説明

光モジュールおよび分散補償装置

【課題】過剰損失の抑制を図り、透過特性を向上させる。
【解決手段】レンズ11aは、入力光を集光して集光ビームを生成する。VIPA板12は、光を高反射する反射面12aおよび反射面12aよりも低い反射率を持つ反射膜1−1が蒸着される透過面12bを備え、反射面12aと透過面12bとで挟まれる内部領域で、窓12cから入射された集光ビームを多重反射させて、透過面12bを介して回折した光を出射する。反射ミラー13は、透過面12bから出射された出射光を反射し、戻り光を生成して透過面12bに再び到達させる。反射膜1−1は、高反射率の高反射膜1aと低反射率の低反射膜1bとを含み、出射光と戻り光との結合部分が大きくなるように、光強度の高い出射光が放出される透過面12bの部分には高反射膜1aを蒸着し、光強度の低い出射光が放出される透過面12bの部分には低反射膜1bを蒸着する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光モジュールおよび分散補償装置に関し、波長分波を行う光モジュールおよび光の波長分散の補償を行う分散補償装置に関する。
【背景技術】
【0002】
高速大容量の光伝送を行う技術として、波長の異なる光を多重化して、1本の光ファイバで複数の信号を同時に伝送するWDM(Wavelength Division Multiplex)方式が広く用いられている。
【0003】
また、光ファイバにおける伝送速度は、光の波長毎に異なるため、伝送距離が伸びるにつれ、光のパルス波形が鈍る波長分散が生じる。波長分散は、波長が1nm異なるふたつの単色光を1km伝搬させたときの伝搬時間差、単位はps/nm/kmで定義される。
【0004】
大容量・長距離の光伝送を実現するWDMシステムで、波長分散によるパルス広がりが生じると、受信レベルを著しく劣化させてシステムに有害な影響を及ぼすことになる。このため、波長分散を等価的にゼロに(キャンセル)する分散補償を行って、光伝送時に生じた分散を抑制する必要がある。分散補償を行う機器としては、近年、VIPA(Virtually Imaged Phased Array)と呼ばれる光学部品を利用した分散補償器が注目されている。
【0005】
VIPAは、ガラスプレートの両面に反射率の高い膜をコーティングした波長分波素子(VIPA板)を有したデバイスであり、VIPA板に集光ビームを入力してガラスプレート内部で多重反射させることで、通常の回折格子を用いずに、波長分波を行うことを可能にする。以降、図20〜図23でVIPAの基本概念について説明する。
【0006】
図20はVIPAの基本構成を示す図である。VIPA50は、シリンドリカルレンズ(ラインフォーカスレンズ)51、VIPA板(エタロン部)52から構成される。
シリンドリカルレンズ51は、入力光を集光するレンズである。VIPA板52は、反射率100%の反射膜(または反射率が100%に近い反射膜)5aがコーティングされた反射面52aと、反射率がおよそ95〜98%の反射膜5bがコーティングされた透過面52bと、窓(照射窓)52cとを有するガラスプレートである。
【0007】
図21はVIPA50の動作概要を説明するための図である。シリンドリカルレンズ51で集光されたビームB1は、VIPA板52の窓52cから入力する。このとき、ビームB1の光軸Zは、VIPA板52の法線Hに対して、小さな傾き角θを持っている。
【0008】
反射面52aの反射率を100%、透過面52bの反射率を98%とすると、ビームB1の2%の光は、透過面52bからガラスプレートの厚み分のビーム径を持って外部へ出射し(透過面52bから出射する光は、広がり角の少ない丸いビーム(コリメートビーム)であり、ビーム径はガラスプレートの厚み分となる)、残りの98%のビームB1aは、反射面52a側へ向かって反射する(ビームB1aは、ガラスプレート内部で、プレートの厚み分わずかに広がりながら反射面52aへ向かう)。
【0009】
また、反射面52aは反射率100%なので、ビームB1aは、透過面52bに向かって全反射する(ビームB1aは、ガラスプレート内部で、プレートの厚み分わずかに広がりながら透過面52bへ向かう)。そして、ビームB1aの2%の光は、ガラスプレートの厚み分のビーム径を持って透過面52bから外部へ出射する。このとき、ビームB1とビームB1aの出射光のスポット位置はdだけずれている。
【0010】
同様に、ビームB1aの残りの98%のビームB1bは、反射面52a側へ向かって反射する。このようなことが繰り返されることで、シリンドリカルレンズ51を介して、VIPA板52に入力したビームは、VIPA板52内で少しずつ広がりながら多重反射し、透過面52bから一定の間隔dだけ離れて光が少しずつ出射していくことになる。
【0011】
透過面52bから一定の間隔dだけ離れて出射する光は、あたかも階段状に配列された仮想出射スポットv1〜vn(図21ではv4まで示す)から出射しているとみなせ(これにより、バーチャリ・イメージ・フェーズド・アレイと呼ばれている)、この振る舞いは、エシェロン型(階段状)の回折格子の動作といえるので、出射光は分光されて出射することになる。
【0012】
また、これらの仮想出射スポットv1〜vnは、VIPA板52のガラスプレートの厚みをDとすれば、VIPA板52の法線Hに沿って、一定の間隔2Dで配置される。仮想出射スポットv1、v2について見ると、線分pq=線分qr=Dであるから、仮想出射スポットv1、v2の配置間隔は、VIPA板52の法線H上に2Dとなり、その他の仮想出射スポットの配置間隔も間隔2Dで配置することになる。
【0013】
図22はVIPA50の干渉条件を示す図である。出射スポットvaから出射される光に対し、ビームB2aでは、経路t0内にm個の波長(中波長とする)があるものとする。この場合、ビームB2aの上側のビームB2bで、光が強め合う方向に干渉条件が満たされる場合、経路t1<経路t0なので、ビームB2bにm個の波長が入るためには、ビームB2bの波長は、ビームB2aに含まれる波長よりも短波長となる必要がある。
【0014】
また、ビームB2aの下側のビームB2cで、光が強め合う方向に干渉条件が満たされる場合、経路t0<経路t2なので、ビームB2cにm個の波長が入るためには、ビームB2cの波長は、ビームB2aに含まれる波長よりも長波長となる必要がある。
【0015】
したがって、VIPA板52からの出射光に対して、光が強め合う干渉条件は、光軸を基準に上側が短波長、下側が長波長となることであることから、VIPA板52から光軸の上側には短波長の光が、下側には長波長の光が出射されることになる。
【0016】
図23はVIPA板52の回折光の次数を示す概念図である。VIPA板52の中間出射ポイントからは、回折次数(回折格子によって回折された光の方向を示す正または負の整数)がm次の光が出射する。また、中間出射ポイントの上側の出射ポイントからはm−1次、下側の出射ポイントからは、m+1次の光が出射される。このように、VIPA板52からは、さまざまな回折次数の光が出射するが、制御に必要な次数の回折光のみ着眼することになる。
【0017】
次に波長分散による受信劣化について説明する。図24は波長分散が生じて正常受信できない状態を説明するための図である。光ファイバF0を通じて、“0”、“1”のデータを持つ信号光が流れている。ここで、1ビットのパルスのスペクトルに着目すると、1ビットを構成するパルスのスペクトルには、複数の波長が含まれている。スペクトル中間の波長をλC、長波長側をλL、短波長側をλSとし、波長λCの速度をV(λC)、波長λLの速度をV(λL)、波長λSの速度をV(λS)とする。
【0018】
これらの波長λC、λL、λSが、光ファイバF0を通じて、同じ速度で伝送して受信機Rxに到達すれば(V(λC)=V(λL)=V(λS))、該当1ビットの波形には、歪みは生じておらず、正常にビット識別が可能である。
【0019】
ところが、伝送距離が伸びたりして波長分散が生じると、1ビットを構成しているスペクトルの波長が、V(λS)>V(λC)>V(λL)というように、速度差が生じてしまう。このような速度差が生じると、該当1ビットの伝送波形には歪みが生じることになり、受信機Rxにおいて正確なビット識別が行えなくなる。
【0020】
次にVIPA50を使用した分散補償について図25、図26を用いて説明する。図25、図26はVIPA型分散補償の概念を説明するための図である。VIPA板52の出射側に、集光レンズ53と反射ミラー54が配置される。出射した回折光は、集光レンズ53によって反射ミラー54に集光される。
【0021】
反射ミラー54は、非球面形状をしており、反射位置によってさまざまな方向に光を反射させる。また、反射ミラー54のカーブによって反射方向を変えることができる。ここで、短波長λSのビーム(ビームλSとする)は、VIPA板52の中心より上側の箇所に到達するように反射させ、長波長λLのビーム(ビームλLとする)は、中心より下側の箇所に到達するように反射させる。
【0022】
すると図26のように、反射したビームλSは、VIPA板52の上側のポイントp1に到達してVIPA板52に再度入力するので、VIPA板52内部で多くの回数の反射を繰り返して窓52cから出射することになる。また、反射したビームλLは、VIPA板52の下側のポイントp2に到達して再度入力するので、VIPA板52内部で少ない回数の反射を繰り返して窓52cから出射することになる。
【0023】
このように、反射ミラー54で反射された光は、VIPA板52に到達し、VIPA板52の到達位置は各波長によって異なるので、VIPA板52内部で多重反射して窓52cに戻るまでに時間差が生じることになり、波長毎に時間差(分散)を発生させることができる(群遅延時間を発生させることができる)。
【0024】
上記の場合、波長分散によって、短波長λSが最も早く受信機Rxに到達し、長波長λLが最も遅く到達するので、短波長λSに対して多くの遅延時間を発生させ(短波長λSの光は、VIPA板52の窓52cから出射されるまでに遠回りさせているイメージである)、長波長λLの遅延時間は小さくすることで(長波長λLの光は、VIPA板52の窓52cから出射されるまでに近回りさせているイメージである)、光伝送路上で生じた波長分散の補償を行うものである。
【0025】
従来技術として、VIPAを使用した分散補償デバイスは、特許文献1に提案されている。また、VIPA板の応用例として、応力補正膜を設けて、VIPA板の応力平衡を保つ技術が特許文献2に提案されている。
【特許文献1】特表2000−511655号公報(第32頁−第33頁,第18図)
【特許文献2】特開2004−117747号公報(段落番号〔0026〕〜〔0028〕,第1図)
【発明の開示】
【発明が解決しようとする課題】
【0026】
しかし、上記のようなVIPA型分散補償は、光損失が大きいといった問題があった。すなわち、VIPA板52の窓52cへ入射する入射光と、VIPA板52の透過面52bから放出された光が反射ミラー54によって反射され、再び透過面52bに入射して窓52cから出射される出射光とを比べると、この出射光は、波長分散は補償されてはいるが、入射前と比べて光損失が大きい(過剰損失が発生する)といった問題があった。以降、図27〜図31を用いて過剰損失が発生する理由について説明する。
【0027】
図27はVIPA板52の出射光の振幅分布を示す図である。VIPA板52では、窓52cから入射した光は、VIPA板52内部で多重反射しながら、透過面52bから少しずつ光が放出する。
【0028】
このため、透過面52bから最初に放出する光の強度は高く、反射を繰り返すにつれて等比級数的に放出光の強度は減少していくことになる。したがって、VIPA板52から出射される1つの波長の光は、図27に示すような、減衰曲線の振幅分布を持った光として放出されることになる。
【0029】
図28は出射光が反射した後の戻り光の振幅分布を示す図である。出射光の振幅分布A1の像は、集光レンズ53で反射ミラー54上に集光し、反射ミラー54で反射し、再度集光レンズ53に入射して平行光に変換される。したがって、戻り光(反射ミラー54で反射した出射光)の振幅分布A2は、反転した像となってVIPA板52の透過面52b上に現れる。
【0030】
図29は戻り光が出射光の反転した分布になることを示す図である。共に焦点距離fのレンズL1、L2を図のように配置させて、レンズL1側に物体m1を置いて光を当てる。すると、レンズL2側には、物体m1の反転した像m1aが現れることになる。
【0031】
レンズL2をミラーL2aに代えて、レンズL1から焦点距離f離れた位置に配置し、同じように物体m1に光を当てると、戻り光による像は、反転像m1aとなって物体m1の下方にできることになり、これと同じ現象が図28でも生じていることになる。
【0032】
ここで、透過面52bから出射された出射光の振幅分布A1は、反射ミラー54で反射されて、図28に示すような戻り光の振幅分布A2となって再び透過面52b上に現れることになるが、このとき、出射光と同一位相かつ同一振幅の戻り光だけが出射光と結合することができる。すなわち、出射光と同じ状態(同一位相かつ同一振幅)の戻り光のみが、VIPA板52の透過面52bから入射することができ、VIPA板52内部で多重反射して、窓52cから出射することができる。
【0033】
図30は出射光と戻り光との結合部分を示す図である。出射光と同一位相かつ同一振幅の戻り光の結合部分(以下、重なり部分とも表記する)A0は、斜線部となり、この領域に存在する戻り光のみが透過面52bに入射することができる。このため、重なり部分が大きいほど透過特性は良いということになる。
【0034】
図31は波長によって戻り光の振幅分布が現れる位置が異なる様子を示す図である。図30に示したように、光軸近傍を伝搬してVIPA板52に到達する波長の戻り光の場合では、出射光の振幅分布A1と戻り光の振幅分布A2の重なりはある程度は大きい。
【0035】
一方、上述したように、分散補償を行う場合では、時間差を多く発生させる(多重反射の回数を多くする)必要がある波長に対しては、反射ミラー54によって、透過面52bのよりずれた位置に到達するように反射させることになるので、光軸からずれた戻り光の振幅分布A2−1となるような波長が存在する。
【0036】
このような戻り光は、光軸からずれてVIPA板52に戻るために、出射光の振幅分布A1と戻り光の振幅分布A2−1との重なりは小さくなる。このように、中心波長から離れる波長ほど光軸ずれが大きい光路を伝搬し、光軸ずれが大きいほど重なりが小さくなるので、過剰損失がさらに大きく発生することになる。
【0037】
ただし、出射光の振幅分布A1そのものが、光軸に対して非対称な分布をしているので、たとえ光軸近傍を伝搬してVIPA板52に戻る戻り光であっても、その戻り光の振幅分布との重なり部分は元々少ないものであって、従来の構成では、過剰損失が大きく発生することは避けられない。
【0038】
本発明はこのような点に鑑みてなされたものであり、VIPA板からの出射光と、VIPA板への戻り光との結合部分が大きくなるように、VIPA板の透過面の反射特性を制御して、過剰損失の抑制を図った光モジュールを提供することを目的とする。
【0039】
また、本発明の他の目的は、VIPA板からの出射光と、VIPA板への戻り光との結合部分が大きくなるように、VIPA板の透過面の反射特性を制御して、過剰損失の抑制を図った分散補償装置を提供することである。
【課題を解決するための手段】
【0040】
上記課題を解決するために、波長分波を行う光モジュールが提供される。この光モジュールは、入力光を集光して集光ビームを生成するレンズと、光を高反射する反射面および前記反射面よりも低い反射率を持つ反射膜が蒸着される透過面を備え、前記反射面と前記透過面とで挟まれる内部領域で、入射された前記集光ビームを多重反射させて、前記透過面を介して回折した光を出射する光学部品と、前記透過面から出射された出射光を反射し、戻り光を生成して前記透過面に再び到達させる反射ミラーとを備える。
【0041】
ここで、反射膜は、高反射率の高反射膜と低反射率の低反射膜とを含み、出射光と戻り光との結合部分が大きくなるように、光強度の高い出射光が放出される透過面の部分には高反射膜を蒸着し、光強度の低い出射光が放出される透過面の部分には低反射膜を蒸着する。
【発明の効果】
【0042】
光強度の高い出射光が放出される透過面の部分には、高反射率の高反射膜を蒸着し、光強度の低い出射光が放出される透過面の部分には、低反射率の低反射膜を蒸着することによって、VIPA板からの出射光と、VIPA板への戻り光との結合部分を大きくすることができ、過剰損失を抑制することが可能になる。
【発明を実施するための最良の形態】
【0043】
以下、本発明の実施の形態を図面を参照して説明する。図1は光モジュールの原理図である。光モジュール1は、レンズ11a、11b、光学部品12(VIPA板12)、反射ミラー13から構成され、分散補償器等に利用されるモジュールである。
【0044】
レンズ11aは、入力光を集光して集光ビームを生成する。VIPA板12は、光を高反射する反射面12a(反射率100%または100%に近い反射膜がコーティングされた面である)および反射面12aよりも低い反射率を持つ反射膜(誘電体膜)1−1が蒸着される透過面12bを備える。
【0045】
また、反射面12aと透過面12bとで挟まれる内部領域で、窓12cから入射された集光ビームを多重反射させて、透過面12bを介して回折した光を出射する。レンズ11bは、透過面12bから出射された回折光を反射ミラー13に集光する。反射ミラー13は、透過面12bから出射された出射光を反射し、戻り光を生成してVIPA板12の透過面12bに再び到達させる。
【0046】
ここで、反射膜1−1は、高反射率の高反射膜1aと低反射率の低反射膜1bとを含み、出射光と戻り光との結合部分が大きくなるように、光強度の高い出射光が放出される透過面12bの部分には高反射膜1aを蒸着し、光強度の低い出射光が放出される透過面12bの部分には低反射膜1bを蒸着する。
【0047】
次に光モジュール1の透過面12bで行う反射制御の基本的な考え方について説明する。図2は光モジュール1の基本概念を説明するための図である。上述したように、出射光の振幅分布は、光軸に対して非対称な分布をしているので、光軸ずれが小さい戻り光の場合であっても結合部分は小さく、大きな過剰損失が生じることになる。
【0048】
これに対し、理想的に出射光の振幅分布が長方形の形状で実現できれば、戻り光の振幅分布も長方形の形状となるので、出射光と戻り光の結合部分は、従来の減衰型の振幅分布より明らかに大きくなり、光軸ずれに強くかつ過剰損失も少ないものが実現できることがわかる。
【0049】
ただし、長方形形状の振幅分布を持つように出射させることは実際には困難であるので、光モジュール1のVIPA板12においては、出射光と同一位相かつ同一振幅となる戻り光が増えるように、透過面12bでの反射制御を行うことで、できるだけ長方形の形状に近くなるようにして結合部分を大きくし、過剰損失の抑制を図るものである。
【0050】
次に光モジュール1の反射制御の特徴について説明する。図3は光モジュール1の特徴を示す模式図である。出射光と戻り光との結合部分を大きくするために、高反射率の高反射膜1aを蒸着することで、出射光の減衰を緩やかにし、出射しきれなかった光エネルギーを放出しきるために、低反射率の反射膜1bを蒸着する。
【0051】
具体的な数値を上げると、光強度の高い出射光が放出される透過面12bの部分に対して、98%から99%の高反射率の高反射膜1aを蒸着することで、出射光の減衰分布の減衰を緩やかにする。そして、光強度の低い出射光が放出される透過面12bの部分には、90%から95%の低反射率の低反射膜1bを蒸着することで、高反射膜1aによってVIPA板12から出射しきれない光(光エネルギー)をすべて放出させるようにする。
【0052】
このように、透過面12bの反射率を2段構成にすることにより、出射光の振幅分布a1は、従来の減衰曲線形状と比べて、長方形形状に近いものにすることができる。また、戻り光の振幅分布a2は、出射光の振幅分布a1を反転したものとなるが、明らかに結合部分が大きくなっていることがわかる。
【0053】
なお、出射光の振幅分布a1において、高反射と低反射の境目には、ピークkが現れている。これは、通常は低反射膜1bよりも高反射膜1aの方を、透過面12bに対して広く蒸着させるが、この場合、例えば、高反射膜1aの高反射率で光を70%放出しているとすると、残り30%の光は、低反射膜1bの低反射率のときに放出することになるので、低反射膜1bの短い区間で30%の光を一気に集中して放出することになるためにピークkが現れるものである(したがって、低反射膜1bの反射率が低すぎたり、低反射膜1bがコーティングされる面積が小さかったりすると、ピークkが高くなりすぎることになるので、数値計算を行って適切な値の反射率などを求めることになる)。
【0054】
したがって、出射光の振幅分布a1には、透過面12bから最初に放出されることにより光強度が最も高い振幅であるピークP1aと、高反射と低反射の境目にできるピークP2aとが現れることになるが、このような振幅分布だと、特に光軸対称で折り返してきた戻り光に対して、図3からわかるように、ピーク同士が重なり合うことになり、結合部分がさらに増えることになる。
【0055】
すなわち、ピークP1aに該当する、戻り光の振幅分布a2の振幅をピークP1a−1とし、ピークP2aに該当する、戻り光の振幅分布a2の振幅をピークP2a−1とすれば、出射光のピークP1aと戻り光のピークP2a−1とが重なり、出射光のピークP2aと戻り光のピークP1a−1とが重なることになる。
【0056】
上記のような2段膜構成にすることにより、振幅分布を長方形に近い形状にしたことによる、出射光と戻り光との重なり部分と、振幅分布を長方形に近い形状にしたことによって付随する、出射光のピークと戻り光のピークとの重なり部分と、ができることになり、これらの作用により、出射光と戻り光との重なり部分が大幅に増えて、過剰損失の抑制を図ることが可能になる。
【0057】
次に高反射膜1aと低反射膜1bの蒸着方法について説明する。図4は蒸着方法の一例を示す図である。透過面12bを2段膜構成とする場合、まずは低反射膜を透過面12bの全面にコートし、次に低反射率の状態を保ちたい箇所に保護テープ2を装着する。そして、高反射率の状態とする箇所には、再度、膜(低反射率の膜など)を蒸着する。
【0058】
このように蒸着することで、保護テープ2で保護された箇所は低反射膜1b、保護されてない箇所は高反射膜1aとなり、2段の膜構成とすることができる。なお、透過面12b上に振幅分布の範囲(分散可変範囲)をどの程度広げるかによって、高反射膜1aと低反射膜1bとのコーティング面積の比率(膜比率)は異なってくるが、分散範囲を広げていくならば、低反射膜1bよりも高反射膜1aが貼られる面積が広がることになる。
【0059】
また、このような膜構成を持つVIPA板12の使用方法については、通常の使用方法と何ら変わるものではない。なお、高反射膜1aおよび低反射膜1bの広さ(膜比率)および各反射率については、デバイスに要求されるスペック(分散可変範囲、帯域幅等)によって左右されるので、シミュレーションなどによる数値計算を行って求めることになる。
【0060】
次に光モジュール1の効果について説明する。図5、図6は出射光と戻り光の振幅分布のシミュレーション結果を示す図である。縦軸は振幅値、横軸は時間である。図5は従来の振幅分布、図6は光モジュール1の振幅分布を示している。
【0061】
図5、図6を比べると、光モジュール1によって生成した振幅分布の重なり部分a0は、従来の減衰曲線型の振幅分布の重なり部分A0に対して大きくなっており、出射光と戻り光の結合度が改善されていることが確認できる。
【0062】
図7は透過特性のシミュレーション結果を示す図である。縦軸は透過特性(dB)、横軸は波長(nm)である。グラフg1は光モジュール1による透過特性、グラフg2は従来の透過特性である。
【0063】
透過特性は波長に依存する。また、透過特性の値が0dBのときは、何ら損失がなく光が通過することを示すものなので、各波長の透過特性の値が0dBに近いほど透過特性は良好であることを表す(過剰損失が小さいことを表す)。
【0064】
グラフg1、g2から、光モジュール1では、各波長において、透過特性がおよそ1.5dB程度改善されていることがわかる。例えば、波長1545.2nmを見ると、グラフg2により、従来では過剰損失は5dBであるが、光モジュール1の過剰損失では、グラフg1により、3.5dBとなっており、1.5dBの改善がなされている。
【0065】
次に光モジュール1を適用した分散補償装置について説明する。図8は分散補償装置の構成を示す図である。分散補償装置10は、光入出力処理部14、シリンドリカルレンズ11a(前段レンズ)、光学部品(VIPA板)12、集光レンズ11b(後段レンズ)、反射ミラー13から構成される。
【0066】
光入出力処理部14は、入力してきた入力光と、内部で処理された後の出力光(分散補償されてVIPA板12から戻ってきた出力光)とが重ならないように光路の切り分けを行う。すなわち、VIPA板12に到達するまでの入力光と、VIPA板12から戻ってきた出力光とがオーバラップしないように分離する。
【0067】
シリンドリカルレンズ11aは、光入出力処理部14から出力された光(入力光)を集光して、VIPA板12の窓12cに入射する。VIPA板12の内部で多重反射して出射した回折光は、集光レンズ11bによって反射ミラー13に集光される。反射ミラー13は、透過面12bから出射された出射光を反射し、戻り光を生成する。反射された戻り光は、集光レンズ11bを介して、波長毎に遅延時間差を付けるために必要な、透過面12bの所定の箇所に到達する。なお、光進行方向をy軸、光進行方向の上下の垂直方向をz軸、y軸とz軸に垂直な方向をx軸とした場合、反射ミラー13は、z軸を回転軸として任意に可動することが可能である。
【0068】
VIPA板12の内部で多重反射して窓12cから出射する光は、図25、図26で上述した制御によって分散補償されており、シリンドリカルレンズ11aは、分散補償後の光(出力光)を平行光にして、光入出力処理部14へ入力する。光入出力処理部14は、出力光を入力光と重ならないように外部へ送信する。なお、VIPA板12による分散補償動作の詳細については上述したので説明は省略する。
【0069】
次に分散補償装置10の構成例について説明する。図9は分散補償装置の構成を示す図である。分散補償装置10−1の光入出力処理部14−1は、サーキュレータ14a、コリメートレンズ14b、光ファイバFを含む。その他の構成は図8と同じなので、光入出力処理部14−1について説明する。
【0070】
サーキュレータ14aは、3つのポートP1〜P3を有し、ポートP1から入力した光は、ポートP2から出力させ、ポートP2から入力した光は、ポートP3から出力させるものである。
【0071】
サーキュレータ14aのポートP1に入力した光は、ポートP2から出力して、光ファイバFへ入力する。光ファイバFから出力された光は、コリメートレンズ14bによって平行光となって、シリンドリカルレンズ11aに向かう。
【0072】
また、VIPA板12の窓12cから出力した分散補償後の出力光は、シリンドリカルレンズ11aで平行光となって、コリメートレンズ14bによって集光され、光ファイバFに入力する。そして、光ファイバFからの出力光は、サーキュレータのポートP2に入力し、ポートP3へドロップして出力パス側へ伝送される。なお、分散補償装置10−1のように、サーキュレータ14aによって入力光と出力光とを分離するタイプでは、反射ミラー13を可動させる必要はない。
【0073】
図10は分散補償装置の構成を示す図である。図8の装置構成を真上から見た図である(z軸の上から下方向に見た図である)。分散補償装置10−2の光入出力処理部14−2は、入力側光ファイバF1、出力側光ファイバF2、入力側レンズ14c、出力側レンズ14dを含む。その他の構成は図8と同じなので、光入出力処理部14−2について説明する。
【0074】
入力側光ファイバF1と出力側光ファイバF2とは平行に配置する。入力側レンズ14cは、入力側光ファイバF1とシリンドリカルレンズ11aとの間に配置し、出力側レンズ14dは、出力側光ファイバF2とシリンドリカルレンズ11aとの間に配置して、互いに平行に位置する。
【0075】
入力側光ファイバF1から出力された入力光は、入力側レンズ14cによって平行光となってシリンドリカルレンズ11aへ向かう。また、VIPA板12から出力した分散補償後の出力光は、シリンドリカルレンズ11aで平行光となり、出力側レンズ14dによって集光されて、出力側光ファイバF2に入力する。
【0076】
このような光入出力処理部14−2の構成により、入力光と出力光との光路を切り分ける。なお、分散補償装置10−2のように、入力側光ファイバF1と出力側光ファイバF2とを平行に配置して、入力光と出力光とを分離するタイプでは、反射ミラー13をz軸で適宜回転させて、入力光(VIPA板12の出射光)に対して出力光(反射ミラー13の戻り光)がオーバラップしないように反射方向を変えることになる。
【0077】
図11は分散補償装置の構成を示す図である。図8の装置構成を真上から見た図である(z軸の上から下方向に見た図である)。分散補償装置10−3の光入出力処理部14−3は、入力側光ファイバF1、出力側光ファイバF2、共通レンズ14eを含む。その他の構成は図8と同じなので、光入出力処理部14−3について説明する。
【0078】
入力側光ファイバF1と出力側光ファイバF2とは平行に配置する。共通レンズ14eは、入力側光ファイバF1および出力側光ファイバF2と、シリンドリカルレンズ11aとの間に配置する。
【0079】
入力側光ファイバF1から出力された入力光は、共通レンズ14eによって平行光となってシリンドリカルレンズ11aへ向かう。また、VIPA板12から出力した分散補償後の出力光は、シリンドリカルレンズ11aで平行光となり、共通レンズ14eによって集光されて、出力側光ファイバF2に入力する。
【0080】
このような光入出力処理部14−3の構成により、入力光と出力光との光路を切り分ける。なお、分散補償装置10−3のように、入力側光ファイバF1と出力側光ファイバF2とを平行に配置して、入力光と出力光とを分離するタイプでは、反射ミラー13をz軸で適宜回転させて、入力光(VIPA板12の出射光)に対して出力光(反射ミラー13の戻り光)がオーバラップしないように反射方向を変えることになる。
【0081】
図12は反射ミラー13の回転の様子を示す図である。反射ミラー13は、入力光と出力光とが重ならないようにz軸回転する。なお、この回転量は、装置の上位から指示されて駆動することができる。
【0082】
次に反射ミラー13について説明する。図24で上述したように、光ファイバ伝送で波長分散が生じると、短波長側の光と長波長側の光では、受信機における到達時間に差が生じる。
【0083】
このため、分散補償を行う場合、反射ミラーでは、VIPA板の透過面の上方へ短波長側の戻り光が到達するように反射する。また、VIPA板の透過面の下方へ長波長側の戻り光が到達するように反射する。
【0084】
このような反射をすれば、短波長の戻り光は、VIPA板内部で多くの回数の多重反射を繰り返してから窓から出力し、長波長の戻り光は、VIPA板内部で少ない回数の多重反射を繰り返してから窓から出力することになるので、波長毎の遅延時間差をなくすことができ、波長分散を補償するものであった。
【0085】
したがって、反射ミラーにおいては、VIPA板から出射された光を反射する場合、短波長の光に対しては、VIPA板の透過面の上方向へ到達するような、長波長の光に対しては、VIPA板の透過面の下方向へ到達するような、ミラー形状とする必要がある。
【0086】
図13は反射パターンを示す図である。ミラー3aの形状が凸面形状の場合は、方向d1から入射した光は上方向に反射する。また、ミラー3bの形状が凹面形状の場合は、同じ方向d1から入射した光は下方向に反射する。
【0087】
したがって、反射ミラーにおいて、基本的には、VIPA板で回折された短波長の出射光が集光する箇所では、ミラー形状は凸面にし、長波長の出射光が集光する箇所では、ミラー形状は凹面にすればよいことがわかる。
【0088】
次に反射ミラー13のミラー形状について説明する。図14〜図19は反射ミラー13のミラー形状パターンを示す図である。図13の概念にもとづいて設計したミラー形状の各パターンを示している。
【0089】
図14の反射ミラー13aは、出射光の波長が短い方から長い方に移行する際に、ミラー表面が凸面から凹面に連続して変化するように形成される。なお、図14〜図19を通じて、中心波長の光は、ミラー表面の凹凸の変局点に集光する。
【0090】
図15の反射ミラー13bは、出射光の波長が短い方から長い方に移行する際に、ミラー表面が強い凸面から弱い凸面に連続して変化するように形成される。このように、ミラー表面に凹凸を付けなくても、ミラー表面全体を凸面にして、短波長から長波長に移行するにつれて、強い凸面から弱い凸面のような形状にしてもよい。
【0091】
さらに、図16の反射ミラー13cは、出射光の波長が短い方から長い方に移行する際に、ミラー表面が弱い凹面から強い凹面に連続して変化するように形成される。このように、ミラー表面に凹凸を付けなくても、ミラー表面全体を凹面にして、短波長から長波長に移行するにつれて、弱い凹面から強い凹面のような形状にしてもよい。
【0092】
一方、図17の反射ミラー13dは、凹面部分と凸面部分を持ち、中心波長より短い波長の出射光は、凸面部分から反射し、中心波長より長い波長の出射光は、凹面部分から反射する。
【0093】
また、図18の反射ミラー13eは、中心波長を超える出射光の波長が長くなるにつれて、平面部分から連続的に凹面部分に変化するように形成する。そして、中心波長より短い波長の出射光は平面部分に入射し、中心波長より長い波長の出射光は凹面部分に入射する。
【0094】
さらに、図19の反射ミラー13fは、中心波長を超える出射光の波長が長くなるにつれて、凸面部分から連続的に平面部分に変化するように形成する。そして、中心波長より短い波長の出射光は凸面部分に入射し、中心波長より長い波長の出射光は平面部分に入射する。
【0095】
(付記1) 波長分波を行う光モジュールにおいて、
入力光を集光して集光ビームを生成するレンズと、
光を高反射する反射面および前記反射面よりも低い反射率を持つ反射膜が蒸着される透過面を備え、前記反射面と前記透過面とで挟まれる内部領域で、入射された前記集光ビームを多重反射させて、前記透過面を介して回折した光を出射する光学部品と、
前記透過面から出射された出射光を反射し、戻り光を生成して前記透過面に再び到達させる反射ミラーと、
を備え、
前記反射膜は、高反射率の高反射膜と低反射率の低反射膜とを含み、
前記出射光と前記戻り光との結合部分が大きくなるように、光強度の高い前記出射光が放出される前記透過面の部分には前記高反射膜を蒸着し、光強度の低い前記出射光が放出される前記透過面の部分には前記低反射膜を蒸着する、
ことを特徴とする光モジュール。
【0096】
(付記2) 前記出射光は、前記透過面から最初に放出された光強度は最も高く、多重反射を繰り返すにつれて光強度が低くなることによる減衰曲線の振幅分布を有し、
高反射率の前記高反射膜を蒸着することで減衰を緩やかにし、低反射率の前記低反射膜を蒸着することで、前記高反射膜によって放出しきれない光をすべて放出させる、
ことを特徴とする付記1記載の光モジュール。
【0097】
(付記3) 前記高反射膜は、98%から99%の高反射率を有し、前記低反射膜は、90%から95%の低反射率を有することを特徴とする付記1記載の光モジュール。
(付記4) 光の波長分散の補償を行う分散補償装置において、
入力してきた入力光と、内部で処理された後の出力光との光路の切り分けを行う光入出力処理部と、
光を高反射する反射面および前記反射面よりも低い反射率を持つ反射膜が蒸着される透過面を備え、光が入出力する窓が前記反射面側に設けられた光学部品と、
前記透過面から出射された出射光を反射し、戻り光を生成して前記透過面の所定の箇所に再び到達させる可動型の反射ミラーと、
前記光入出力処理部と前記光学部品との間に配置して、前記入力光を集光して集光ビームを生成する前段レンズと、
前記光学部品と前記反射ミラーとの間に配置して、前記出射光を前記反射ミラーに集光する後段レンズと、
を備え、
前記光学部品は、前記窓に入射した前記集光ビームを、前記反射面と前記透過面とで挟まれる内部領域で多重反射させて、前記透過面を介して回折した前記出射光を出射し、前記透過面に到達した前記戻り光を、前記内部領域で多重反射させて、分散補償した光を前記出力光として前記窓から出射し、
前記反射膜は、高反射率の高反射膜と低反射率の低反射膜とを含み、
前記出射光と前記戻り光との結合部分が大きくなるように、光強度の高い前記出射光が放出される前記透過面の部分には前記高反射膜を蒸着し、光強度の低い前記出射光が放出される前記透過面の部分には前記低反射膜を蒸着する、
ことを特徴とする分散補償装置。
【0098】
(付記5) 前記出射光は、前記透過面から最初に放出された光強度は最も高く、多重反射を繰り返すにつれて光強度が低くなることによる減衰曲線の振幅分布を有し、
高反射率の前記高反射膜を蒸着することで減衰を緩やかにし、低反射率の前記低反射膜を蒸着することで、前記高反射膜によって放出しきれない光をすべて放出させる、
ことを特徴とする付記4記載の分散補償装置。
【0099】
(付記6) 前記高反射膜は、98%から99%の高反射率を有し、前記低反射膜は、90%から95%の低反射率を有することを特徴とする付記4記載の分散補償装置。
(付記7) 前記光入出力処理部は、3つのポートを持つサーキュレータを含み、前記入力光は、第1のポートに入力して第2のポートから出力して、前記前段レンズへ向かい、前記光学部品から出力された前記出力光は、前記第2のポートに入力して第3のポートから出力することで、光路の切り分けを行うことを特徴とする付記4記載の分散補償装置。
【0100】
(付記8) 前記光入出力処理部は、前記入力光を伝送する入力側光ファイバと、前記入力側光ファイバと前記前段レンズとの間に配置する入力側レンズと、前記光学部品から戻った前記出力光を伝送する出力側光ファイバと、前記出力側光ファイバと前記前段レンズとの間に配置する出力側レンズとを含み、
前記入力側レンズは、前記入力側光ファイバの出力した前記入力光を前記光学部品に方向づけ、前記出力側レンズは、前記出力光を前記出力側光ファイバに方向づけることで、光路の切り分けを行うことを特徴とする付記4記載の分散補償装置。
【0101】
(付記9) 前記光入出力処理部は、前記入力光を伝送する入力側光ファイバと、前記光学部品から戻った前記出力光を伝送する出力側光ファイバと、前記入力側光ファイバおよび前記出力側光ファイバと、前記前段レンズとの間に配置する共通レンズとを含み、
前記共通レンズは、前記入力側光ファイバの出力した前記入力光を前記光学部品に方向づけ、前記光学部品から戻った前記出力光を前記出力側光ファイバに方向づけることで、光路の切り分けを行うことを特徴とする付記4記載の分散補償装置。
【0102】
(付記10) 前記反射ミラーは、前記出射光の波長が短い方から長い方に移行する際に、ミラー表面が凸面から凹面に連続して変化するように形成されることを特徴とする付記4記載の分散補償装置。
【0103】
(付記11) 前記反射ミラーは、前記出射光の波長が短い方から長い方に移行する際に、ミラー表面が強い凸面から弱い凸面に連続して変化するように形成されることを特徴とする付記4記載の分散補償装置。
【0104】
(付記12) 前記反射ミラーは、前記出射光の波長が短い方から長い方に移行する際に、ミラー表面が弱い凹面から強い凹面に連続して変化するように形成されることを特徴とする付記4記載の分散補償装置。
【0105】
(付記13) 前記反射ミラーは、凹面部分と凸面部分を持ち、中心波長より短い波長の前記出射光は、前記凸面部分から反射し、前記中心波長より長い波長の前記出射光は、前記凹面部分から反射することを特徴とする付記4記載の分散補償装置。
【0106】
(付記14) 前記反射ミラーは、中心波長を超える前記出射光の波長が長くなるにつれて、平面部分から連続的に凹面部分に変化するように形成し、
前記中心波長より短い波長の前記出射光は、前記平面部分に入射し、前記中心波長より長い波長の前記出射光は、前記凹面部分に入射することを特徴とする付記4記載の分散補償装置。
【0107】
(付記15) 前記反射ミラーは、中心波長を超える前記出射光の波長が長くなるにつれて、凸面部分から連続的に平面部分に変化するように形成し、
前記中心波長より短い波長の前記出射光は、前記凸面部分に入射し、前記中心波長より長い波長の前記出射光は、前記平面部分に入射することを特徴とする付記4記載の分散補償装置。
【0108】
(付記16) 波長分波を行う光学部品において、
光を高反射する反射面と、
前記反射面よりも低い反射率を持つ反射膜が蒸着される透過面と、
前記反射面側に設けられて、光が入出力する窓と、
を備え、
前記反射面と前記透過面とで挟まれる内部領域で、前記窓から入射された集光ビームを多重反射させて、前記透過面を介して回折した光を出射し、
前記反射膜は、高反射率の高反射膜と低反射率の低反射膜とを含み、
前記透過面から出射した出射光が反射され、戻ってきた戻り光が前記透過面に再び到達する際に、前記出射光と前記戻り光との結合部分が大きくなるように、
光強度の高い前記出射光が放出される前記透過面の部分には前記高反射膜を蒸着し、光強度の低い前記出射光が放出される前記透過面の部分には前記低反射膜を蒸着する、
ことを特徴とする光学部品。
【0109】
(付記17) 前記出射光は、前記透過面から最初に放出された光強度は最も高く、多重反射を繰り返すにつれて光強度が低くなることによる減衰曲線の振幅分布を有し、
高反射率の前記高反射膜を蒸着することで減衰を緩やかにし、低反射率の前記低反射膜を蒸着することで、前記高反射膜によって放出しきれない光をすべて放出させる、
ことを特徴とする付記16記載の光学部品。
【0110】
(付記18) 前記高反射膜は、98%から99%の高反射率を有し、前記低反射膜は、90%から95%の低反射率を有することを特徴とする付記16記載の光学部品。
【図面の簡単な説明】
【0111】
【図1】光モジュールの原理図である。
【図2】光モジュールの基本概念を説明するための図である。
【図3】光モジュールの特徴を示す模式図である。
【図4】蒸着方法の一例を示す図である。
【図5】出射光と戻り光の振幅分布のシミュレーション結果を示す図である。
【図6】出射光と戻り光の振幅分布のシミュレーション結果を示す図である。
【図7】透過特性のシミュレーション結果を示す図である。
【図8】分散補償装置の構成を示す図である。
【図9】分散補償装置の構成を示す図である。
【図10】分散補償装置の構成を示す図である。
【図11】分散補償装置の構成を示す図である。
【図12】反射ミラーの回転の様子を示す図である。
【図13】反射パターンを示す図である。
【図14】反射ミラーの形状パターンを示す図である。
【図15】反射ミラーの形状パターンを示す図である。
【図16】反射ミラーの形状パターンを示す図である。
【図17】反射ミラーの形状パターンを示す図である。
【図18】反射ミラーの形状パターンを示す図である。
【図19】反射ミラーの形状パターンを示す図である。
【図20】VIPAの基本構成を示す図である。
【図21】VIPAの動作概要を説明するための図である。
【図22】VIPAの干渉条件を示す図である。
【図23】VIPA板の回折光の次数を示す概念図である。
【図24】波長分散が生じて正常受信できない状態を説明するための図である。
【図25】VIPA型分散補償の概念を説明するための図である。
【図26】VIPA型分散補償の概念を説明するための図である。
【図27】VIPA板の出射光の振幅分布を示す図である。
【図28】出射光が反射した後の戻り光の振幅分布を示す図である。
【図29】戻り光が出射光の反転した分布になることを示す図である。
【図30】出射光と戻り光との結合部分を示す図である。
【図31】波長によって戻り光の振幅分布が現れる位置が異なる様子を示す図である。
【符号の説明】
【0112】
1 光モジュール
1−1 反射膜
1a 高反射膜
1b 低反射膜
11a、11b レンズ
12 光学部品(VIPA板)
12a 反射面
12b 透過面
12c 窓
13 反射ミラー

【特許請求の範囲】
【請求項1】
波長分波を行う光モジュールにおいて、
入力光を集光して集光ビームを生成するレンズと、
光を高反射する反射面および前記反射面よりも低い反射率を持つ反射膜が蒸着される透過面を備え、前記反射面と前記透過面とで挟まれる内部領域で、入射された前記集光ビームを多重反射させて、前記透過面を介して回折した光を出射する光学部品と、
前記透過面から出射された出射光を反射し、戻り光を生成して前記透過面に再び到達させる反射ミラーと、
を備え、
前記反射膜は、高反射率の高反射膜と低反射率の低反射膜とを含み、
前記出射光と前記戻り光との結合部分が大きくなるように、光強度の高い前記出射光が放出される前記透過面の部分には前記高反射膜を蒸着し、光強度の低い前記出射光が放出される前記透過面の部分には前記低反射膜を蒸着する、
ことを特徴とする光モジュール。
【請求項2】
前記出射光は、前記透過面から最初に放出された光強度は最も高く、多重反射を繰り返すにつれて光強度が低くなることによる減衰曲線の振幅分布を有し、
高反射率の前記高反射膜を蒸着することで減衰を緩やかにし、低反射率の前記低反射膜を蒸着することで、前記高反射膜によって放出しきれない光をすべて放出させる、
ことを特徴とする請求項1記載の光モジュール。
【請求項3】
光の波長分散の補償を行う分散補償装置において、
入力してきた入力光と、内部で処理された後の出力光との光路の切り分けを行う光入出力処理部と、
光を高反射する反射面および前記反射面よりも低い反射率を持つ反射膜が蒸着される透過面を備え、光が入出力する窓が前記反射面側に設けられた光学部品と、
前記透過面から出射された出射光を反射し、戻り光を生成して前記透過面の所定の箇所に再び到達させる可動型の反射ミラーと、
前記光入出力処理部と前記光学部品との間に配置して、前記入力光を集光して集光ビームを生成する前段レンズと、
前記光学部品と前記反射ミラーとの間に配置して、前記出射光を前記反射ミラーに集光する後段レンズと、
を備え、
前記光学部品は、前記窓に入射した前記集光ビームを、前記反射面と前記透過面とで挟まれる内部領域で多重反射させて、前記透過面を介して回折した前記出射光を出射し、前記透過面に到達した前記戻り光を、前記内部領域で多重反射させて、分散補償した光を前記出力光として前記窓から出射し、
前記反射膜は、高反射率の高反射膜と低反射率の低反射膜とを含み、
前記出射光と前記戻り光との結合部分が大きくなるように、光強度の高い前記出射光が放出される前記透過面の部分には前記高反射膜を蒸着し、光強度の低い前記出射光が放出される前記透過面の部分には前記低反射膜を蒸着する、
ことを特徴とする分散補償装置。
【請求項4】
前記出射光は、前記透過面から最初に放出された光強度は最も高く、多重反射を繰り返すにつれて光強度が低くなることによる減衰曲線の振幅分布を有し、
高反射率の前記高反射膜を蒸着することで減衰を緩やかにし、低反射率の前記低反射膜を蒸着することで、前記高反射膜によって放出しきれない光をすべて放出させる、
ことを特徴とする請求項3記載の分散補償装置。
【請求項5】
前記光入出力処理部は、3つのポートを持つサーキュレータを含み、前記入力光は、第1のポートに入力して第2のポートから出力して、前記前段レンズへ向かい、前記光学部品から出力された前記出力光は、前記第2のポートに入力して第3のポートから出力することで、光路の切り分けを行うことを特徴とする請求項3記載の分散補償装置。
【請求項6】
前記光入出力処理部は、前記入力光を伝送する入力側光ファイバと、前記入力側光ファイバと前記前段レンズとの間に配置する入力側レンズと、前記光学部品から戻った前記出力光を伝送する出力側光ファイバと、前記出力側光ファイバと前記前段レンズとの間に配置する出力側レンズとを含み、
前記入力側レンズは、前記入力側光ファイバの出力した前記入力光を前記光学部品に方向づけ、前記出力側レンズは、前記出力光を前記出力側光ファイバに方向づけることで、光路の切り分けを行うことを特徴とする請求項3記載の分散補償装置。
【請求項7】
前記光入出力処理部は、前記入力光を伝送する入力側光ファイバと、前記光学部品から戻った前記出力光を伝送する出力側光ファイバと、前記入力側光ファイバおよび前記出力側光ファイバと、前記前段レンズとの間に配置する共通レンズとを含み、
前記共通レンズは、前記入力側光ファイバの出力した前記入力光を前記光学部品に方向づけ、前記光学部品から戻った前記出力光を前記出力側光ファイバに方向づけることで、光路の切り分けを行うことを特徴とする請求項3記載の分散補償装置。
【請求項8】
前記反射ミラーは、前記出射光の波長が短い方から長い方に移行する際に、ミラー表面が凸面から凹面に連続して変化するように形成されることを特徴とする請求項3記載の分散補償装置。
【請求項9】
波長分波を行う光学部品において、
光を高反射する反射面と、
前記反射面よりも低い反射率を持つ反射膜が蒸着される透過面と、
前記反射面側に設けられて、光が入出力する窓と、
を備え、
前記反射面と前記透過面とで挟まれる内部領域で、前記窓から入射された集光ビームを多重反射させて、前記透過面を介して回折した光を出射し、
前記反射膜は、高反射率の高反射膜と低反射率の低反射膜とを含み、
前記透過面から出射した出射光が反射され、戻ってきた戻り光が前記透過面に再び到達する際に、前記出射光と前記戻り光との結合部分が大きくなるように、
光強度の高い前記出射光が放出される前記透過面の部分には前記高反射膜を蒸着し、光強度の低い前記出射光が放出される前記透過面の部分には前記低反射膜を蒸着する、
ことを特徴とする光学部品。
【請求項10】
前記出射光は、前記透過面から最初に放出された光強度は最も高く、多重反射を繰り返すにつれて光強度が低くなることによる減衰曲線の振幅分布を有し、
高反射率の前記高反射膜を蒸着することで減衰を緩やかにし、低反射率の前記低反射膜を蒸着することで、前記高反射膜によって放出しきれない光をすべて放出させる、
ことを特徴とする請求項9記載の光学部品。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate


【公開番号】特開2010−8487(P2010−8487A)
【公開日】平成22年1月14日(2010.1.14)
【国際特許分類】
【出願番号】特願2008−164554(P2008−164554)
【出願日】平成20年6月24日(2008.6.24)
【出願人】(000005223)富士通株式会社 (25,993)
【Fターム(参考)】