆向きに回転することで、目標組織において環状の照射パターンを生成する。また、プローブは、光ビーム190を目標組織に供給するための光経路を体内に保持することができる完全な構造を有する。
【0020】
応用分野や解剖学的組織構造により、種々の照射パターンが利用される。例えば、連続したレーザビームで目標組織を走査してもよい。また別の方法では、光ビームをパルス化してもよい。プローブ140を位置決めした後で、1つの特定部位を照射するようにレーザをパルス化してもよく、また、プローブ140を再位置決めしてレーザを再パルス化してもよい。
【0021】
図1に示す構成例では、照射パターンは目標組織の治療のために用いられ、未処置の目標組織部で分離された多数の顕微鏡(微小)治療領域を生成する。光ビームは各治療部位に方向付けされるが、次の治療部位に「移る」までは、前の部位に完全に静止した状態のままである。治療領域は、肉眼では見えない大きさであるという意味では、(顕微鏡的な)微小な大きさである。例えば、DeBenedictis等による米国特許出願No.10/888,356号(発明の名称”Method and Apparatus for Fractional Photo Therapy of Skin”)を参照されたい。本実施の形態では、未処置領域で分離された多数の比較的小さな「微視的な」治療領域が、目標組織の治療対象であり、目標組織全体を単一の高出力光ビームで照射することとは全く異なっている。なお、ここで使用している用語「微視的な治療領域」又は「顕微鏡治療領域」は、治療領域が非常に小さくて顕微鏡によってしか見ることができないということを意味するものではない。
【0022】
システム(又は装置)100の設計は、応用分野や解剖学的組織構造により決定される。例えば、光源110は典型的にはレーザ光源であるが、レーザ以外の光源も使用可能である。レーザ以外の光源としては、フラッシュランプや発光ダイオードがある。レーザ光源の例としては、各種レーザ、ダイオード励起個体レーザ、Er(エルビウム):YAGレーザ、Nd(ネオジウム):YAGレーザ、Er:ガラスレーザ、アルゴン・イオンレーザ、He−Ne(ヘリウム・ネオン)レーザ、炭酸ガスレーザ、エキシマレーザ、エルビウムファイバレーザ等のファイバレーザ、ルビーレーザ、周波数逓倍レーザ、ラマンシフトレーザ、光励起半導体レーザ、パルス・ダイ(色素)レーザ等々がある。連続的な光源とパルス光源のどちらも利用分野に応じて使用される。光源110は、1つの波長(又は波長領域)を有するか、又は、異なる波長に同調可能な1つの特殊な形体のレーザを含むことができる。また別の例としては、光源110は、種々の波長又は波長領域を有する2個以上の異なる種類のレーザを含んでも良い。異なる光源からの光ビームは、逐一又は同時に目標組織に向けて方向付けされる。
【0023】
光ビームの波長もまた適用分野によって決定される。光ビームの波長は、好ましくは約180nm〜12,000nmの間であり、例えば500nm〜3,000nmの間であり、又は1,000nm〜2,000nmの間であり、更に好ましくは1400nm〜1600nmの間である。ここで使用する用語「光」(Optical)又は「光」(light)は、上記波長範囲の全ての光を意味し、可視光線に限定するものではない。
【0024】
ある応用例では、光エネルギーは人体組織で吸収されるように適用している。人体組織による可視光領域での吸収は、大抵の場合はヘモグロビンやメラニン等の特殊な発色基によって成される。近赤外線領域では、水分は典型的で顕著な発色基である。水に対する近赤外線領域での吸収率は、波長が1450nm近傍でピーク(約30/cmの吸収率)となり、1930nm近傍でピーク(約130/cmの吸収率)となり、これらの両ピーク間では吸収率は略5/cmより下に落ちることはない。1930nmでのピーク値より上方では、吸収は小さな値に下降することはないが、Er:YAGレーザや炭酸ガスレーザの吸収に比べて非常に高い値となる。1000nm〜1450nmの間の波長領域では、吸収率は着実に下降して0.2/cm又はそれ以下となり得る。約1000nm以下の波長領域では、ヘモグロビンやメラニン等の発色基は、もし存在すれば、非常に有効な光吸収体となり、水分による吸収は減少する。
【0025】
次に、ハンドピース130について説明する。プローブ部の形状及び構成もまた適用例によって決定される。想定される適用例としては、血管腫、喉頭部又は肛門内疣贅等の治療;頸部や結腸その他の部位に生じる癌の治療;鼻ポリープの治療;膣の苔蘚硬化症の治療;痔の治療;及び閉塞性睡眠時無呼吸(口蓋機能不全)の治療等がある。内視鏡、関節鏡、カテーテルは、適用分野に応じて適当な形体をとることができる一般的なプローブである。プローブ140は、人体に本来備わった(肛門や口等の)開口穴部、又は(外科的切開等)で形成された「人工的」な開口部を通って、体内に挿入される。
【0026】
図1に示す窓145は、プローブの端部において、対向するように、プローブ140の円筒部側に配置されている。また別の実施形態としては、窓はプローブの端部を含めてその他の位置に設けることも可能である。また、窓は異なった形状に構成してもよいし、2つ以上の窓を設けても良い。温度調整が望ましい場合は、サファイアやダイヤモンドの窓が、その高い熱伝導及び当該波長に対する透過性を有するために、使用される。有効な加熱又は冷却が、窓145を介して、又は、プローブの他の部分を介して行われる。
【0027】
図1の例では、プローブ140が人体に挿入されるとき、回転板160は人体の外部に留まっているように構成されている。しかし、他の実施形態としては、照射パターンを生成する種々の光学素子がプローブに対して充分小さい場合、又はプローブが該光学素子に対して充分大きい場合は、これらの光学素子をプローブ内部に配置してもよい。例えば、プローブの先端部等のプローブ内部に光照射パターン生成器を配置する構成では、その1つの利点は、プローブの残りの部分をもっと柔軟で可撓性のある構成とできることである。このような構成では、例えば、プローブは、光ビームを照射パターンが形成されるプローブの先端部に伝達する光ファイバを含むことができる。これに対して、図1に示すプローブ140は、回転板160から送出窓145に至る固定した自由空間の光経路を保持するように構成され、プローブ140の可撓性(曲げ易い柔軟性)は制約されることがある。
【0028】
また、種々の照射パターンを実現することもできる。システム100は、プローブ140の周囲に環状に等間隔で配列した複数のスポットより成る照射パターンを生成する。例えば、各光源が1つの環状パターンを形成する複数の光源を用いるか、又は、複数の光ビームを発生するビームスプリッタを用いて、複数の環状パターンを生成することもできる。全ての環状が同じ径を有する場合は、照射パターンは円筒形となる。径に増減があれば、照射パターンは円錐形となる。その他、非平面状のパターンも生成できる。回転板を使用する1つの利点は、不規則なパターンを保持できることである。各組の対応するファセット162は、照射パターン内の異なるスポットを生成するように個別に構成してもよい。
【0029】
1つの方法として、プローブ部140は回転板160の部分から切り離し可能な構成としてもよい。種々の適用例のため及び/又は種々の大きさの生体組織構造に簡単に適応するために、種々の異なる形体のプローブを使用することができる。
【0030】
図2A〜2Cはシステム100の光学縱列部の異なる視点からの図である。これらの図は、互いに逆向きに回転する一対の円板(回転板)160(160A,160B)と、集束レンズ166とマルチファセット多角錐体167(一部のみ図示)を含む光導出用光学部品を示す。145は円筒形状の窓を示す。回転板160上に設けられた対応するファセット162(162A,162B)も図示されている。図2A〜2Cでは、1つのファセット162Aが回転板160A上に設けられ、対応するファセット162Bが回転板160B上に設けられている。この構成例では、各円板(回転板)160に合計12個のファセットが設けられ、多角錐体167にも12個のファセット168が設けられている。一対の円板(回転板)160上に設けられた対応する各組のファセット162(162A,162B)もまた多角錐体167に設けられた1つのファセット168に対応している。便宜的に、これらのファセットを、光源位置(即ち、図2A,2Bの左側位置)における観察者の参照フレームから、窓145上の最後のスポットの相対する時計位置を参照して、1:00ファセット、2:00ファセット等と呼ぶこととする。
【0031】
図2A〜2Cでは3:00ファセットが機能している場合を示す。光ビーム190は一対の3:00ファセット162A,162Bを通って伝送される。ここで、3:00ファセットは一対の円板(回転板)上の時刻3:00位置にある必要はなく、3:00は窓145上に形成される最後の光ビームスポットを表している。これらのファセット162(162A,162B)は、光ビーム190を多角錐体167の3:00ファセット168の方向に偏向させ、光ビームは窓145において3:00位置の方向に反射される。集束レンズ166は、光ビーム190を窓145の外部側近傍、例えば、目標組織表面部位又はその僅かに下方位置に対応する外部側近傍の焦点位置に集束する。
【0032】
図3A〜3Bは更に9:00位置に対応するファセット162(162A,162B)を説明するものである。同図において、符号360A,360Bは一対の回転板160A,160Bの回転中心を示し、これら2つの中心間距離をLとする。ただし、回転板自体は図示していない。一次光ビームに対しては、ファセット162(162A,162B)は、それぞれ符号362A,362Bで示す位置にある光学中心を有するレンズとして機能し、これら符号362A,362Bを中心とする円を破線で示す。ファセット162Aは負の屈折力を有するレンズであり、ファセット162Bは正の屈折力を有するレンズである。これら光学中心362A,362B間距離もLであるが、光学中心362A,362B間を結ぶ線は回転中心360A,360B間を結ぶ線に対してある角度を成してもよい。同図において、ファセットは「中間」位置にあり、これは光ビーム190を横切るファセットの回転の中間点を示す。なお、破線で示す大きな円は各ファセットの「親元」本体の光学素子であり、各ファセットの物理的な拡張部ではない。各ファセットの物理的な拡張部は符号162A,162Bで示す小さな実線の円形部である。
【0033】
図3Aは9:00ファセット162の正面図を示すとともに、それらの上面図を示している。上面図の破線で示すレンズの外形は各ファセットの親元本体の光学素子であり、物理的拡張部は実線でその外形が図示されている。図3Aでは、光ビーム190は第1のファセット162Aで9:00位置の方向に偏向され、更に第2のファセット162Bで同じ方向に偏向される。各ファセット162A,162Bは対応する回転中心360A,360Bと一致する光学中心362A,362Bを有しているので、ファセット162が光ビームを横切って回転するときに、光学作用は変化しない。従って、光ビーム190が9:00ファセットに入射する限り、光ビームは9:00位置の方向に偏向される。
【0034】
図3Bは6:00位置の場合を示す。中間点では、光学的には、6:00ファセット162Aは光学中心が362Aの負のレンズ(発散レンズ)であり、6:00ファセット162Bは光学中心が362Bの正のレンズ(収束レンズ)として機能する。これにより、側面図に示すように、光ビーム190は多角錐体167の6:00ファセットの方向に偏向され、次いで窓145の6:00位置の方向に偏向される。しかし、図3Aの場合と相違する点は、レンズの光学中心362A,362Bが対応する回転板の回転中心360A,360Bと一致しないことである。そのため、光学中心362A,362Bは、連続する画像位置に対応するファセット162A,162Bが光ビームを横切って回転するときに、変位することになる。
【0035】
変位が正確でない場合は、この変位は、(3:00や9:00の場合と異なり)典型的には、光ビーム190の偏向において僅かな直交する偏りを生じる。適用例によっては、上記偏りは充分小さくて補正する必要はない場合がある。その他の場合は、この残差のクロススキャン角度変位の補正は、ファセット又は他の光学素子における設計の自由度を導入することで達成される。例えば、ファセットの光学中心362A,362Bをそれらの元の位置から偏心させるか、又は、ファセット表面を非球面とすること、又は異なる複数組のファセットで異なる半径とする、又はファセット自体に何らかの補正を施すこと等により達成できる。また別の方法としては、集束レンズ166及び/又は多角錐体167の6:00ファセット168を補正用に使用してもよい。
【0036】
図3A,3Bは互いに逆向きに回転する円板(回転板)の基本的な動作を示すもので、他の種々の変形も可能であることはいうまでもない。例えば、ファセットの個数は生成するスポット数の増減に合わせて変えることもできる。更に、複数のファセットは個別に設計できるので、多数の異なる照射パターンを生成することができる。スポットを全周360°に等間隔で配置すること以外に、全スポットを1つ又は複数のセクタ内に集中的に配置してもよい。例えば、スポットを10:00位置から2:00位置の間に等間隔で配置してもよい。また別の方法としては、全スポットの半数を10:00位置から11:00位置の間に配置し、残りの半数を1:00位置から2:00位置の間に配置してもよい。その他の例としては、全スポットを規則的な間隔をあけて配置する必要なく、12:00位置から3:00位置までの間は規則的な配置はせずに、12:00位置から1:00位置の間に密集して配置してもよい。多数のファセットが同じスポットを形成するように構成することで、1つの治療領域に対して多数の光ビーム照射を施すことになる。
【0037】
スポットを軸方向から外して配置することもできる。また、基本的な照射パターンは、プローブ全体を手動又は自動で移動させること又はプローブ内の光学素子を移動させることにより、軸方向に移動させることができる。例えば、レンズ166と多角錐体168は、回転板が回転しているときに、軸方向に移行され、異なる軸位置で環状の照射パターンを繰り返し生成する。走査動作を更に追加するために、他の構成要素を使用してもよい。例えば、多角錐体を回転又は振動させてもよく、更に動作を追加するためにガルバノメータを使用してもよい。
【0038】
また、光学縦列部のファセットと他の素子を備えることで、純粋な光パワーと走査以外の作用をもたらすこともできる。非球面、材料の選択、その他、例えば、ダブレット(二重接合レンズ)やトリプレット(三重接合レンズ)等の更に複雑な光学設計を使用することで、補正のため又は意図的に高次の波面偏差を導入し、光ビームの波形と治療部位を目指す方向を大きく調整することができる。
【0039】
逆向き回転板の設計に関する文献例としては、Len DeBenedictis等による2003年12月31日付米国特許出願第10/750,790号(発明の名称”High speed,high efficiency optical pattern generator using rotating optical elements”「回転光学素子を用いた高速・高効率の光パターン生成装置」)に開示されており、ここで参照することにより本明細書に導入する。例えば、同文献の図1Bでは、複数の光源を使用することが開示され、図1Cでは、ある方向でのオフセット(偏倚)が他の方向の走査と結合されることが開示され、図2−3では、更に1方向に沿ったオフセットが開示され、図5A,5Bでは反射設計が開示され、図7A−7Cでは種々のスポットパターンが開示されている。他の文献例としては、Barry G. Broome等による2004年8月9日付米国特許出願第10/914,860号(発明の名称”Two−dimensional optical scan system using a counter−rotating disk scanner”「逆向き回転板スキャナを用いた2次元光学走査システム」)があり、ここで参照することにより本明細書に導入する。同文献の図4−9では、一方向に偏倚を生じる逆向き回転板と、他の方向に偏倚を生じるガルバノメータ等の他の装置とを組み合わせた構成例が開示されている。
【0040】
設計に自由度をもたせることで、多種類の照射パターンを形成することができる。好ましい実施形態では、未処置の目標組織で分離された顕微鏡的治療領域を形成する。これの1つの利点は、必要に応じて、近傍の未処置目標組織が、照射された組織の回復を速めることである。目標組織を治療すること以外の他の適用例としては、照射パターンを診断目的のために利用する。
【0041】
1つの方法として、非連続の光ビームを使用し、この場合、光ビームは間隔を置いた光パルスよりなる。光パルスはパルス化レーザにより発生することができる。また別の方法としては、例えば、連続波形レーザの出力をゲート制御することや、どこかの地点でチョッパーを光学縦列部内に挿入すること等の外部素子によって、連続した光ビームをパルス化することができる。光パルスを発生させる方法に関係なく、異なる光パルスを異なる部位に方向付けして、顕微鏡的治療領域を形成することができる。1つの方法としては、1つ以上の所定数の所定エネルギーのパルスが各治療領域に供給される。他の構成例では、所定数のパルス及び/又はそれらのエネルギーが調整され、治療中は一定に維持されるか、又は治療中も連続して調整される。
【0042】
他のパラメータも調整することができる。図4は種々のパラメータを制御する制御システムのブロック図である。制御システムは、制御論理部420に接続されたセンサ410を有する。例えば、図1の光源110や光パターン生成器160及び/又は光学縦列部のその他の要素150,152,165等を含むシステム全体の種々の部分を制御するために、制御論理部420は使用される。制御論理部420は、センサ410から受信したフィードバック(帰還)信号に基づいて所望の動作パラメータを調整する。
【0043】
動作パラメータの例として、波長;エネルギー、パワー、及びエネルギーとパワーの密度;パルス期間、パルス反復レート、時間的・空間的パルス波形;偏光(分極化);開口数、焦点深度及び焦点位置;目標組織への入射角度等が含まれる。動作パラメータ総計は、各治療領域に向けられた光パルスの総数又は密度と、各治療領域に蓄積される総エネルギー量を含む。また、例えば、治療領域間の分離、治療領域の大きさ、治療領域の空間的配置等を含む照射パターンのパラメータも制御可能である。
【0044】
種々のセンサの例としては、光コヒーレンス断層撮影、コンフォーカル顕微鏡検査、光学顕微鏡検査、光学的フィンガープリント法及び超音波検査用のものが含まれる。測定可能な組織の特性として、例えば、温度、機構的密度、色、複屈折性、不透明度、吸収性、消衰、拡散、アルベド(反射係数)、分極率、比誘電率、キャパシタンス(静電容量)、化学天秤、弾性、種々の材料(例えば、水、ヘモグロビン、オキシヘモグロビン、異物等)のフラクション(分率)、組織に導入される液体の特性等が含まれる。プローブの位置もまた、位置や速度及び/又は角度指向を含めて、フィードバック情報として使用される。
【0045】
センサからのフィードバックに基づいて制御を実行するために、従来の制御アルゴリズムが使用される。例えば、Leonard C. DeBenedictisとThomas R. Myersによる2003年12月23日付米国特許出願第10/745,761号(発明の名称”Method and apparatus for monitoring and controlling laser−induced tissue treatment”「レーザによる組織の治療を観察及び制御するための方法と装置」)には、特に、ハンドピース位置に基づく制御方法が開示されており、ここで参照することにより本明細書に導入する。また、David EimerlとLeonard C. DeBenedictisによる2004年6月14日付米国特許出願第10/868,134号(発明の名称”Adaptive control of optical pulses for laser medicine”「レーザ医療用光パルスの適応的制御」)に、特に、組織の特性による制御方法が開示されており、ここで参照することにより本明細書に導入する。
【0046】
図5及び図6は、逆向き回転板以外の光パターン生成器による装置の2つの例を示す。図5では、光パターン生成器として2次元傾斜ミラーが使用されている。この例では、入射ビームは、回転ミラー502,504により傾斜ミラー510の方向に向けられる。傾斜ミラー510の動きにより、光ビームは照射パターンの種々の部位に方向付けされる。図5では、4つの異なる偏向ビーム195A−195Dを示している。上記構成において、図2に示すレンズ166と多角錐体168を使用すれば、傾斜ミラー510は光ビームを連続して多角錐体の各ファセットに偏向させることができる。
【0047】
図6の例では、光パターン生成器として、空間的多重方式ホログラフィック光学素子又は複回折式光アレイ素子610が使用されている。入射光ビームはホログラフィック光学素子610に入力され、図6では素子610は4つの異なる空間部分612A−612Dから構成されている。素子610の各部分612は光ビームの一部を異なる部位に偏向している(図では1つだけの偏向ビームを示す)。この例では、素子の動きはなく、照射パターン内の全てのスポットは同時に生成される。再び図2に示す多角錐体168を参照して、ホログラフィック光学素子610は12個の異なる部分を含む構成とし、これら各部分が入射光ビームの一部を多角錐体の12個のファセットの1つに向けるように構成してもよい。照射パターン生成器として、非空間多重方式のホログラフィック素子と同様に、非ホログラフィックの空間的多重素子もまた使用可能である。
【0048】
図7は本発明に係る単一の回転素子を備えたシステム700の概略図である。システム700は図1に示すシステム100と同様の構成であるが、相違点としては、図1では2個の逆向き回転板160A,160Bが備えられているのに対して、図7では1つだけの回転素子を備えた構成である。システム100と同様に、システム700もまた光源710と光ファイバー720とハンドピース730を有する。ハンドピース730は、人体内に挿入用のプローブ部740を含む。ハンドピース730内に含まれる光学縦列部は、光ファイバーの入力ポート750と、コリメータ光学素子752と、単一の回転素子760と、光学素子762と、付加的な光導出用光学素子765を備える。プローブ740は、プローブの先端近傍に配置された透明窓745を有する。この例では、窓745はプローブ740の円筒部側に設けられている。
【0049】
システム700の動作について以下に説明する。パルス化レーザ等の光源710から出力された光ビームは光ファイバ720を介してハンドピース730に伝送される。光ビームは入力ポートからハンドピースに入力され、コリメートレンズ等の光学素子752でコリメートされる。回転素子760は、図8及び図9に示すように、回転素子760の回転軸704を中心とする円形部に配列された多数のセクタ708を有する。光ビーム790は回転面内にある方向に沿って伝送される。各セクタ708は、反射面または反射膜等の一対の反射素子を有する。回転素子760が回転すると、セクタ708は光ビーム790を横切って回転する。各セクタ708は、後述するように、入射光ビーム790をある角度だけ偏向する。偏向された光ビーム790は、光導出用光学素子765により、透明窓745から外部に導出される。回転素子760の回転により、透明窓745において照射パターンが生成される。
【0050】
システム100の場合と同様に、プローブ740が人体に挿入されると、窓745は目標組織に接触する位置となる。次いで、回転素子760は、目標組織部位において環状パターン等の照射パターンを生成する。プローブは、また、光ビーム790を目標組織に供給するための光経路を体内に保持することを完全に可能とする構造を有する。
【0051】
システム100について説明したように、応用分野や解剖学的組織構造により、環状や不規則パターン等の種々の照射パターンが利用され、また、光ビームがパルス化された実施形態も可能である。図7に示す例では、照射パターンは目標組織の治療のために用いられ、未処置の目標組織部で分離された多数の顕微鏡(微小)治療領域を生成する。光ビームは各治療部位に方向付けされるが、次の治療部位に「移る」までは、前の部位に完全に静止した状態のままである。未処置領域で分離された多数の比較的小さな「微視的な」治療領域が目標組織の治療対象であり、目標組織全体を単一の高出力光ビームで照射することとは対照的に異なっている。
【0052】
システム(又は装置)700の設計は、システム100の場合と同様に、応用分野や解剖学的組織構造により決定される。例えば、光源710はレーザ光源や、レーザ以外の光源、連続的な光源とパルス光源のどちらも利用分野に応じて使用され、または、1つの波長を有するか、又は、異なる波長を供給できるレーザ、また別の例としては、種々の波長又は波長領域を供給する2個以上の異なる種類のレーザ等を含んでもよい。更に、システム100の場合に述べた、種々の適用例、プローブの形体(プローブの形状や構成等)及びプローブの挿入方法等もまた、システム700の場合にも適用される。一例として、プローブ部140は回転板160の部分から着脱可能としてもよい。回転素子760は、プローブ740が人体内に挿入されたときに、人体の外部に保持される構成、又は、照射パターンを生成する光学素子をプローブの内部に設ける構成としてもよい。光学素子をプローブ内部に設けた場合は、プローブは、前述のように、更に柔軟性のある曲がりやすくすることができる。また、図7に示す窓745は、プローブ740の円筒部側又は他の位置に設けてもよく、異なる形状のもの、更には1つ以上の窓等の構成も可能である。
【0053】
光ビームの波長もまた適用分野によって決定される。光ビームの波長は、好ましくは約180nm〜12,000nmの間であり、例えば500nm〜3,000nmの間であり、又は1,000nm〜2,000nmの間であり、更に好ましくは1400nm〜1600nmの間である。システム100の場合と同様に、応用例としては、システム700の光エネルギーは人体組織で吸収されるように適用している。人体組織による可視光領域での吸収は、大抵の場合はヘモグロビンやメラニン等の特殊な発色基によって成される。前述のように、近赤外線領域では、水分は典型的で顕著な発色基である。
【0054】
図8は、本発明に係る光照射パターン生成器の回転素子の側面図であり、ここでは入射光ビーム801は回転素子760の回転面内に存在する。この例では、回転素子760は29個のセクタ708A,708B,708C…等々に分割され、これらセクタは回転素子760の回転軸704を中心とする円形状に配列されている。入射光ビーム801は回転面内に存在する方向に沿って進む。各セクタ708は、動作中のセクタの反射面802と803等の、一対の反射素子を有する。反射面の面法線の成分は、実質的には回転面内の成分を有する。この例では、回転素子760は、円形状に配列されたプリズム806,807,…等々を有する。プリズムの2面は反射被膜され、隣接するプリズムの反射被膜面(例えば、プリズム806と807の反射面802と803等)は、セクタの対向反射面を形成する。プリズム以外に離散構造を使用してもよく、反射面は平面である必要はない。プリズム素子の代わりに平坦な小型の鏡を使用してもよい。
【0055】
回転素子760が回転すると、セクタ708は入射光ビーム801を横切って回転する。各セクタ708は入射光ビーム801をある角度だけ偏向する。セクタ708は、各セクタが入射光ビーム801を横切って回転するときは略一定の角度で光ビームを偏向するが、各セクタごとに偏向角度は異なるように構成される。特に、入射光ビーム801は、プリズム806の第1の反射面802で反射され、次いでプリズム807の反射面803で反射され、その後、出力光ビーム805として送出される。
【0056】
これら2個の反射面802と803はペンタミラー構造を形成する。折れ曲がった光経路の面内で共に回転する偶数個の反射面は、偏向角度が反射面の回転角度に関して不変であるという特性がある。この場合、2個の反射面802,803が存在し、回転板760の回転により、プリズム806,807とそれらの反射面802,803が、共に、折れ曲がった光経路の面内で回転する。その結果、出力光ビーム805の角度は、2個の反射面802,803が入射光ビーム801を横切って回転するときには、変化しない。反射面802,803は、回転板760の回転に関して自己補正している。また、反射面802,803は、平面である場合は、回転板のウォブル(揺れ)に関して、空間的には実質的に不変である。
【0057】
回転板760が時計方向に回転して次のセクタ708及び次の2個の反射面になると、対向反射面間の異なる先端角又は刃先角(開光角度)を用いることで、偏向角度を変えることができる。この構成では、光ビームは該先端角の2倍の角度で偏向される。例えば、セクタ708Aの先端角が45度の場合は、セクタ708Aは90度の角度で入射光ビームを偏向する。セクタ708Bの先端角が44.5度の場合は、89度の角度で入射光ビームを偏向する等々である。この例では、各セクタに対して異なる先端角が使用され、各セクタは異なる角度で偏向される出力光ビームを形成している。しかし、偏向角度は、偶数の反射面が共に入射光ビームを横切って回転するために、各セクタ内において実質的には変わらない。この例では、偏向角度は基準値90度の大きさであり、その変化量は該基準値から±15度の範囲である。
【0058】
この例では、各プリズムの頂角は、下記の計算式から32.5862度である。各セクタ708は等しい角度範囲を規定している。図9ではセクタが29個あるので、各セクタが規定する角度範囲は360/29=12.4138度となる。2個のプリズム806と807は同じ形状であり、同一の頂角βを有する。回転素子760は、先端角が45度の場合、プリズム806と807は頂角の二等分線も回転軸704を通過するように配置された構成である。従って、上記構成は式:β/2+12.4138+β/2=45を満足しなければならない。この式を解くことにより、β=32.5862度を得る。
【0059】
回転板760のプリズム806から反時計方向に次のプリズム917は+αの角度だけ傾斜しており、その頂角二等分線17Lは回転板の回転中心704を通過しない。そのため、プリズム806と917で形成されたセクタの先端角は、(β/2+α)+12.4138+β/2=45+αが得られる。次のプリズム916は再度その頂角二等分線が回転中心704を通過するように整列配置され、プリズム916と917で形成されるセクタの先端角として、(β/2−α)+12.4138+β/2=45−αが得られる。次のプリズムは+2αの角度だけ傾斜し、更に次のプリズムはその頂角二等分線が回転中心704を通過するように整列配置され、次のプリズムは+3αの角度だけ傾斜し、更に次のプリズムはその頂角二等分線が回転中心704を通過するように整列配置され、等々の配置構成である。この幾何学形状は回転板760の周縁部で維持される。このような配置構成により、基準値90度に対して±15度の範囲に渡って29通りの偏向角度を生成する。なお、この例では、奇数のセクタを使用し、各プリズムごとにその頂角二等分線が整列配置のものと、その他のプリズムは角度α,2α,3α,等々の傾斜したものとを交互に配置している。
【0060】
この特定の幾何学形状を変化させることで、他の数のセクタ及び異なった偏向角の照射パターンを生成することができる。また、他の回転機構を用いて、単調に増加する順に角度偏向を生成するのではなく、同一の角度偏向を生成することも可能である。また別の例として、回転素子は偶数個のセクタとプリズムを備え、各プリズムごとにその頂角二等分線が回転中心と直線配置のものと、その他のプリズムは角度α/2,3α/2,5α/2,等々の傾斜したものとを交互に配置した構成としてもよい。この構成により、基準値においては実際に偏向を生じることなく、基準値を中心とする近傍で一群の角度偏向を生じることになる。
【0061】
また別の回転機構として、最後の照射スポットが連続した順番で生成されないように、環状の偏向を連続的に配列させる構成としてもよい。即ち、照射パターンがスポット1,2,3,…,29の配列である場合、セクタは、1から29の連続した順番以外の順でスポットを生成するように構成される。適用分野によっては、短時間内に隣接スポットを生成すると、照射領域間で熱的結合が生じ、このことは適当な治療にとって有害となり得る。プリズムを適当に配列することで、全パターンのスポットを供給しながら、一時的に連続したスポットが互いに空間的に分離したスポットを供給することができる。
【0062】
また別の幾何学図形で示される構成として、いくつかの適用分野に有利なものがある。直線形状よりもむしろジグザグ形に配列された画像パターンによって利点が得られる適用例がある。例えば、生物学的応用例において、画像スポットが直線に沿って配列し、高い照射レベルが存在する場合は、ビーム照射によりレーザメスで切るように組織を誤って切る危険性がある。ジグザグ状に画像スポットを照射することで、生体組織を誤って切断したり又は熱的損傷を与えたりすることが、実質的に低減されるとともに、高度の加熱治療を施すことが可能となる。ジグザグ状の照射スポットのパターンを実現するために、回転角αが適用された前述の幾何学形状のプリズムは、直交する傾斜角を用いてスポットに横方向の変位を与え、ジグザグ形状のパターンを生成することもできる。
【0063】
図10は、本発明に係るまた別の光パターン生成器を示す図であり、ここでは入射光ビーム1042の進行方向は、回転面に実質的に垂直方向の成分を有する。また、この光パターン生成器は、回転軸1041を有する単一の回転素子1040を使用して所望の光パターンを生成する。この例では、回転板1040は、入射光ビームを横切って回転する反射分節部1043,1044を備えている。これら分節部は、回転素子の回転軸1041と一致した光軸を有し、互いに回転対称である親元の光学面を有する。図10では、大きな親元の光学面はそれぞれ小さな反射分節部1043,1044を有し、入射光ビーム1042は2回反射された後、パターン生成器に送出される。
【0064】
図10において、回転素子は、複数組のセクタ用対向反射面1043,1044を備えた回転板1040を含み、異なるセクタは、異なる曲率半径の反射面を有し、送出ビームは、PSD(電力スペクトル密度)状態を維持したまま、各セクタに対して異なる角度で変位される。対向反射面1043と1044は回転対称であり、光学的中心線の回りに回転されるので、光ビームと交差する両反射面1043と1044は、回転に関して空間的に不変である。これら反射分節部1043,1044の半径と軸方向の分離は、システムが全ての分節部に対して略無限焦点位置に維持されるとともに、出力光ビームの角度を変化させるように設計される。
【0065】
その他の形体の光パターン生成器の例としては、ガルバノメータ、音響光学素子、電子光学素子、圧電素子、微小電子機械素子(メムス)、(回転ミラーやプリズム等の)回転素子を含む構成がある。図7−10に関して説明した単一の回転素子の光パターン生成器の詳細については、2005年6月20日出願の米国特許CIP出願第11/158,907号(発明の名称「単一の回転部品を用いた光パターン生成装置」)に開示されているので参照される。
【0066】
ここで記載した実施形態は、単に図示により例示したもので、本発明はこれらに限定するものではなく、本発明は、その精神又は基本的特徴から逸脱することなく、他の形態で実施することも可能である。本発明の範囲は、添付の特許請求の範囲に記載された内容として開示され、本発明の請求の範囲と同等の技術内容に基づく変形はすべて本発明に含まれると理解すべきである。
【図面の簡単な説明】
【0067】
【図1】本発明に係る装置の概略図である。
【図2A】図1に示す装置の光学縱列部の斜視図である。
【図2B】図1に示す装置の光学縱列部の上面図である。
【図2C】図1に示す装置の光学縱列部の正面図である。
【図3A】逆向き回転板の9:00ファセットの正面及び上面図である。
【図3B】逆向き回転板の6:00ファセットの正面及び側面図である。
【図4】本発明に係る装置の制御システムのブロック図である。
【図5】本発明に係るガルバノメータによる装置の斜視図である。
【図6】本発明に係る空間的多重方式ホログラフィック光学素子による装置の斜視図である。
【図7】本発明に係る単一の回転素子を備えた装置の概略図である。
【図8】図7に示す回転素子の側面図である。
【図9】図8に示すプリズムの傾斜を示す拡大図である。
【図10】本発明に係る他の光パターン生成器の動作を示す図である。

【特許請求の範囲】
【請求項1】
人体内の目標とする組織において有効な作用を成すための装置であって、
前記目標とする組織において所定の照射パターンを形成するように光ビームを方向付け、該照射パターンが未処置の目標組織によって分離された複数の顕微鏡的処置領域を生成するための光パターン生成器と、
人体内に光経路を保持し、前記光ビームを前記目標とする組織に供給するためのプローブと、を備えたことを特徴とする装置。
【請求項2】
前記顕微鏡的処置領域は20〜200μmの間の幅を有する請求項1記載の装置。
【請求項3】
未処置の目標組織の体積は顕微鏡的処置領域の体積よりも大きい請求項1記載の装置。
【請求項4】
前記照射パターンは環状パターンを含む請求項1記載の装置。
【請求項5】
前記照射パターンは円錐形状パターンを含む請求項1記載の装置。
【請求項6】
前記照射パターンは複数の鮮明なスポットを含む請求項1記載の装置。
【請求項7】
前記照射パターンは複数の照射スポットの不規則なパターンを含む請求項1記載の装置。
【請求項8】
前記プローブは前記目標組織と直接接触した光窓を有し、前記光ビームは該光窓を通過する請求項1記載の装置。
【請求項9】
前記光窓は熱伝導性である請求項8記載の装置。
【請求項10】
前記プローブは内視鏡プローブである請求項1記載の装置。
【請求項11】
前記プローブは関節鏡検査プローブである請求項1記載の装置。
【請求項12】
前記プローブはカテーテルプローブである請求項1記載の装置。
【請求項13】
前記プローブのモニターされる動きに連動し、該プローブの動きに基づいて前記光ビーム及び/又は前記光パターン生成器を制御するためのコントローラを更に備えた請求項1記載の装置。
【請求項14】
前記光ビームのパラメータである処置領域パターンと露光時間とエネルギー密度のうちの少なくとも1つを制御するためのコントローラを更に備えた請求項1記載の装置。
【請求項15】
前記目標組織の処置をモニターするためのセンサと、
該センサに接続され、前記モニターされた処置に基づいて目標組織に対する光ビーム照射を制御するためのコントローラを更に備えた請求項1記載の装置。
【請求項16】
前記光パターン生成器は、
回転面と回転軸を有する1個だけの回転可能な部品を備え、該回転可能な部品は前記回転軸の回りに、あるパターンで配列された複数の偏向用セクタを有し、各セクタは、光ビームと交差して回転するときに該光ビームを偏向し、前記目標組織において前記所定の照射パターンを生成する請求項1記載の装置。
【請求項17】
前記偏向用セクタは前記回転軸を中心とする円形状に配置され、該セクタは前記回転可能な部品の回転に関して自己補正するとともに、該セクタは前記回転可能な部品のウォブルに対して空間的に不変である請求項16記載の装置。
【請求項18】
各セクタは、前記回転面において第1次の偏向である一定角度の偏向により、前記入射光ビームを偏向するように構成された請求項16記載の装置。
【請求項19】
前記回転可能な部品に設けられた前記偏向用セクタの大多数に対して、各セクタは一対の対向反射面を有し、該対向反射面は、コリメートされた入射光ビームを前記照射パターンで異なる地点に向けて偏向するための前記回転面に実質的な成分を有する請求項16記載の装置。
【請求項20】
前記回転可能な部品は、前記セクタに隣接する前記回転軸の回りに配置された複数の離散構造を備え、各離散構造は少なくとも2個の反射面を有し、隣接構造からの反射面は前記セクタの対向反射面を形成する請求項16記載の装置。
【請求項21】
前記離散構造は複数のプリズムである請求項20記載の装置。
【請求項22】
前記離散構造は複数のプリズムで構成され、その他の各プリズムは、該プリズムの頂角の二等分線が前記回転軸を通過するように配列された請求項20記載の装置。
【請求項23】
前記光パターン生成器は、
入射光ビームを偏向して前記目標組織において前記所定の照射パターンを生成するための互いに逆向きに回転する2個の回転板を備えた請求項1記載の装置。
【請求項24】
前記照射パターンは環状パターンであり、N個のファセットを有する角錐状多角形を更に有する装置であって、各回転板はN個のファセットを有し、前記回転板の各組のファセットは、前記角錐状多角形の対応するファセットの方向に前記入射光ビームを偏向する請求項23記載の装置。
【請求項25】
前記照射パターンは複数のスポットを有し、前記回転板は複数組の対応するファセットを有すると共に、各組の対応するファセットは前記スポットの1つを生成し、該スポットは、前記各組のファセットが前記入射光ビームを横切って回転するときに、静止した状態である請求項23記載の装置。
【請求項26】
前記2個の回転板は複数組の対応するファセットを有し、一組の該対応するファセットの一方は収束レンズとして機能し、他方のファセットは発散レンズとして機能する請求項23記載の装置。
【請求項27】
前記2個の回転板の回転中心は距離Lだけ分離し、前記収束レンズと前記発散レンズの光学中心もまた距離Lだけ分離している請求項26記載の装置。
【請求項28】
前記2個の回転板の回転中心は距離Lだけ分離し、前記収束レンズと前記発散レンズの光学中心は距離Lに正確に等しくはないが距離Lに近似した長さだけ分離し、前記偏向された光ビームの残差クロス・スキャン角度の変位を補正する請求項26記載の装置。
【請求項29】
前記ファセットの少なくとも1つは、前記偏向された光ビームの残差クロス・スキャン角度の変位を補正するために非球面を含む請求項26記載の装置。
【請求項30】
前記偏向された光ビームの残差クロス・スキャン角度の変位を補正するために、前記収束レンズと前記発散レンズの焦点距離は僅かに異なっている請求項26記載の装置。
【請求項31】
人体内の目標とする組織において有効な作用を成すための方法であって、
光ビームを発生する工程と、
該光ビームを方向付けして前記目標とする組織において所定の照射パターンを形成することで、該照射パターンが未処置の目標組織によって分離された複数の顕微鏡的処置領域を生成する工程と、
人体内に光経路を保持する工程と、
前記光経路を介して光ビームを前記目標とする組織に供給する工程と、を備えたことを特徴とする方法。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図2C】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公表番号】特表2008−529682(P2008−529682A)
【公表日】平成20年8月7日(2008.8.7)
【国際特許分類】
【出願番号】特願2007−555372(P2007−555372)
【出願日】平成18年2月14日(2006.2.14)
【国際出願番号】PCT/US2006/005411
【国際公開番号】WO2006/088993
【国際公開日】平成18年8月24日(2006.8.24)
【出願人】(504226009)リライアント・テクノロジーズ・インコーポレイテッド (11)
【氏名又は名称原語表記】RELIANT TECHNOLOGIES, INC.
【Fターム(参考)】