説明

偏波回転素子

【課題】高精度な製造プロセスを必要とせずに、容易に実装が可能な偏波回転素子を提供する。
【解決手段】例えば酸化シリコン(屈折率1.444)からなる下部クラッド層101と、下部クラッド層101の上に配置された第1コア102及び第2コア103からなるコア部104を備える。コア部104は、例えばシリコン(屈折率3.478)から構成されている。コア部104を構成している第1コア102及び第2コア103は、同じ方向(導波方向)に延在して配置され、この方向に垂直で下部クラッド層101に平行な幅が異なる状態に形成されている。第1コア102の方が第2コア103より幅広に形成されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、シリコンなどをコアに用いた高屈折率差光導波路の偏波依存性を抑制するための偏波回転素子に関するものである。
【背景技術】
【0002】
現在の光通信用デバイスが持つ大きな課題の1つに、小型化・高集積化がある。この高集積化を光平面回路において達成するためには、大きく2つのアプローチがある。この1つは、ガラス光導波路を基礎としながら、反射型素子を部分的に用いて光導波路の曲げ半径の限界を打破しようとするものである。挿入損失の増大など、反射型素子を用いることによる特性の劣化はあるものの、従来製品の1/10程度に小型化が可能であり、偏波依存性が小さいという利点があるため、この方法の検討は進んでいる。しかしながら、反射型素子を用いる技術では、縮小率が1/10程度であり、原理的にはこれ以上の小型化が望めない。
【0003】
小型化を達成するための他の1つは、高屈折率差導波路を用いる技術である。この技術では、ガラス導波路と比較したときのデバイス面積が1/10000以下に小型化することが可能となる。特に、シリコンをコアとした導波路は、安価なデバイスを大量に提供することが可能と考えられ、多くの検討が進んでいる。しかしながら、高屈折率差導波路を用いる技術においては、偏波依存性が大きな問題となっている。特に、光通信光通信用デバイスに用いる際は、偏波依存性が大きな障害となることが指摘されている。
【0004】
高屈折率差導波路では、コア寸法が1μm以下であるため、正確な正方形コア断面を得ることが容易ではなく、また、コアの上下のクラッドの屈折率を正確に等しくすることも容易ではないため、加工精度を向上させるだけでは偏波依存性を解消させることは困難である。また、高屈折率差導波路においては、光閉じ込めが強いため、ガラス導波路のように波長板を用いた偏波無依存化では、挿入損失が大きくなりすぎるという欠点があり、また、量産の面でも実装コストの増大を招くという欠点がある。
【0005】
上述した高屈折率差導波路における問題を解消する技術として、三次元のコア形状を持つ偏波回転素子が提案されている(非特許文献1参照)。この偏波回転素子は、高屈折率材料からなる2つのコアを三次元的に結合させたものである。この技術によれば、高屈折率材料においても、挿入損失を増大させることなく、変化回転素子ひいては偏波無依存型微小光回路を実現することが可能となる。
【0006】
また、偏心二重コア構造による偏波回転素子が提案されている(特許文献1参照)。この素子は、高屈折率材料からなる第1コアと、中程度の屈折率材料からなる第2コアと、低屈折率材料からなるクラッドとから構成され、第1コアと第2コアとの光伝搬方向の中心軸が一致していない構成とされた偏心二重コア光導波路とされたものであり、これらの構成により偏波回転を実現したものである。この技術によれば、三次元コア形状による偏波回転素子と同様に、高屈折率材料においても、挿入損失を増大せずに、変化回転素子ひいては偏波無依存型微小光回路を実現することが可能である。
【0007】
【特許文献1】特開2006−330109号公報
【非特許文献1】M.R.Watts, H.A.Haus, "Integrated mode-evolution-based polarization rotators", OPTICS LETTERS, Vol.30, No.2, pp.138-140, 2005.
【発明の開示】
【発明が解決しようとする課題】
【0008】
上述したように、光平面回路において小型化・高集積化を実現するためには、高屈折率差導波路に適応した偏波回転素子が重要となる。しかしながら、非特許文献1に示された偏波回転素子では、三次元形状のコアの作製は一般に困難であり、この素子の製造歩留まりを維持することは容易ではない。また、特許文献1に示された偏心二重コア光導波路においても、実際の素子の作製に際しては、2つのコアの偏心量を数10nm以下に制御する必要がある。従って、偏心二重コア光導波路は、高精度な作製プロセスが必要となり、製造の歩留まりの低下を引き起こす可能性がある。
【0009】
以上に説明したように、従来では、高屈折率差導波路に適用可能な偏波回転素子は、高精度な製造プロセスが必要となり容易に製造ができず、また、実装も容易ではないなど多くの問題を抱えていた。
【0010】
本発明は、以上のような問題点を解消するためになされたものであり、高精度な製造プロセスを必要とせずに、容易に実装が可能な偏波回転素子を提供することを目的とする。
【課題を解決するための手段】
【0011】
本発明に係る偏波回転素子は、下部クラッド層と、下部クラッド層の上に配置され、下部クラッド層と異なる屈折率の上部クラッド層と、下部クラッド層及び上部クラッド層の間に配置され、同じ方向に延在する幅の異なる第1コア及び第2コアからなるコア部とを少なくとも備え、コア部から構成される導波路はシングルモード条件が満たされているようにしたものである。
【0012】
上記偏波回転素子において、下部クラッド層及び上部クラッド層の間に配置され、第1コア及び第2コアと同じ方向に延在してコア部を構成する第3コアを備えるようにしてもよい。
【0013】
上記偏波回転素子において、コア部は、シリコンから構成されていればよい。また、下部クラッドは、酸化シリコン,酸窒化シリコン,窒化シリコン,ポリイミド樹脂,及びエポキシ樹脂の中から選択されたものから構成され、上部クラッドは、空気,水,酸化シリコン,酸窒化シリコン,窒化シリコン,ポリイミド樹脂,及びエポキシ樹脂の中から選択された下部クラッドと異なる屈折率を持つものから構成されていればよい。
【発明の効果】
【0014】
以上説明したように、本発明によれば、幅の異なる少なくとの2つのコアからコア部を構成したので、高精度な製造プロセスを必要とせずに、容易に実装が可能な偏波回転素子が提供できるようになるという優れた効果が得られる。
【発明を実施するための最良の形態】
【0015】
以下、本発明の実施の形態について図を参照して説明する。図1は、本発明の実施の形態における偏波回転素子の構成を示す断面図である。この偏波回転素子は、例えば酸化シリコン(屈折率1.444)からなる下部クラッド層101と、下部クラッド層101の上に配置された第1コア102及び第2コア103からなるコア部104を備える。コア部104は、例えばシリコン(屈折率3.478)から構成されている。また、この偏波回転素子では、上部クラッド層105として空気(屈折率1.000))を用いている。従って、この偏波回転素子は、下部クラッド層101の上に、下部クラッド層101と屈折率が異なる上部クラッド層105が設けられ、下部クラッド層101と上部クラッド層105との間に、コア部104が設けられていることになる。
【0016】
コア部104を構成している第1コア102及び第2コア103は、同じ方向(導波方向)に延在して配置され、この方向に垂直で下部クラッド層101に平行な幅が異なる状態に形成されている。この例では、第1コア102の方が第2コア103より幅広に形成されている。
【0017】
加えて、第1コア及び第2コアよりなるコア部104から構成される導波路がシングルモード条件となるように、第1コア102及び第2コア103の断面積の総和及びこれらの間隔が設定されている。例えば、偏波を回転させる対象の信号光の波長が1.5μm帯の場合、第1コア102,第2コア103,及びこれらの間隙を含めたコア部104の断面積が、概ね0.1μm2以下であればよい。
【0018】
例えば、第1コア102は幅250nm・高さ220nmに形成され、第2コア103は、幅100nm・高さ220nmに形成され、第1コア102と第2コア103との間隔は、100nmである。
【0019】
このように、下部クラッド層と上部クラッド層とが屈折率が異なり、互いに幅の異なる複数のコアよりコア部が構成されているので、コア部の断面の中心から見ると、下部クラッド層から上部クラッド層の方向への上下方向、及び複数のコアの配列されている左右方向に、コア部を導波する光から見た屈折率を含めた状態が異なっていることになる。このように構成したことにより、コア部よりなる光導波路は、固有モードの軸が、複数のコアの配列方向(下部クラッド層の平面方向)に対して傾いた状態となる。言い換えると、本実施の形態における偏波回転素子は、導波路の固有モードの軸が、複数のコアの配列方向に対して傾いているようにしたものである。
【0020】
上記構成とした偏波回転素子の製造方法について簡単に説明すると、例えば、よく知られたSOI(Silicon on Insulator)基板を用意し、このSOI層を公知のフォトリソグラフィ技術とエッチング技術とにより加工することで、第1コア及び第2コアが形成可能である。この場合、SOI基板の埋め込み絶縁層が下部クラッド層となる。
【0021】
また、上述した各材料を用いて各寸法に形成した本実施の形態の偏波回転素子について、固有モードを計算により求めると、図2(a)及び図2(b)に示すように、A軸方向とB軸方向とが固有モードの軸となる。これら2つの固有モードの伝搬定数は異なるため、第1コア102の断面の中心と第2コア103の断面の中心とを通る直線に、平行もしくは垂直な状態で変更回転素子に入射した偏波は、コア部104よりなる導波路の伝搬中に偏波回転を受けることになる。このように、本実施の形態の偏波回転素子によれば、入射した偏波に偏波回転を与えることができる。
【0022】
なお、図3に示すように、下部クラッド層101の上に、例えば、酸窒化シリコンや窒化シリコンからなる上部クラッド層106を備えるようにしても良い。また、上部クラッド層は、空気以外の他の気体であってもよく、水などの液体から構成されていても良い。なお、下部クラッド及び上部クラッドは、屈折率が互いに異なる材料から構成すればよく、上記材料に限るものではなく、エポキシ樹脂、ポリイミド樹脂など、高分子材料から構成しても良い。下部クラッド層と上部クラッド層とに用いる材料の可能な組み合わせについて、以下の表1に示す。なお、クラッド層は、コアより低屈折率であることは言うまでもない。
【0023】
【表1】

【0024】
また、本例では、第1コア102及び第2コア103を同じ高さとしたが、これに限るものではなく、これらが異なる高さとなっていても良い。なお、前述したように製造する観点からは、第1コア及び第2コアは、同じ高さに形成する方が容易である。
【0025】
また、本例では、下部クラッド層101の上において、第1コア102及び第2コア103の全側面を上部クラッド層で覆うようにしているが、これに限るものではない。例えば、第1コア及び第2コアが、これらの上面を露出した状態で下部クラッド層に埋め込まれ、この上に上部クラッド層が設けられているようにしても良い。また、第1コア及び第2コアが、これらの側面の半分程度まで下部クラッド層に埋め込まれ、この上に、上部クラッド層が設けられているようにしても良い。
【0026】
次に、本実施の形態における偏波回転素子の適用例について説明する。図4は、上記偏波回転素子が適用される偏波無依存型波長フィルタの構成例を示す構成図である。この偏波無依存型波長フィルタは、入射導波路401,偏波分離素子402,第1分離導波路403,第2分離導波路404,偏波回転素子405a,波長フィルタ406,第3分離導波路407,第4分離導波路408,偏波回転素子405b,合波素子409,及び出射導波路410を備えている。偏波回転素子405a及び偏波回転素子405bが、前述した本実施の形態における偏波回転素子である。また、各導波路は、シリコンをコアとした高屈折率差光導波路である。
【0027】
この偏波無依存型波長フィルタは、入射導波路401に入射したTE,TMの混在した入射光411は、偏波分離素子402により例えばTE成分の分岐光412及びTM成分の分岐光413に分離され、各々第1分離導波路403及び第2分離導波路404に伝搬する。ここで、第1分離導波路403を伝播(導波)した分岐光412の偏波は回転を受けることがない。これに対し、第2分離導波路404には偏波回転素子405aが接続されているため、分岐光413の偏波は90°回転を受けて分岐光413aとなる。分岐光413aは、例えば、TE偏波になる。
【0028】
以上のようにして、第1分離導波路403及び第2分離導波路404を通過した分岐光412及び分岐光413aは、どちらもTE偏波の状態で、波長フィルタ406によってろ波される。波長フィルタ406によってろ波される分岐光412及び分岐光413aは、同じ偏波状態(TE偏波)であるため、入射光411の偏波の状態が変化しても、波長フィルタ406を透過する透過波長といった特性は変化しない。
【0029】
この後、波長フィルタ406を通過した分岐光412は、第3分離導波路407に伝搬し、分岐光413aは、第4分離導波路408に伝搬する。ここで、第3分離導波路407には偏波回転素子405aが接続されているため、分岐光412の偏波は90°回転を受けて分岐光412aとなる。分岐光412aは、例えば、TM偏波になる。これに対し、第4分離導波路408を伝播(導波)した分岐光413aの偏波は回転を受けることがない。
【0030】
以上のようにして、第3分離導波路407及び第4分離導波路408を通過した分岐光412a及び分岐光413aは、合波素子409によって合波され、出射導波路410より出射する。
【0031】
上述した分離、回転、合波は、2つの直交する偏波成分に対して線形に作用するため、信号の歪みは生じない。また、分岐光412及び分岐光413は、ともに1回ずつ偏波分離,偏波回転,合波の過程を経ているので、いずれかの処理の差異に過剰損失が発生したとしても、最終的には偏波依存損失につながることがない。これらのように、上述した構成の偏波無依存型波長フィルタによれば、偏波依存性の大きな高屈折率差導波路を用いていながら偏波依存化が実現されている。
【0032】
ところで、本実施の形態における偏波回転素子は、図5(a)の平面図に示すように、長さ(導波路長)をLとした1つ(一組)のコア部104から構成してもよく、また、図5(b)の平面図に示すように、導波方向に直列に配置した複数のコア部104から構成しても良い。複数のコア部104から構成する場合、導波方向に垂直な方向の第1コア102と第2コア103との配列(配置関係)が、隣り合うコア部104においては、互いに異なるようにする。図5(b)では、第1コア102と第2コア103との配置関係が交互に異なるように、4つのコア部104を直列に配置した例を示している。なお、図5において、下部クラッド及び上部クラッドは省略している。
【0033】
次に、図5(b)に示すように、各々の長さがLの4つのコア部104を直列に配置した偏波回転素子の偏波消光比を、固有モード展開法で計算した結果について説明する。図6は、計算した偏波消光比(TE,TM偏波の強度比)と偏波回転素子の長さとの関係を示す特性図である。なお、図6に示す特性図の横軸「L(μm)」は、1つのコア部104の長さを示している。従って、横軸Lが40μmは、変化回転素子の長さが40×4=160μmの場合である。ここで、前述したように、第1コア102は、幅250nm・高さ220nm、第2コア103は、幅100nm・高さ220nm、第1コア102と第2コア103との間隔は、100nmである。また、入射光は、波長1550nmのTM偏波とした。図6から明らかなように、L=40μm程度において、入射したTM偏波を、90°回転してTE偏光としている。言い換えると、L=40μm程度とすることで、TM偏波をTE偏波に90°回転する偏波回転素子として機能する。
【0034】
ところで、本実施の形態の偏波回転素子は、例えば、図7に示すように、コア部104に、入力導波路コア601及び出力導波路コア602を接続して用いればよい。図7(a)は、斜視図であり、図7(b)は平面図である。なお、図7において、下部クラッド及び上部クラッドは省略している。この構成において、入力導波路コア601及び出力導波路コア602は、コア部104と同じ材料から構成すればよく、例えば、シリコンなどの高屈折率材料から形成すればよい。また、入力導波路コア601及び出力導波路コア602は、断面の寸法がシングルモード条件を満たしている。例えば、対象とする信号光の波長が1550nm程度(1.5μm帯)である場合、入力導波路コア601及び出力導波路コア602の断面積は、0.1μm2以下であればよい。
【0035】
上記構成とした偏波回転素子では、直線偏光である入射光は、入力導波路コア601の部分より入力され、この導波路部分を伝搬してコア部104よりなる偏波回転領域に入射し、この偏波回転領域を伝搬する中で偏波が回転する。このようにして、偏波回転領域において、設定されているコア部104の長さによる所望の回転角だけ回転した後、偏波が回転した導波光は出力導波路コア602による導波路より出力される。
【0036】
また、図8(a),図8(b)に示すように、入力導波路コア601及び出力導波路コア602の間に、複数のコア部104を配置しても良い。例えば、図8(a)は、2つのコア部104よりなる偏波回転領域を備える場合を示し、図8(b)ば、3つ以上の複数のコア部104よりなる偏波回転領域を備える場合を示している。なお、図8において、下部クラッド及び上部クラッドは省略している。このように、複数のコア部104から構成する場合、導波方向に垂直な方向の第1コア102と第2コア103との配列(配置関係)が、隣り合うコア部104においては、互いに異なるようにする。例えば、図8(a)の紙面において、隣り合うコア部104の一方のコア部104は、第1コア102が紙面上方に配置され、他方のコアは、第1コア102が紙面下方に配置されていればよい。言い換えると、第1コア102と第2コア103との間隙の位置が、隣り合うコア部104で異なっている。
【0037】
また、図9(a)及び図9(b)に示すように、コア部104と入力導波路コア601の間、及び、コア部104と出力導波路コア602との間に、接続部603を設けるようにしても良い。接続部603は、第1コア102に連続する第1テーパコア603aと、第2コア103に連続する第2テーパコア603bとから構成されている。なお、図9において、下部クラッド及び上部クラッドは省略している。
【0038】
第1テーパコア603aは、第1コア102との接続端面が、第1コア102の接続端面(断面)の形状と等しくされ、ここより導波方向に離れるに従って徐々に断面の面積が広くなるように形成されている。本例では、第1テーパコア603aは、第1コア102との接続端面より導波方向に離れるに従って、徐々に断面の幅が広くなるように形成されている。
【0039】
また、第2テーパコア603bは、第2コア103との接続端面が、第2コア103の接続端面(断面)の形状と等しくされ、ここより導波方向に離れるに従って徐々に断面の面積が広くなるように形成されている。本例では、第2テーパコア603bは、第2コア103との接続端面より導波方向に離れるに従って、徐々に断面の幅が広くなるように形成されている。
【0040】
また、第1テーパコア603a及び第2テーパコア603bと入力導波路コア601との接続端面においては、第1テーパコア603aの接続端面と第2テーパコア603bの接続端面とを合わせた形状が、入力導波路コア601の接続端面(断面)の形状に等しくなっている。同様に、第1テーパコア603a及び第2テーパコア603bと入力導波路コア602との接続端面においては、第1テーパコア603aの接続端面と第2テーパコア603bの接続端面とを合わせた形状が、入力導波路コア602の接続端面(断面)の形状に等しくなっている。
【0041】
従って、接続部603においては、第1テーパコア603aと第2テーパコア603bとの間隔(間隙)が、コア部104から離れるに従って徐々に狭まり、入力導波路コア601との接続箇所もしくは出力導波路コア602との接続箇所においては、間隙がない状態となる。
【0042】
以上のような構成とした接続部603を設けることで、入力導波路コア601とコア部104との間,及びコア部104と出力導波路コア602との間の光結合の損失を低減することができる。
【0043】
また、図10(a),図10(b)に示すように、入力導波路コア601及び出力導波路コア602の間に、両端に接続部603を配置したコア部104からなる偏波回転領域の組を複数組直列に配置しても良い。例えば、図10(a)は、二組の偏波回転領域を備える場合を示し、図10(b)ば、三組以上の偏波回転領域を備える場合を示している。なお、図10において、下部クラッド及び上部クラッドは省略している。
【0044】
このように、複数のコア部104を配置する場合、導波方向に垂直な方向の第1コア102と第2コア103との配列(配置関係)が、隣り合うコア部104においては、互いに異なるようにする。例えば、図10(a)の紙面において、隣り合うコア部104の一方のコア部104は、第1コア102が紙面上方に配置され、他方のコアは、第1コア102が紙面下方に配置されていればよい。また、この状態に合わせて、接続部603を配置する。
【0045】
ところで、上述では、幅の異なる2つのコアからなるコア部で偏波回転素子を形成したが、これに限るものではない。例えば、図11(a)の平面図に示すように、第1コア102及び第2コア103に加え、第2コア103より幅の狭い第1コア103aから、コア部1104を構成し、入力導波路コア601及び出力導波路コア602を接続して用いてもよい。
【0046】
このように構成したコア部1104においても、第1コア102,第2コア103,及び第3コア103aは、同じ方向(導波方向)に延在して配置され、この方向に垂直で下部クラッド層101に平行な幅が異なる状態に形成されていればよい。この例では、第1コア102,第2コア103,第3コア103aの順に、幅が狭くされている。
【0047】
加えて、コア部1104から構成される導波路がシングルモード条件となるように、第1コア102,第2コア103,及び第3コア103aの断面積の総和及びこれらの間隔が設定されている。例えば、偏波を回転させる対象の信号光の波長が1.5μm帯の場合、第1コア102,第2コア103,第3コア103a,及びこれらの間隙を含めたコア部1104の断面積が、概ね0.1μm2以下であればよい。なお、当然ではあるが、コア部1104の断面形状は、入力導波路コア601及び出力導波路コア602の断面形状と一致している。
【0048】
また、この例においても、図11(b)に示すように、入力導波路コア601及び出力導波路コア602の間に、複数のコア部1104を配置しても良い。また、図11(c)に示すように、コア部1104と入力導波路コア601との間,及びコア部1104と出力導波路コア602との間に、接続部1105を設けるようにしてもよい。接続部1105は、図11(d)の平面図に拡大して示すように、接続部1105は、第1コア102に連続する第1テーパコア1105a,第2コア103に連続する第2テーパコア1105b,及び第3コア103aに連続する第3テーパコア1105cから構成されている。なお、図11において、下部クラッド及び上部クラッドは省略している。
【0049】
第1テーパコア1105aは、第1コア102との接続端面が、第1コア102の接続端面(断面)の形状と等しくされ、ここより導波方向に離れるに従って徐々に断面の面積が広くなるように形成されている。本例では、第1テーパコア1105aは、第1コア102との接続端面より導波方向に離れるに従って、徐々に断面の幅が広くなるように形成されている。
【0050】
また、第2テーパコア1105bは、第2コア103との接続端面が、第2コア103の接続端面(断面)の形状と等しくされ、ここより導波方向に離れるに従って徐々に断面の面積が広くなるように形成されている。本例では、第2テーパコア1105bは、第2コア103との接続端面より導波方向に離れるに従って、徐々に断面の幅が広くなるように形成されている。
【0051】
また、第3テーパコア1105cは、第3コア103aとの接続端面が、第3コア103aの接続端面(断面)の形状と等しくされ、ここより導波方向に離れるに従って徐々に断面の面積が広くなるように形成されている。本例では、第3テーパコア1105cは、第3コア103aとの接続端面より導波方向に離れるに従って、徐々に断面の幅が広くなるように形成されている。
【0052】
また、第1テーパコア1105a,第2テーパコア1105b,及び第3テーパコア1105cと入力導波路コア601との接続端面においては、第1テーパコア1105aの接続端面,第2テーパコア1105bの接続端面,及び第3テーパコア1105cの接続端面とを合わせた形状が、入力導波路コア601の接続端面(断面)の形状に等しくなっている。これは、出力導波路コア602の側においても同様である。
【0053】
従って、接続部1105においては、第1テーパコア1105aと第2テーパコア1105bとの間隔(間隙)及び第2テーパコア1105bと第3テーパコア1105cとの間隙が、コア部1104から離れるに従って徐々に狭まり、入力導波路コア601との接続箇所もしくは出力導波路コア602との接続箇所においては、間隙がない状態となる。
【0054】
なお、上述では、3つのコアでコア部を構成したが、これに限るものではなく、4つのコアでコア部を構成してもよく、互いの幅の異なる複数のコアでコア部を構成しても良い。この場合においても、各コアは、所定の間隔を開けて配置されていればよい。
【図面の簡単な説明】
【0055】
【図1】本発明の実施の形態における偏波回転素子の構成を示す断面図である。
【図2】本発明の実施の形態における偏波回転素子における2つの固有モードの構成を示す断面図である。
【図3】本発明の実施の形態における偏波回転素子の構成を示す断面図である。
【図4】本発明の実施の形態における偏波回転素子が適用される偏波無依存型波長フィルタの構成例を示す構成図である。
【図5】本発明の実施の形態における偏波回転素子の構成例を示す平面図である。
【図6】本発明の実施の形態における偏波回転素子における計算した偏波消光比(TE,TM偏波の強度比)と偏波回転素子の長さとの関係を示す特性図である。
【図7】本発明の実施の形態における偏波回転素子の構成例を示す斜視図(a)及び平面図(b)である。
【図8】本発明の実施の形態における偏波回転素子の構成例を示す平面図である。
【図9】本発明の実施の形態における偏波回転素子の構成例を示す斜視図(a)及び平面図(b)である。
【図10】本発明の実施の形態における偏波回転素子の構成例を示す平面図である。
【図11】本発明の実施の形態における他の偏波回転素子の構成例を示す平面図である。
【符号の説明】
【0056】
101…下部クラッド層、102…第1コア、103…第2コア、104…コア部、105,106…上部クラッド層。

【特許請求の範囲】
【請求項1】
下部クラッド層と、
前記下部クラッド層の上に配置され、前記下部クラッド層と異なる屈折率の上部クラッド層と、
前記下部クラッド層及び前記上部クラッド層の間に配置され、同じ方向に延在する幅の異なる第1コア及び第2コアからなるコア部と
を少なくとも備え、
前記コア部から構成される導波路はシングルモード条件を満たす
ことを特徴とする偏波回転素子。
【請求項2】
請求項1記載の偏波回転素子において、
前記下部クラッド層及び前記上部クラッド層の間に配置され、前記第1コア及び前記第2コアと同じ方向に延在して前記コア部を構成する第3コアを備える
ことを特徴とする偏波回転素子。
【請求項3】
請求項1又は2記載の偏波回転素子において、
前記コア部は、シリコンから構成されていることを特徴とする偏波回転素子。
【請求項4】
請求項3記載の偏波回転素子において、
前記下部クラッドは、酸化シリコン,酸窒化シリコン,窒化シリコン,ポリイミド樹脂,及びエポキシ樹脂の中から選択されたものから構成され、
前記上部クラッドは、空気,水,酸化シリコン,酸窒化シリコン,窒化シリコン,ポリイミド樹脂,及びエポキシ樹脂の中から選択された前記下部クラッドと異なる屈折率を持つものから構成されていることを特徴とする変化回転素子。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2009−53224(P2009−53224A)
【公開日】平成21年3月12日(2009.3.12)
【国際特許分類】
【出願番号】特願2007−216948(P2007−216948)
【出願日】平成19年8月23日(2007.8.23)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成19年度、総務省「シリコン光−電気融合プラットフォームによる光集積回路の研究開発」委託研究、産業技術力強化法第19条の適用を受ける特許出願
【出願人】(000004226)日本電信電話株式会社 (13,992)
【Fターム(参考)】