説明

分光センサ

(a)電子プロセッサを含む回路基板、(b)それぞれが回路基板に取り付けられた複数の放射線源、および(c)回路基板に取り付けられたスペクトル検出器、を含むセンサであり、スペクトル検出器が、複数の放射線源の一つまたは複数に由来する放射線を分析するように構成されている、センサを開示する。使用中、センサは被験者の体の一部に装着されるように構成される。電子プロセッサは、複数の放射線源の2つ以上に入射放射線を被験者に向けさせ、スペクトル検出器に被験者からの放射線を分析させ、被験者からの放射線に基づいて被験者の一つまたは複数の特性を決定するように構成される。これらのセンサを作成および使用する方法も開示する。


【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、内容全体が参照により本明細書に組み入れられる、2008年8月7日に出願された米国仮特許出願第61/087,084号の優先権を主張する。
【0002】
連邦政府の支援による研究に関する記載
本発明は、国立宇宙生物医学研究所(National Space Biomedical Research Institute)助成金No.SMS00004、および米陸軍医学研究司令部(U.S.Army Medical Research and Materiel Command)契約No.W81XWH-06-1-0545の下の政府支援で行われた。政府は本発明に一定の権利を有する。
【0003】
技術分野
本開示はセンサに関し、より詳細には試料特性を測定するための分光センサに関する。
【背景技術】
【0004】
背景
近赤外線は一般に皮膚および脂肪の層を通過して、筋組織中の血管を照射することができる。放射線は赤血球中のヘモグロビン、筋線維中のミオグロビン、水分、および血漿中の別のタンパク質により吸収されることができる。放射線は筋線維と血球の両方により散乱され、散乱放射線は検出され、散乱放射線の波長依存性を決定するために分析されることができる。筋組織中の様々な吸収成分の吸収度スペクトルが、組織に届けられる入射放射線のスペクトル、および組織からの散乱放射線を比較することにより決定されることができる。ある種の試料では吸収度スペクトル中の特定のスペクトル特徴が筋組織中の特定の成分に割り当てられることができる(たとえば、ある種のスペクトルシグネチャがヘモグロビンおよび/またはミオグロビンによる吸収に割り当てられることができる)。
【発明の概要】
【0005】
概要
本明細書において開示されるのは、装置、たとえばセンサ、ならびにヒトおよび動物の組織を含む試料の近赤外スペクトルを測定するための、およびスペクトルに基づき試料の一つまたは複数の特性を決定するための方法である。具体的には、本明細書において開示される機器は、多数の放射線源、スペクトル検出器、ならびに放射線源および検出器を制御する電子プロセッサを含む回路基板ベースのセンサを含み、検出器からのスペクトル情報を処理して試料の吸収度スペクトルを計算し、吸収度スペクトルに基づき試料の特性を決定する。
【0006】
センサは異なる放射線源-検出器距離にある放射線源を含むことができる。具体的には、センサは多数の遠距離放射線源を含むことができ、それらの放射線源のそれぞれが試料を照射することができ、それらの照射に続いて試料からの散乱放射線が測定される。試料の遠距離放射線源照射から得られる散乱放射線スペクトルは、典型的には試料内部の筋組織からと、センサと筋組織の間に配置される皮膚および/または脂肪の層からの両方のスペクトル寄与を含む。吸収度スペクトルは、散乱放射線スペクトルを遠距離放射線源による入射放射線スペクトルと比較することにより、散乱放射線スペクトルから生成されることができる。
【0007】
以下の議論では、試料の吸収度スペクトルについて言及する。しかし、本明細書において開示される機器および方法はまた、測定された散乱放射線スペクトルから反射率スペクトルを得るために使用されることができる。一般に、反射率および吸収度は簡単な数学的変換により関係付けられ、本明細書において開示される機器および方法は、試料から得られる反射率情報および/または吸収度情報を使って区別なく使用されることができる。散乱放射線のスペクトル情報を試料に関する反射率スペクトルおよび/または吸収度スペクトルに変換する方法は、たとえば、内容全体が参照により本明細書に組み入れられる、米国特許出願公報第2008/0097173号に開示されている。
【0008】
典型的には、センサはまた、試料を照射することができ、かつその照射に続き試料からの散乱放射線が測定されることができる一つまたは複数の近距離放射線源を含む。典型的には、試料の近距離放射線源照射から得られる散乱放射線スペクトルは、実質的にセンサと筋組織の間に配置される皮膚および/または脂肪の層からだけのスペクトル寄与を含む。上述のように、吸収度スペクトルは、散乱放射線スペクトルを近距離放射線源による入射放射線スペクトルと比較することにより、散乱放射線スペクトルから生成されることができる。さらに、遠距離照射放射線源と近距離照射放射線源の両方から得られる吸収度スペクトルを組み合わせることにより、吸収度スペクトルは、間に入る皮膚および/または脂肪の層によるスペクトル寄与を低減するように修正されることができる。
【0009】
多数の遠距離放射線源を含むセンサでは、電子プロセッサが試料の照射のために特定の遠距離放射線源を選択するように構成されることができる。典型的には、電子プロセッサは試料の(上に重なる皮膚および/もしくは脂肪の層に関して修正された、または修正されない)多数の吸収度スペクトルを測定するように構成される。この場合、吸収度スペクトルのそれぞれは、遠距離放射線源の一つによる試料の照射に続いて測定される。プロセッサは、吸収度スペクトルのそれぞれを試料の主要な発色団(たとえば、酸化したおよび脱酸化したヘモグロビンおよび水分)に対するテイラ級数モデル(Taylor series model)に適合させる。次にプロセッサは、各適合に対する二乗平均平方根誤差を決定し、試料スペクトルがその後の試料測定に対して少なくとも最小適合性基準を満たす前提で、最小測定誤差を有する試料スペクトルをもたらす遠距離放射線源を選択する。次に、選択された遠距離放射線源からの放射線を使って試料を照射し、試料からの散乱放射線に基づき吸収度スペクトルを決定することにより、試料の一つまたは複数の吸収度スペクトルが得られることができる。
【0010】
あるいは、またはさらに、適切な遠距離放射線源を選択するために、プロセッサは一部の態様では、試料の期待されるスペクトル、および/もしくは試料のスペクトル中の特定の特徴のある期待されるスペクトル形状を同定し(たとえば、測定する、または記憶装置もしくはメモリ装置から取り出し)、測定された吸収度スペクトルのそれぞれを分析して、期待されるスペクトルと測定されたスペクトルの間の(または期待されるスペクトルと測定されたスペクトルの一定の部分の間の)対応を決定することができる。典型的には、次に、プロセッサは、試料の期待されるスペクトルまたはスペクトル特徴形状と最も近く対応する、測定された吸収度スペクトルまたはスペクトル特徴形状を生成する遠距離放射線源を照射放射源として選択する。上述のように、次に、選択された遠距離放射線源からの放射線を使って試料を照射し、試料からの散乱放射線に基づき吸収度スペクトルを決定することにより、試料の一つまたは複数の吸収度スペクトルが得られることができる。
【0011】
一般に、第1の局面では、本発明は、(a)電子プロセッサを含む回路基板、(b)それぞれの放射線源が回路基板上に取り付けられた複数の放射線源、および(c)複数の放射線源の一つまたは複数に由来する放射線を分析するように構成される、回路基板に取り付けられるスペクトル検出器を含むセンサを特徴とする。使用中、センサは被験者の体の一部に装着されるように構成される。さらに、電子プロセッサは、複数の放射線源の2つ以上に入射放射線を被験者に向けさせ、スペクトル検出器に被験者からの放射線を分析させ、被験者からの放射線に基づき被験者の一つまたは複数の特性を決定するように構成される。
【0012】
別の局面では、本発明は、(a)試料に直接付着するように構成され、かつ試料に付着するときに試料の少なくとも一部に対応する形状を帯びるように構成される接着面を含む可撓性のある据え付け要素、ならびに(b)据え付け要素に取り付けられた複数の放射線源、スペクトル検出器、および電子プロセッサを含むセンサを特徴とする。電子プロセッサは、放射線源の少なくとも2つに入射放射線を試料に向けさせ、スペクトル検出器に試料からの放射線を分析させ、試料からの放射線に基づき試料の一つまたは複数の特性を決定するように構成されることができる。
【0013】
別の局面では、本発明は、(a)放射線源のそれぞれが入射放射線を使って試料を照射するように配置される複数の放射線源、(b)入射放射線に応答して試料から散乱される放射線を分析するように構成されるスペクトル検出器、および(c)複数の放射線源の一つを選択し、選択された放射線源からの入射放射線に基づき試料の吸収度スペクトルを測定するように構成される少なくとも一つの電子プロセッサを含むセンサを特徴とする。複数の放射線源の一つを選択することは、それぞれの吸収度スペクトルが複数の放射線源の一つによる試料の照射に対応する複数の試料吸収度スペクトルを測定すること、および複数の吸収度スペクトルのそれぞれにおけるスペクトル特徴の期待される形状と測定された形状の間の相関関係を決定することを含むことができる。
【0014】
別の局面では、本発明は、(a)少なくとも一つの電子プロセッサを含む回路基板、(b)回路基板に取り付けられた放射線源、および(c)それぞれのスペクトル検出器が放射線源に由来する放射線を分析するように構成される、回路基板上に取り付けられた複数のスペクトル検出器を含むセンサを特徴とする。一つまたは複数の電子プロセッサは、放射線源に入射放射線を試料に向けさせ、複数のスペクトル検出器の2つ以上に試料から散乱される放射線を分析させ、散乱放射線に基づき試料の一つまたは複数の特性を決定するように構成されることができる。
【0015】
別の局面では、本発明は、試料に直接取り付け、試料の少なくとも一部、および複数の放射線源に対応する形状を帯びるように構成される使い捨てできる据え付け要素、スペクトル検出器、ならびに据え付け要素に取り付けられる少なくとも一つの電子プロセッサを含むセンサを特徴とする。一つまたは複数の電子プロセッサは、複数の放射線源の2つ以上に入射放射線を試料に向けさせ、スペクトル検出器に試料から散乱される放射線を分析させ、散乱放射線に基づき試料の一つまたは複数の特性を決定するように構成されることができる。
【0016】
別の局面では、本発明は、集積回路基板を含み回路基板上に取り付けられた着用できる組立て、複数の放射線源、スペクトル検出器、および少なくとも一つの電子プロセッサを含む機器を特徴とする。運用中、組立てはヒトの体の一部に装着される。電子プロセッサは、複数の放射線源の少なくとも一部に放射線を体の一部に向けて入射させ、検出器に体の一部からの散乱放射線を分析するように命じ、散乱放射線に基づき体の一部の一つまたは複数の特性を決定するように構成される。
【0017】
センサおよび/または機器の態様は、以下の特徴の一つまたは複数を含むことができる。
【0018】
電子プロセッサは、入射放射線を生成するために、放射線源の少なくとも一つを選択的に調節するように構成されることができる。電子プロセッサは、選択されたスペクトル形状を有する入射放射線を生成するために、(i)放射線源のそれぞれのデューティサイクル、および(ii)放射線源のそれぞれに供給される電気的駆動電流の少なくとも一つを選択的に調節するように構成されることができる。電子プロセッサは、被験者による入射放射線の吸収を補正するように放射線源を調節するように構成されることができ、この場合、補正は被験者の吸収度スペクトルに基づく放射線源の調節を含む。電子プロセッサは、(i)放射線源間の異なる放射線強度について修正するために、または(ii)検出器によるスペクトル検出効率の変動について修正するために、放射線源を調節するように構成されることができる。電子プロセッサは、放射線源のそれぞれが選択されたスペクトルプロファイルを有するように、放射線源のそれぞれを調節するように構成されることができる。
【0019】
放射線源は、検出器から距離9mm以下に配置される近距離放射線源、および検出器から距離10mm以上に配置される少なくとも2つの遠距離放射線源を含むことができる。放射線源は少なくとも2つの近距離放射線源、および少なくとも3つの遠距離放射線源を含むことができる。
【0020】
電子プロセッサは、遠距離放射線源のそれぞれにより生成される入射放射線を使って被験者を照射し、遠距離放射線源のそれぞれによる照射に対応する被験者の吸収度スペクトルを測定し、測定された吸収度スペクトルを比較して遠距離放射線源の一つを選択することにより、入射放射線の少なくとも一部を生成する遠距離放射線源の一つを選択するように構成されることができる。比較することは、(a)遠距離放射線源のそれぞれについて、遠距離放射線源に対応する吸収度スペクトルを被験者の吸収度スペクトルに対するテイラ級数モデルに適合させること、および吸収度スペクトルとモデルの間の平均誤差を決定すること、ならびに(b)吸収度スペクトルとモデルの間の最小平均誤差に対応する遠距離放射線源を選択することを含むことができる。比較することは、遠距離放射線源に対応する吸収度スペクトルを適合させることの前に、吸収度スペクトルを正規化することを含むことができる。比較することは、遠距離放射線源に対応する吸収度スペクトルを適合させることの前に、近距離放射線源からの放射線に被験者を曝すことにより得られる吸収度スペクトルから得られる情報を使用して、被験者内の皮膚および脂肪の層によるスペクトルの影響を低減するために、遠距離放射線源に対応する吸収度スペクトルのそれぞれを修正することを含むことができる。
【0021】
遠距離放射線源を選択することは、選択された遠距離放射線源が最小適合性基準を満たすかどうか決定することを含むことができる。選択された遠距離放射線源が最小適合性基準を満たすかどうか決定することは、モデルフィッティング誤差の平均値(μ)および標準偏差(σ)を決定することを含むことができ、この場合、電子プロセッサは、モデルと、選択された遠距離放射線源に対応する吸収度スペクトルとの間の平均誤差が間隔(μ−3σ、μ+3σ)の範囲内にある場合、遠距離放射線源を選択するように構成されることができる。
【0022】
センサは2つ以上の近距離放射線源を含む放射線源を含むことができ、電子プロセッサは、(a)近距離放射線源のそれぞれにより生成される入射放射線を使って被験者を照射し、(b)近距離放射線源のそれぞれに対応する吸収度スペクトルを測定し、(c)近距離放射線源に対応するスペクトルのそれぞれを使って遠距離放射線源に対応するスペクトルのそれぞれを修正し、(d)修正されたスペクトルを被験者の吸収度スペクトルに対するテイラ級数モデルに適合させ、修正されたスペクトルのそれぞれとモデルの間のフィッティング誤差を決定し、(e)近距離放射線源、および修正されたスペクトルの中の最小フィッティング誤差に対応する遠距離放射線源を含む組合せを特定することにより、入射放射線の少なくとも一部を生成する近距離放射線源と遠距離放射線源の組合せを選択するように構成されることができる。
【0023】
電子プロセッサは、遠距離放射線源の一つによる被験者の照射から得られる試料からの放射線に基づき被験者の第1の吸収度スペクトルを測定し、近距離放射線源の一つまたは複数による被験者の照射から得られる試料からの放射線に基づき被験者の第2の吸収度スペクトルを測定し、第2の吸収度スペクトルに基づき第1の吸収度スペクトルを修正することにより、被験者の修正された吸収度スペクトルを測定するように構成されることができる。
【0024】
センサは使い捨てできない部分および使い捨てできる部分を含むことができ、この場合、使い捨てできる部分は使い捨てできない部分に接触し、試料に直接付着するように構成される接着面を有する可撓性のある層を含む。センサは、センサの使い捨てできない部分上に配置される近距離放射線源、およびセンサの使い捨てできる部分上に配置される2つ以上の遠距離放射線源を含むことができる。
【0025】
センサは、表示装置を含むことができ、この場合、表示装置は、入射放射線が複数の放射線源により放出される表面と反対側のセンサの表面上に配置される。表示装置は被験者の一つまたは複数の特性の少なくとも一部の値を表示するように構成されることができる。表示装置は、被験者の一つまたは複数の特性の以前に測定された値を表示するようにさらに構成されることができる。
【0026】
センサは、センサとの間でデータを送信するように構成される無線の送信機および受信機を含む通信インタフェースを含むことができ、この場合、センサはネットワークを介してデータを送信するように構成される。
【0027】
一つまたは複数の特性は、被験者の酸素飽和度、酸素分圧、pH、ヘマトクリット、ヘモグロビン濃度、無酸素性作業閾値、含水量、および酸素消費量の少なくとも一つを含むことができる。
【0028】
電子プロセッサは、被験者からの放射線の分析中に、信号強度の所定の範囲内で非ゼロ測定検出器信号強度を維持するように構成されることができる。所定の範囲内に検出器信号強度を維持することは、信号強度を制御するために、検出器の電子的利得および、信号取得時間の少なくとも一つを調節することを含むことができる。所定の範囲内に検出器信号強度を維持することは、被験者に入射放射線を向けるために、複数の放射線源の異なる一つを選択することを含むことができる。複数の放射線源の異なる一つを選択することは、検出器から距離10mm以上に配置される放射線源の中から異なる放射線源を選択することを含むことができる。複数の放射線源の異なる一つを選択することは、検出器から距離9mm以下に配置される放射線源の中から異なる放射線源を選択することを含むことができる。
【0029】
電子プロセッサは、治療装置を制御するために、治療装置に被験者の一つまたは複数の特性に関する情報を提供するように構成されることができる。
【0030】
据え付け要素は、試料に接触する第1の使い捨てできる部分、ならびに複数の放射線源、検出器、および電子プロセッサが取り付けられる第2の使い捨てできない部分を含むことができ、この場合、使い捨てできる部分は、近赤外線に対して少なくとも部分的に透過性があり、放射線源により生成される入射放射線が通過して試料に到達するウィンドウを形成する。
【0031】
一部の態様では、複数の放射線源が回路基板に直接取り付けられることができる。一部の態様では、複数の放射線源が回路基板に固定して取り付けられることができる。一部の態様では、使用中に、複数の放射線源が被験者に直接接触する、またはセンサと被験者の間に配置される物質の層(たとえば、接着剤層)に直接接触するように、複数の放射線源が回路基板に取り付けられることができる。放射線源は回路基板に直接電気的に接触されることができる。
【0032】
一部の態様では、センサが複数のスペクトル検出器および一つまたは複数の放射線源を含むことができる。
【0033】
センサは回路基板に取り付けられた電源を含むことができる。電源は電池を含むことができる。電池は再充電可能な電池および使い捨てできる電池の一つとすることができる。たとえば、電池は再充電可能な電池とすることができ、センサは、電池の充電中にセンサを支持するように構成される機器を含むことができる。
【0034】
センサは試料に直接取り付けられるように構成されることができる。センサの少なくとも一部は可撓性をもたせることができ、センサは、試料の形状に適合するように構成されることができる。
【0035】
検出器は電荷結合素子を含むことができる。あるいは、またはさらに、検出器は相補型金属酸化膜半導体ベースの素子を含むことができる。検出器は線形可変フィルタを含むことができる。
【0036】
センサの最大寸法は15cm未満(たとえば、8cm未満)とすることができる。検出器の半値全幅(FWHM)スペクトル分解能は10.0nm以下(たとえば、2.0nm以下、0.5nm以下)とすることができる。
【0037】
複数の放射線源の少なくとも一部が発光ダイオードを含むことができる。たとえば、複数の放射線源のそれぞれの一つが一つまたは複数の発光ダイオードを含むことができる。複数の放射線源の少なくとも一部が多数の発光ダイオードを含むことができる。あるいは、またはさらに、複数の放射線源の少なくとも一部が白熱光源を含むことができる。
【0038】
発光ダイオードにより放出される放射線が近赤外線を含むことができる。近赤外線は600nmと1100nmの間の波長を含む放射線を含むことができる。多数の発光ダイオードは、25nm以上(たとえば、100nm以上、500nm以上)の半値全幅(FWHM)スペクトル帯域幅を有する入射放射線を生成するように構成されることができる。
【0039】
一つまたは複数の電子プロセッサが、入射放射線を生成するために、発光ダイオードの少なくとも一部を選択的に調節するように構成されることができる。発光ダイオードの少なくとも一部を選択的に調節することは、発光ダイオードにより放出される放射線の強度を調節することを含むことができる。発光ダイオードは発光ダイオードのデューティサイクルを調節することにより調節されることができる。発光ダイオードは発光ダイオードに供給される駆動電流を調節することにより調節されることができる。発光ダイオードは、複数の放射線源からの総出力放射線強度を増大させるまたは低減するように調節されることができる。
【0040】
発光ダイオードは試料による入射放射線の吸収度を補正するように調節されることができる。吸収度の補正が、試料の放射線吸収度スペクトルの範囲内の選択された吸収度帯に基づき発光ダイオードの少なくとも一部を調節することを含むことができる。一つまたは複数の電子プロセッサが、選択されたスペクトル形状を有する入射放射線を生成するために、多数の発光ダイオードの少なくとも一部の出力強度を調節するように構成されることができる。入射放射線のスペクトル形状が、試料による入射放射線の吸収を少なくとも部分的に修正するように選択されることができる。入射放射線のスペクトル形状が、多数の発光ダイオードの中の異なる放出強度を少なくとも部分的に修正するように選択されることができる。入射放射線のスペクトル形状が、検出器によるスペクトル検出効率の変動を少なくとも部分的に修正するように選択されることができる。
【0041】
放射線源の少なくとも一部が検出器から距離9mm以下(たとえば、検出器から8mm以下、7mm以下、6mm以下、5mm以下、4mm以下、3mm以下、2.5mm以下)に配置される近距離放射線源を含むことができる。センサは、一つまたは複数の近距離放射線源(たとえば、2つ以上の近距離放射線源、3つ以上の近距離放射線源、5つ以上の近距離放射線源、7つ以上の近距離放射線源、8つ以上の近距離放射線源)を含むことができる。
【0042】
放射線源の少なくとも一部が、検出器から距離10mm以上(たとえば、検出器から20mm以上、検出器から50mm以上)に配置される遠距離放射線源を含むことができる。遠距離放射線源のそれぞれは、その他の遠距離放射線源に対して検出器から異なる距離に配置されることができる。
【0043】
複数の放射線源の少なくとも一部が、複数の放射線放出要素を含むパッケージを含むことができる。複数の放射線源の少なくとも一部がそれぞれ、2つ以上のパッケージを含むことができる。パッケージの少なくとも一部が、2つ以上の放射線放出要素を含むことができる。
【0044】
一つまたは複数の電子プロセッサが、入射放射線を生成する2つ以上の遠距離放射線源の一つを選択するように構成されることができる。一つまたは複数の電子プロセッサが、試料の吸収度スペクトル中のスペクトル特徴に基づき遠距離放射線源を選択するように、または試料のスペクトル中の吸収帯の期待される形状と測定された形状の間の相関関係に基づき遠距離放射線源を選択するように構成されることができる。吸収帯の測定された形状は、遠距離放射線源からの入射放射線を試料に向け、試料から散乱される放射線を測定することにより決定されることができる。
【0045】
別の態様では、一つまたは複数の電子プロセッサが、遠距離放射線源のそれぞれによる入射放射線を使って試料を照射し、遠距離放射線源のそれぞれからの入射放射線に基づき試料の吸収度スペクトルを測定し、吸収度スペクトルを比較して遠距離放射線源の一つを選択することにより、遠距離放射線源を選択するように構成されることができる。比較することは、(i)遠距離放射線源のそれぞれに対して、遠距離放射線源に対応する吸収度スペクトルを吸収度スペクトルに対応するモデル(たとえば、テイラ級数モデル、または別のタイプのモデル)に適合させ、吸収度スペクトルとモデルの間の誤差を決定すること、および(ii)吸収度スペクトルとモデルの間の最小平均誤差に対応する遠距離放射線源を選択することを含むことができる。比較することはまた、フィッティングの前に、近距離放射線源の一つまたは複数により生成される入射放射線を使って試料を照射することにより測定される吸収度情報に基づき、遠距離放射線源に対応するスペクトルのそれぞれを修正することを含むことができる。別の態様では、比較することはまた、対応するスペクトルとモデルの間の誤差が最小適合性基準を満たす遠距離放射線源を選択することを含むことができる。最小適合性基準は、モデルに対して誤差の平均値の3σ以内にある誤差を有するスペクトルを含むことができる。
【0046】
さらに別の態様では、一つまたは複数の電子プロセッサが、遠距離放射線源の一つから得られる散乱された照射放射線に基づき試料の第1の吸収度スペクトルを測定し、近距離放射線源の一つまたは複数から得られる散乱された照射放射線に基づき試料の第2の吸収度スペクトルを測定し、第2の吸収度スペクトルに基づき第1の吸収度スペクトルを修正することにより、試料の修正された吸収度スペクトルを測定するように構成されることができる。第1の吸収度スペクトルは、試料の皮膚色素沈着のスペクトル効果を低減するように修正されることができる。あるいは、またはさらに、第1の吸収度スペクトルは、試料中の脂肪のスペクトル効果を低減するように修正されることができる。
【0047】
一つまたは複数の電子プロセッサはまた、遠距離放射線源の少なくとも3つから散乱される照射放射線に基づき試料の少なくとも3つの修正された吸収度スペクトルを測定するように構成されることができる。
【0048】
ある種の態様では、センサが、試料にセンサを取り付けるように配置される接着性要素を含むことができる。接着性要素は使い捨てできるものとすることができる。別の態様では、センサは使い捨てできても使い捨てできなくてもよい。あるいは、センサは使い捨てできない部分、および使い捨てできない部分に接続される使い捨てできる部分を含むことができる。
【0049】
複数の放射線源が、検出器の位置に対して、一つまたは複数の近距離放射線源、および一つまたは複数の遠距離放射線源を含むことができ、近距離放射線源のそれぞれが使い捨てできない部分上に配置されることができ、遠距離放射線源のそれぞれが使い捨てできる部分上に配置されることができる。センサは使い捨てできる電池を含む電源を含むことができ、この場合、使い捨てできる電池は使い捨てできる部分上に配置される。あるいは、センサは使い捨てできる電池を含む電源を含むことができ、この場合、使い捨てできる電池は使い捨てできない部分上に配置される。
【0050】
様々な態様では、センサは試料に取り付けるように構成されるスリーブを含むことができ、スリーブはセンサを収容するように構成されるポケットを含む。スリーブは近赤外線について少なくとも部分的に透過性を有することができる。
【0051】
センサは表示装置を含むことができる。表示装置は、入射放射線が複数の放射線源により放出される表面と反対側にあるセンサの表面上に配置されることができる。
【0052】
ある種の態様では、センサは通信インタフェースを含むことができる、またはさらに含む。通信インタフェースは、センサからデータを送信するように、およびセンサに送信されるデータを受け取るように構成される無線の送信機および受信機を含むことができる。通信インタフェースは、センサからデータを送信するように、およびセンサに送信されるデータを受け取るように構成されるポートを含むことができる。センサは、通信インタフェースを介して外部装置にデータを送信するように構成されることができる。センサは、通信インタフェースを介してネットワークにデータを送信するように構成されることができる。ネットワークはインターネットとすることができる。ネットワークは携帯電話網とすることができる。支援機器は通信インタフェースを含むことができ、センサは電池の充電中に支援機器にデータを送信するように構成されることができる。
【0053】
一つまたは複数の特性が試料の酸素飽和度、酸素分圧、pH、ヘマトクリット、ヘモグロビン濃度、無酸素性作業閾値、含水量、および酸素消費量の少なくとも一つを含むことができる。試料は筋組織を含むことができる。試料はヒトまたは動物の一部を含むことができる。試料はセンサと筋組織の間に配置される皮膚および脂肪の層を含むことができる。
【0054】
センサは、回路基板、複数の放射線源、および検出器を囲むハウジングを含むことができ、この場合、ハウジングは試料を含む被験者に付着するように構成される。
【0055】
センサは、酸素飽和度、酸素分圧、pH、含水量、およびヘマトクリットの少なくとも一つの値を外部システムに送信するように構成されることができ、外部システムは、試料を含む被験者中の酸素飽和度、酸素分圧、pH、含水量、およびヘマトクリットの少なくとも一つを制御するように構成されることができる。
【0056】
様々な態様では、複数の放射線源の一つを選択することが、複数の放射線源のそれぞれにより生成される入射放射線を使って試料を照射すること、放射線源のそれぞれからの入射放射線に基づき試料の吸収度スペクトルを測定すること、および放射線源の一つを選択するために吸収度スペクトルを比較することを含むことができる。
【0057】
複数の放射線源の一つを選択することが、スペクトル特徴の期待される形状と測定された形状の間の最も近い相関関係に対応する放射線源を選択することを含むことができる。スペクトル特徴は吸収帯とすることができる。
【0058】
センサおよび/または機器の態様はまた、必要に応じて本明細書において開示される任意のその他の特徴を含むことができる。
【0059】
別の局面では、本発明は一つまたは複数の試料特性を測定する方法を特徴とし、方法は、複数の放射線源の一つを選択し、選択された放射線源からの放射線を試料上に入射するように向ける段階と、試料からの放射線を検出する段階と、検出された放射線に基づき一つまたは複数の試料特性を決定する段階とを含む。選択する段階は、(a)複数の放射線源のそれぞれの一つについて、試料を放射線源からの放射線に曝すことにより試料の吸収度スペクトルを測定する段階と、(b)試料の吸収度に対するモデルに吸収度スペクトルを適合させ、モデルを基準として各スペクトルに対する平均フィッティング誤差を決定する段階と、(c)最小平均適合誤差を有するスペクトルに対応する放射線源を選択する段階とを含む。
【0060】
方法の態様は以下の特徴の一つまたは複数を含むことができる。
【0061】
モデルはテイラ級数モデルとすることができる。選択する段階は、平均フィッティング誤差を決定する前に吸収度スペクトルのそれぞれを正規化する段階を含むことができる。選択する段階は、平均フィッティング誤差を決定する前に、試料中の皮膚および脂肪の層によるスペクトル効果を低減するために、吸収度スペクトルのそれぞれを修正する段階を含むことができる。選択する段階は、フィッティング誤差に関連する平均値μおよび標準偏差値σを決定する段階、および放射線源に対応する吸収度スペクトルから決定される平均フィッティング誤差が間隔(μ-3σ、μ+3σ)の範囲内にある放射線源を選択する段階を含むことができる。
【0062】
方法は、試料からの放射線の検出中に、検出される放射線信号の強度をゼロよりも大きくかつ所定の範囲の信号強度内に維持する段階を含むことができる。信号強度を所定の範囲内に維持する段階は、信号強度を制御するために、検出器の電子的利得、および放射線が検出される信号取得時間の少なくとも一つを調節する段階を含むことができる。信号強度を所定の範囲内に維持する段階は、試料に放射線を向けるために、複数の放射線源の異なる一つを選択する段階を含むことができる。
【0063】
方法は酸素飽和度、酸素分圧、pH、含水量、およびヘマトクリットの少なくとも一つの値を外部システムに送信する段階を含むことができ、この場合、外部システムは、試料を含む被験者中の酸素飽和度、酸素分圧、pH、含水量、およびヘマトクリットの少なくとも一つを制御するように構成される。
【0064】
方法の態様はまた、必要に応じて本明細書において開示される任意のその他の段階および/または特徴を含むことができる。
【0065】
本開示の様々な態様が以下の有利な点の一つまたは複数を含むことができる。
【0066】
一部の態様では、本明細書において開示されるセンサが、照射放射線源からの入射放射線を試料に結合させるため、および/または試料からの散乱放射線を検出器に結合させるために、光ファイバを使用しない。典型的には、光ファイバは壊れやすいことがあり、使用中に破損されやすい。厳しい許容誤差まで光ファイバを製造することは困難で、時間がかかり、費用がかかることがある。さらに、放射線源と試料と検出器の間に放射線の光ファイバ結合を含むセンサは、時間をかけた光ファイバの劣化を考慮する定期的再較正により利益を得ることがある。本明細書において開示されるセンサは、試料を通り、空中を通り、および様々な大きな光学的要素を通り、放射線源から試料まで、および試料から検出器まで放射線を結合させる。媒体を伝播するこれらの放射線は、光ファイバに特有なことがある同じ製造の制約、費用、および劣化の影響を受けない。
【0067】
ある種の態様では、本明細書において開示されるセンサは、電子部品も光学部品も含むすべての固体素子を含む。その結果、構成要素は、典型的には必要であれば大規模製造工程で確実におよび/または安価に製造されることができる。構成要素の大量生産が、使用後に部分的にまたは完全に使い捨てできるほど十分に費用のかからないセンサをもたらすことができる。一部の態様では、たとえばセンサは、使い捨てできる粘着性パッドを使用して体の一部に取り付けられる。ある種の態様では、センサ全体が密封された一体型ユニットとして形成され、使用後、使い捨てできる。一部の態様では、センサの一部(たとえば、遠距離照射放射線源だけを含む部分)が使い捨てできるが、センサの残りが再利用可能である。
【0068】
一部の態様では、センサの放射線源の一部またはすべてが多数の発光ダイオード(LED)を含み、センサの電子プロセッサがLEDの一部またはすべての統合出力強度を調節して、選択されたスペクトル特性を有する入射放射線を生成することができる。たとえば、LEDの一部またはすべての強度は、試料による他の波長よりも特定の波長での入射放射線の強い吸収度を、検出器での変動する波長依存性検出効率を、および変動する波長依存性およびダイオード依存性の放出強度を補正するように調節されることができる。その結果、入射放射線のスペクトル特性が、試料が入射放射線を強く吸収する電磁スペクトルの部分で強化された感度を提供するように調節されることができる。
【0069】
典型的には、センサは、比較的広い帯域幅を有する入射放射線を集合的に放出するように構成される多数のLEDを含む。したがって、スペクトル検出器は、比較的多数の波長で散乱される放射線をサンプリングするように構成されることができ、したがって、比較的高いスペクトル解像度を提供することができる。さらに、試料の吸収度スペクトルが比較的多数の波長で決定されることができるので、吸収度スペクトルが、試料中の皮膚および脂肪の層から生じるスペクトル寄与を低減および/または除去するように修正されることができる。
【0070】
ある種の態様では、センサは、比較的高い温度安定性を有する線形可変フィルタ(LVF)、または可変ファブリ・ペロ・エタロン(FPE)を含むスペクトル検出器を含む。たとえば、LVFの構造のために、LVFの温度安定性が回折格子ベースのシステムなどのある種の別のタイプのスペクトル検出器の温度安定性よりも典型的には高い。その結果、本明細書において開示されるセンサは、典型的には検出器を再較正する必要なく広範囲の温度にわたり使用されることができる。
【0071】
本明細書において開示されるセンサは、携帯できる、および装着することさえでき、多数の放射線源、スペクトル検出器、電子プロセッサ、通信インタフェース、および電源を含むセンサ構成要素を据え付けられる回路基板を含むことができる。その結果、センサは衣服の下に、または衣服の一部として装着されることができ、装着者に比較的ほとんど混乱または負荷を課すことなく、運動競技のトレーニング中、患者の監視で、リハビリテーションおよびフィールド医学で、ならびに患者搬送中などの環境で使用されることができる。センサはまた動物により装着されることができ、より従来型の監視装置に対して比較的ほとんど不快さがない。
【0072】
別に規定されなければ、本明細書において使用されるすべての専門用語および科学用語はこの開示が属する当業者により普通に理解されるのと同じ意味を有する。本明細書において記載される方法および物質と同様のまたは等価な方法および物質が実際にまたは本開示の試験に使用されることができるが、適切な方法および物質が以下に記載される。本明細書において言及されるすべての参考文献、特許出願、特許、および他の参照が、それらの全体が参照により本明細書に組み入れられる。競合する場合、定義を含む本明細書が支配する。さらに、物質、方法、および実施例は例示的でしかなく、限定しようとするものではない。
【0073】
一つまたは複数の態様の詳細が添付の図面および以下の説明で述べられる。別の特徴および有利な点が説明、図面、および特許請求の範囲から明らかになるであろう。
【図面の簡単な説明】
【0074】
【図1】図1Aおよび1Bは、センサの一態様の概略の底面図である。図1Cは、センサの別の態様の概略の底面図である。
【図2】試料の表面に取り付けられたセンサを示す概略図である。
【図3】図3Aおよび3Bは、センサハウジングを示すセンサの図である。
【図4】検出器の一態様を示す概略図である。
【図5】コリメーティング要素を含む検出器の側面図を示す概略図である。
【図6】図6Aは、接着性パッドを有する試料へのセンサの取り付けを示す概略図である。図6Bは、放射線源が据え付けられる使い捨てできる要素を有する試料へのセンサの取り付けを示す概略図である。
【図7】接着性パッチを有する試料に固定されるセンサを示す概略図である。
【図8】センサを試料に取り付けるために使用されるスリーブを示す概略図である。
【図9】センサのための充電クレードルの一態様を示す概略図である。
【図10】センサのための較正検査および放射線源選択手順の段階を示す流れ図である。
【図11】センサを使用する測定手順の段階を示す流れ図である。
【図12】図12A〜Dは、被験者の体の異なる位置で測定されたヒト被験者に対する反射率スペクトルのグラフである。
【図13】図13Aは、被験者の体の異なる位置、および異なる放射線源-検出器間隔で行われたスペクトル反射率測定に基づき、被験者に対する酸素飽和度の計算値を比較する棒グラフである。図13Bは、図13Aに示される酸素飽和度の値に関連するテイラ級数モデルフィッティング誤差を示す棒グラフである。
【図14】図14Aは、被験体に対して測定された反射率スペクトルの時間列を示すグラフである。図14Bは、図14Aに示されるスペクトルの時間列に関連するテイラ級数モデルフィッティング誤差を示すグラフである。
【図15】各LEDが電源から同じ割合の駆動電流を受け取る複数のLEDから放射される放射線の測定されたスペクトルである。
【図16】LEDの一部が異なる割合の駆動電流を電源から受ける複数のLEDから放出される放射線の測定されたスペクトルである。
【図17】試料からの反射率スペクトルの測定中に試料温度を時間の関数として示すグラフである。
【図18】センサに対して決定される平均利得レベルを示すグラフである。
【図19】図19A〜Bは、遠い放射線源-検出器距離を使用して、光ファイバプローブおよびセンサについて、測定された光度を公称反射率標準の関数として示すグラフである。
【図20】図20A〜Bは、短い放射線源-検出器距離を使用して、光ファイバプローブおよびセンサについて、測定された光度を公称反射率標準の関数として示すグラフである。
【図21】異なるセンサ較正法を使用して測定された波長較正曲線を示すグラフである。
【図22】動脈閉塞試験プロトコル中に時間をかけて得られた一連の反射率スペクトルを示すグラフである。
【図23】血液閉塞試験プロトコル中に図22の反射率スペクトルから得られた、時間の関数としての酸素飽和度のグラフである。
【図24】一連の組織ファントムについて、予測される反射放射線強度を脂肪厚の関数として示すグラフである。
【図25】図25A〜Bは、短い放射線源-検出器間隔を使用して、それぞれ中間色調および黒い色調の組織ファントムについて、センサにより測定された反射放射線強度を脂肪厚の関数として示すグラフである。
【図26】図26A〜Bは、遠い放射線源-検出器間隔を使用して、それぞれ中間色調および黒い色調の組織ファントムについて、センサにより測定された反射放射線強度を脂肪厚の関数として、示すグラフである。
【図27】短い放射線源-検出器間隔を使用して、中間色調および黒い色調の組織ファントムについて、光ファイバプローブにより測定された反射放射線強度を脂肪厚の関数として、示すグラフである。
【図28】遠い放射線源-検出器間隔を使用して、中間色調および黒い色調の組織ファントムについて、光ファイバプローブにより測定された反射放射線強度を脂肪厚の関数として、示すグラフである。
【図29】光ファイバプローブおよびセンサについて、試験プロトコル中に異なる時点で計算された筋酸素飽和度の計算値を示す棒グラフである。
【図30】被験者の筋pHの公知の値と、センサを使って測定された反射率スペクトルから得られた筋pHの値の対応を示すグラフである。
【図31】検出器の反対側に近距離放射線源および遠距離放射線源を含むセンサの一態様の概略図である。
【図32】異なる方向に沿って検出器から間隔を置いて配置される近距離放射線源および遠距離放射線源を含むセンサの一態様の概略図である。
【図33】環状の放射線源を含むセンサの一態様の概略図である。
【図34】一つの放射線源および多数の検出器を含むセンサの一態様の概略図である。
【図35】多数の近距離放射線源を含むセンサの一態様の概略図である。
【0075】
様々な図面中の同様の参照記号は同じ要素を示す。
【発明を実施するための形態】
【0076】
詳細な説明
本明細書において開示されているのは、具体的にはヒト被験者を含む試料の特性を決定するためのセンサおよび関連する方法である。センサは、典型的には、しかし排他的でなく、試料からの近赤外吸収度スペクトルまたは近赤外反射率スペクトルを測定するように、および吸収度スペクトルまたは反射率スペクトルに基づき一つまたは複数の試料パラメータを計算するように構成される。センサは比較的小さく、すべてのセンサ構成要素が据え付けられる回路基板を含むことができる。その結果、センサは、具体的には比較的高い物理的応力の期間中でさえ、ヒト被験者により引き延ばされる衣類になじみやすい。
【0077】
図1Aおよび1Bはセンサ10のそれぞれ底面および上面を示す概略図である。センサ10はスペクトル検出器12、2つの近距離放射線源14aおよび14b、ならびに6つの遠距離放射線源16a、16b、16c、16d、16e、および16fを含む。検出器12ならびに放射線源14a〜b、および16a〜fは回路基板18に据え付けられる。近距離放射線源14aおよび14bのそれぞれが一つまたは複数のパッケージを含むことができ、各パッケージは照射放射線を生成する一つまたは複数の要素を含むことができる。同様に、遠距離放射線源16a〜fのそれぞれは一つまたは複数のパッケージを含むことができ、各パッケージは照射放射線を生成する一つまたは複数の要素を含むことができる。
【0078】
図1Aおよび1Bは2つの近距離放射線源14aおよび14b、ならびに6つの遠距離放射線源16a〜fを含むセンサ10の一態様を示すが、より一般的には、センサ10は任意の数の近距離放射線源、および任意の数の遠距離放射線源を含むことができる。たとえば、一部の態様では、センサ10は一つまたは複数の近距離放射線源(たとえば、2つ以上の近距離放射線源、3つ以上の近距離放射線源、4つ以上の近距離放射線源、5つ以上の近距離放射線源、6つ以上の近距離放射線源、8つ以上の近距離放射線源、またはさらに多くの近距離放射線源)を含むことができる。ある種の態様では、センサ10は一つまたは複数の遠距離放射線源(たとえば、2つ以上の遠距離放射線源、3つ以上の遠距離放射線源、4つ以上の遠距離放射線源、5つ以上の遠距離放射線源、6つ以上の遠距離放射線源、8つ以上の遠距離放射線源、またはさらに多くの遠距離放射線源)を含むことができる。
【0079】
センサ10内の近距離放射線源および遠距離放射線源は、回路基板18に直接取り付けられることができる。すなわち、放射線源は電気的ワイヤもしくはケーブル、または光ファイバを介して回路基板18に接続されるのではなく、回路基板18に直接据え付けられることができる。一部の態様では、近距離放射線源および遠距離放射線源は、(たとえば放射線源および回路基板18を分離するスペーサまたは別の要素なしに)回路基板18に直接ハンダ付けされることができる。ある種の態様では、近距離放射線源および遠距離放射線源はまた、回路基板に固定して取り付けられることができる(たとえば、固定された空間関係が放射線源と回路基板18の間に存在するように回路基板18上に据え付けられる)。固定した取り付けによって、放射線源がケーブルまたはファイバを使って取り付けられる場合に発生するように放射線源が回路基板18と独立して動くことがない。むしろ、放射線源は、回路基板18に対して放射線源の位置が変わらないように、回路基板18に強固に取り付けられる。
【0080】
一般に、近距離放射線源および遠距離放射線源のそれぞれが、一つまたは複数のパッケージ(たとえば、2つ以上のパッケージ、3つ以上のパッケージ、4つ以上のパッケージ、5つ以上のパッケージ、6つ以上のパッケージ、またはさらに多くのパッケージ)を含むことができる。パッケージのそれぞれが照射放射線を生成する一つまたは複数の要素(たとえば、2つ以上の要素、3つ以上の要素、4つ以上の要素、またはさらに多くの要素)を含むことができる。さらに、異なる波長で放射線を放出する要素が、試料および検出器に応じて異なる空間位置に配置されることができる。たとえば、検出器12が異なる空間位置で異なる波長を解像するように構成される場合、近距離放射線源および遠距離放射線源の一部またはすべての要素および/またはパッケージが検出器12の構成に直線的にまたは対向して対応するように配置されることができる。
【0081】
一部の態様では、近距離放射線源および/または遠距離放射線源の一部のパッケージの数が変わることがある。たとえば、検出器12からもっと遠くに配置される放射線源は、検出器12により十分な散乱放射線強度が測定されることを保証するために、多数のパッケージを含むことができる。一般に、任意の近距離放射線源および/または遠距離放射線源が任意の数のパッケージを含むことができ、パッケージの数は、試料が入射放射線の所望の分布で十分に照射されることを保証するように、および検出器12が試料からの散乱放射線の適切な測定値を得ることを保証するように選択される。一例として、一部の態様では、検出器12から最も遠くに配置される遠距離放射線源が、検出器12の最も近くに配置される遠距離放射線源の1.5倍のパッケージ(たとえば、2.0倍のパッケージ、2.5倍のパッケージ、3.0倍のパッケージ、3.5倍のパッケージ、4.0倍のパッケージ)を含むことができる。
【0082】
近距離放射線源および遠距離放射線源のパッケージ内部の要素は典型的には、要素が活動化された(たとえば、光を放出する)ときに、要素により集合的に生成される光のスペクトルが、照射放射線の所望のスペクトル分布に対応するように選択される。スペクトル分布は近距離放射線源および/または遠距離放射線源の内部に特定の要素を配置することにより変えられることができ、その結果、試料が特定のスペクトル分布に従って照射されることができる。一部の態様では、たとえば、一つまたは複数の近距離放射線源および/または遠距離放射線源に対する照射スペクトルが、スペクトルの特定の領域におけるセンサ10の測定感度が前に議論されたように強化されるように選択されることができる。
【0083】
図1Aに示されるように、放射線源14a〜b、および16a〜fの放出ウィンドウ、ならびに検出器12の放射線入口面が、センサ10の底面上に曝されている。
【0084】
センサ10はまた、電子プロセッサ20、任意のアプリケーションプロセッサ22、任意の表示装置24、電源26、および通信インタフェース28を含む。プロセッサ20および22、表記装置24、電源26、ならびにインタフェース28は、図1Bに示されるように回路基板18の上面に据え付けられる。一部の態様では、プロセッサ22はセンサ10に含まれない。代わりに、プロセッサ22は、通信インタフェース28を介してセンサ10と通信し、本明細書において開示されるプロセッサ22(またはプロセッサ20)の機能の一部またはすべてを実行する外部コンピューティング装置(たとえば、パーソナルコンピュータ)の一部である。
【0085】
一部の態様では、遠距離放射線源の一部(またはすべて)が、適切なコネクタを介して回路基板18に接続する別の回路基板上に据え付けられることができる。図1Cは、第1の回路基板18および第2の回路基板19を含むセンサ10の底の概略図を示す。第1の回路基板18は検出器12および2つの近距離放射線源14a〜bを含む。第2の回路基板19は5つの遠距離放射線源16a〜eを含む。コネクタ21が第1の回路基板および第2の回路基板を接続し、回路基板間の通信(たとえば、データおよび制御信号の交換)を可能にする。典型的には、たとえば、プロセッサ20(および任意でプロセッサ22)が第1の回路基板18上に配置され、コネクタ21を介して遠距離放射線源16a〜eと通信する。
【0086】
ある種の態様では、電源26が第1の回路基板18上に据え付けられ、また、コネクタ21を介して放射線源16a〜eと通信する。電源26はたとえば再充電可能な電池を含むことができる。一部の態様では、電源26は使い捨てできる電池を含むことができる。たとえば図1Cに示される態様では、使い捨てできる電池が第1の回路基板18上に配置され得る、または第1の回路基板18に接続され得る。あるいは、使い捨てできる電池が第2の回路基板19上に配置され得る、または第2の回路基板19に接続され得る。第2の回路基板19が使い捨てできる回路基板である場合、電池は第2の回路基板19と同時に処分されることができる。
【0087】
図2は試料30上に据え付けられたセンサ10の概略図を示す。試料30は皮膚32の一つまたは複数の層、脂肪34の皮下層、および下にある筋組織36を含む。センサ10は、筋組織36上に入射するように、放射線源14a〜bの少なくとも一つ(たとえば、すべて)および放射線源16a〜fの少なくとも一つにより生成される放射線38を向けることにより、組織36に応答信号を発生させるように構成される。散乱放射線のスペクトルを決定するために、散乱放射線40が検出器12(示されていない)により受信され、分析される。次に、筋組織36の吸収度スペクトルを決定するために、散乱放射線スペクトルが電子プロセッサ20および/またはプロセッサ22(示されていない)により処理される。吸収度スペクトルに基づき、電子プロセッサ20および/または22は試料30の(および具体的には、試料30内部の筋組織36の)一つまたは複数の特性を決定することができる。
【0088】
一般に、典型的には試料30からの散乱放射線に関する波長依存性情報を含む、検出器12により測定される散乱放射線スペクトルが、周知の方法を使用して電子プロセッサにより筋組織36の吸収度スペクトルに変換されることができる。前に指摘されたように、以下の議論では、試料30などの試料の吸収度スペクトルが参照される。しかし、本明細書において開示される装置および方法はまた、測定された散乱される放射線から反射率スペクトルを得るために使用されることができる。反射率および吸収度は簡単な数学的変換により関連付けられる。スペクトルの散乱放射線情報を試料に対する反射率スペクトルおよび吸収度スペクトルに変換する方法は、たとえば米国特許出願公報第2008/0097173号で開示されている。
【0089】
散乱放射線情報を吸収度スペクトルおよび/または反射率スペクトルに変換することに加えて、プロセッサ20および/または22は、試料30にとって生理学的に重要なパラメータの測定値を得るために、(たとえば、較正方程式、ならびに/またはメモリ装置、磁気記憶装置、および/もしくは光記憶装置内に記憶されるデータを使用して)吸収度スペクトルを分析するように構成されることができる。一般に、プロセッサ20および/または22は本明細書において議論される任意の分析段階を実行するように構成されることができる。
【0090】
一部の態様では、試料30に対する一つまたは複数の吸収度スペクトルが、試料中のpH(たとえば、筋組織pH)を決定するために分析されることができる。組織pHを決定するためのシステムおよび方法が、たとえば、内容全体が参照により本明細書に組み入れられる、「Optical Measurement of Tissue pH」と題する米国特許第5,813,403号に開示されている。
【0091】
一部の態様では、試料30に対する一つまたは複数の吸収度スペクトルが、試料中の血液ヘマトクリットを決定するために分析されることができる。血液ヘマトクリットを決定するシステムおよび方法が、たとえば、内容全体が参照により本明細書に組み入れられる、「Noninvasive Optical Measurement of Blood Hematocrit」と題する米国特許第6,006,119号で開示されている。
【0092】
一部の態様では、試料30に対する一つまたは複数の吸収度スペクトルが、ヘモグロビン濃度、および/または含水量、および/または酸素分圧、および/または組織酸素飽和度などの量を決定するために分析されることができる。これらの量を決定するシステムおよび方法が、たとえば、内容全体が参照により本明細書に組み入れられる、米国特許出願公報第2008/0097173号、および米国特許第6,766,188号で開示されている。
【0093】
ある種の態様では、試料30に対する一つまたは複数の吸収度スペクトルが、試料中の無酸素性作業閾値、および/または代謝速度(たとえば、酸素消費速度)などの量を決定するために分析されることができる。これらの量を決定するシステムおよび方法が、たとえば、内容全体が参照により本明細書に組み入れられる、2008年7月14日に出願された、「Physical Performance Monitoring and Monitors」と題する米国特許出願第12/172,942号で開示されている。
【0094】
一部の態様では試料30に対する一つまたは複数の吸収度スペクトルが、試料30内部の関心対象の組織の温度などの別の量を決定するために分析されることができる。さらに、プロセッサ20および/または22は、たとえば、センサ10が取り付けられる試料表面の温度を効果的に監視するハードウェアベースの温度モニタを含むことができる。
【0095】
典型的には、センサ10は、回路基板18などの構成要素を囲み、また、近距離放射線源および遠距離放射線源により生成される放射線がハウジングから出てくることができるようにし、試料から散乱される放射線が検出器12上に入射することができるようにする装置を含むハウジングを含む。図3Aおよび3Bはハウジング11を含むセンサ10のそれぞれ底面図および上面図を示す。ハウジング11の底面に形成される開口が、図3Aに示されるように遠距離放射線源16a〜e、近距離放射線源14a〜b、および検出器12を露出する。ハウジング11の側面に形成される開口17aおよび17bが、それぞれ通信インタフェース28および電源26への接続を可能にする。環状の取っ手15がストラップ(たとえば、Velcro(商標)ストラップまたは別のタイプのストラップ)などのファスナが試料(たとえば、被験者の腕または脚)にハウジング11を固定することができるようにする。
【0096】
典型的には、センサ10の寸法は従来のスペクトル装置の対応する寸法よりも小さい。図3Bを参照すると、センサ10のハウジングは、最大寸法L、最大寸法Lに垂直な方向で測定される最大幅W、および最大寸法Lと最大幅Wの両方に垂直な方向で測定される厚さTを有する底面を含む。
【0097】
センサ10の寸法L、W、およびTはセンサ10内に含まれる様々な構成要素(たとえば、放射線源、プロセッサ、表示ユニット、電源の数および空間的位置)に従って変化することがある。図3Aおよび3Bに示される態様では、寸法L、W、およびTはそれぞれほぼ110mm、55mm、および20mmである。
【0098】
しかし、一般に、センサ10の寸法L、W、およびTは様々な態様で異なることがある。一部の態様では、最大寸法Lは15mm以上(たとえば、20mm以上、30mm以上、40mm以上、50mm以上、60mm以上、70mm以上、80mm以上)、および/または150mm以下(たとえば、140mm以下、130mm以下、120mm以下、110mm以下、100mm以下、90mm以下)とすることができる。一部の態様では、最大幅Wは10mm以上(たとえば、15mm以上、20mm以上、25mm以上、30mm以上、35mm以上、40mm以上)、および/または75mm以下(たとえば、70mm以下、65mm以下、60mm以下、55mm以下、50mm以下、45mm以下)とすることができる。
【0099】
一部の態様では、厚さTは5mm以上(たとえば、10mm以上、15mm以上、20mm以上)、および/または30mm以下(25mm以下)とすることができる。典型的には、センサ10が過度の不快を引き起こすことなくヒトまたは動物の被験者により快適に装着されることができるように、センサ10は十分薄い(たとえば、厚さTが十分小さい)。ヒトの被験者については、そのようなセンサは、たとえば衣服の下に快適に装着されることができる。
【0100】
検出器12は入力放射線を波長の関数として分析するように構成されるスペクトル検出器である。ある種の態様では、たとえば、検出器12は、線形フォトダイオードアレイ、電荷結合素子(CCD)、または相補型金属酸化膜半導体(CMOS)素子などの放射線検出器に結合される線形可変フィルタまたは可変ファブリ・ペロ・エタロン(FPE)を含むことができる。図4は、線形アレイCCD検出器50に結合される線形可変フィルタ(LVF)54を含む検出器12の概略図である。LVF54は本質的にはくさび形帯域通過フィルタであり、鏡層42および44、スペーサ層46、ならびに基板48を含み、これらが集合的にエタロンまたは干渉帯域通過フィルタとして機能する。放射線52(たとえば、平行にされた放射線)が図4に示されるz方向に沿って検出器12に入射する。LVFなどの帯域通過干渉フィルタおよび可変帯域通過フィルタの設計、動作、および機能が、たとえば、内容全体が参照により本明細書に組み入れられる、JDS Uniphase(Second Edition)により発行される「Interference Filter Handbook」に開示されている。
【0101】
一部の態様では、検出器12はセンサ10の幅Wの方向で測定された長さ2mm以上(たとえば、4mm以上、6mm以上、8mm以上、10mm以上、12mm以上)、および/または20mm以下(たとえば、18mm以下、16mm以下、14mm以下)を有する。ある種の態様では、検出器12はセンサ10の厚さTの方向で測定された厚さ0.1mm以上(たとえば、0.2mm以上、0.3mm以上、0.5mm以上、1.0mm以上、2.0mm以上)、および/または5.0mm以下(たとえば、4.0mm以下、3.0mm以下、2.5mm以下)を有する。
【0102】
一部の態様では、検出器12はセンサ10の長さLの方向で測定された幅1.0mm以上(たとえば、1.5mm以上、2.0mm以上、2.5mm以上)、および/または4.0mm以下(たとえば、3.5mm以下、3.0mm以下)を有する。
【0103】
LVF、FPE、およびCCDの検出器などの装置は、一般に頑丈で、時間がたつにつれ感知できるほど劣化しない。その結果、これらの装置のスペクトル特性は、典型的には比較的不変のままであり、時間がたつにつれ検出器12の再較正を行う必要をなくす。さらに、LVF、FPE、およびCCDの検出器は温度変動の影響下で比較的安定している。典型的には、LVF54の層は、あまり大きくない温度変化で感知できるほど拡張または収縮しない様々な非晶質または結晶の物質から形成される。その結果、LVF54のスペクトルフィルタリング特性はあまり大きくない温度変化に対して比較的変化しないままであり、検出器12は、典型的には様々な温度動作について構成される必要がない。
【0104】
一般に、検出器12は様々なタイプのスペクトル検出器を含むことができる。たとえば、検出器12は、一つまたは複数の回折格子および/またはプリズムなどの波長分散要素に結合された放射線感受性要素(たとえば、フォトダイオードアレイおよび/またはCCDおよび/またはCMOS素子)を含む検出器を含むことができる。さらに、検出器12は、入射放射線の波長感受性検出および/または分析を提供するために使用される別のタイプの分散要素および/またはフィルタリング要素(たとえば、回折光学要素、液晶ベースのフィルタ、帯域通過フィルタ、調節可能なエタロン)を含むことができる。
【0105】
ある種の態様では、検出器12の半値全幅(FWHM)スペクトル分解能が10.0nm以下(たとえば、8.0nm以下、6.0nm以下、5.0nm以下、4.0nm以下、3.0nm以下、2.0nm以下、1.0nm以下、0.5nm以下、0.25nm以下)である。一般に、FWHMスペクトル分解能は、活動中の検出器要素(たとえば、CCD検出器上の画素)の数、および検出器内の光学的要素の波長分散能力に依存する。
【0106】
ある種の態様では、センサ10は、散乱放射線が試料30から検出器12上に入射する角度の範囲を効果的に制御するように構成される一つまたは複数の光学的要素を含むことができる。たとえば、図5は検出器12の表面(たとえば、試料30からの散乱放射線を受ける検出器12の表面)に取り付けられるコリメーティング要素56を含むセンサ10を示す。検出器12は、たとえばLVFを含むことができ、コリメーティング要素56はLVFに直接取り付けられることができる。検出器12はまた、たとえばLVFの反対側の表面に結合されるCCD検出器を含むことができる。全体の組立て-コリメーティング要素56、LVF、およびCCD検出器-は図5に示されるように回路基板18上に据え付けられることができる。コリメーティング要素56は、散乱放射線が検出器12上に入射する角度の範囲を制御するために、試料30からの散乱放射線40を平行にするように機能する。LVF54のFWHMスペクトル幅および/またはスペクトル通過帯域などのLVF54のスペクトル通過帯域特性は、入射する放射線の入射の角度に依存する。具体的には、LVF54上の散乱放射線の入射角度の変動は、CCD検出器50に沿った一つまたは複数の位置での通過帯域波長の青方偏移、および/またはLVF54でのスペクトル分解能の損失(たとえば、通過帯域幅の増加)をもたらすことがある。コリメーティング要素56を介して入射の角度の範囲を制御することにより、検出器12のスペクトル特性は比較的長い使用期間にわたり再現性がある。
【0107】
一般に、様々な異なるコリメーティング要素56がセンサ10で使用されることができる。例示的コリメーティング要素が、ファイバフェースプレート(たとえば、光ファイバウィンドウ)、コリメーティングホール装置、屈折率勾配(GRIN)レンズ、ファイババンドル、レンズアレイ、光学的ウィンドウ(成形された光学的ウィンドウを含む)、および別の同様の装置を含む。
【0108】
センサ10は典型的には複数の放射線源を含む。一部の態様では、放射線源の一部またはすべてが発光ダイオード(LED)を含む。センサ10の放射線源の一部(またはすべて)が、試料30を照射するために比較的広い帯域幅の入射放射線を提供することができる。そのような放射線を提供するためには、放射線源は一つまたは複数のLEDを含むことができる。たとえば、ある種の態様では、一部の放射線源が単一の広帯域幅LEDを含むことができる。一部の態様では、ある種の放射線源が多数のLEDを含むことができる。多数のLEDはそれぞれ異なる中心周波数および/またはスペクトル帯域幅を有する放射線を放出することができる。一部の態様では、多数のLEDの一部が同じ中心周波数および/または帯域幅を有する放射線を放出することができる。
【0109】
図1Aに示される態様では、たとえば、放射線源14a〜bおよび16a〜fのそれぞれが、それぞれ中心放出波長735nm、780nm、810nm、850nm、890nm、および940を有する6つのLEDを含む。6つのLEDは一緒にして、LEDを駆動するまたはLEDに電力を供給するために使用される方法に応じて、ほぼ500mWの総放射電力まで与えるように電力を供給されることができる。図1Aに示される態様では、LEDは約2mmの幅を有する表面実装技術装置のようにカスタムパッケージ化される。各パッケージは3つのLEDダイ(放射線放出要素)まで保持するように構成されることができる。6つのLEDは2つのLEDパッケージの中に分散される。一方のパッケージが3つのLEDダイを含み、他方が2つのLEDダイを含む。LEDは典型的には電源26から3.5V〜5Vまでの安定化電源により電力を供給される。一部の態様では、電源26は、たとえば6V以上を与える変圧器ブロックとすることができる。
【0110】
一部の態様では、放射線源14a〜bおよび16a〜fの任意の一つまたは複数が別のタイプの放射線放出要素を含むことができる。たとえば、放射線源は白熱(たとえば、タングステン線)電球を含むことができる。適切なランプは、たとえばInternational Light Technologies(マサチューセッツ州、Peabody)から入手できるGilwayモデルT-1およびT-1 1/4を含む。これらのランプは比較的低い動作電圧(5V)、動作電流(0.06A)を有し、200,000までの動作時間を提供することができる。さらに、ランプは近赤外線出力を比較的わずかに低減し、安定性および寿命を比較的大きく増す3.5Vで動作させられることができる。同様のランプモデルが、たとえばWelch Allyn(ニューヨーク州、Skaneateles Falls)などの会社から入手できる。
【0111】
一般に、センサ10の放射線源の一部またはすべてが任意の数の放射線放出要素(たとえば、LED、タングステンランプ)を含むことができる。一部の態様では、たとえば、放射線源は一つまたは複数の放射線放出要素(たとえば、2つ以上の放射線放出要素、3つ以上の放射線放出要素、5つ以上の放射線放出要素、7つ以上の放射線放出要素、9つ以上の放射線放出要素)を含むことができる。
【0112】
一部の態様では、近距離放射線源および/または遠距離放射線源の一部(ならびに/または近距離放射線源および/もしくは遠距離放射線源内部のパッケージの一部)の放射線放出要素の数は変化することがある。たとえば、検出器12からもっと遠くに配置される放射線源は、検出器12により十分な散乱放射線強度が測定されることを保証するために、多数の放射線放出要素を有するパッケージを含むことができる。一般に、近距離放射線源および/または遠距離放射線源の任意のパッケージが、任意の数の放射線放出要素を含むことができ、要素の数は、試料が入射放射線の所望の分布で十分照射されることを保証するように、および検出器12が試料からの散乱放射線の適切な測定値を得ることを保証するように選択される。
【0113】
センサ10の放射線源の一部またはすべてが多数の放射線放出要素を含むとき、電子プロセッサ20が、多数の要素により生成される出力放射線の特性を制御するように放射線放出要素を調節するように構成されることができる。具体的には、たとえば、センサ10のある種の放射線源が多数のLEDを含むとき、プロセッサ20は、放射線源により生成される放射線の分布全体を制御するために、個々のLEDのそれぞれからの放出放射線強度を制御することができる。放出放射線強度の制御は、たとえば、プロセッサ20および/または22からのデジタル制御信号を所与の放射線源要素に印加されるアナログ制御電圧に変換するデジタル・アナログ変換器(DAC)を介して達成されることができる。適切な分解能(たとえば、14ビット)のDACを使って、個々のLEDの放出強度に対する比較的細かな制御が達成されることができ、連続波放出が実現されることができる。
【0114】
あるいは、一部の態様では、個々のLEDの直接デジタル制御がプロセッサ20および/または22によりLEDのパルス幅変調(PWM)を介して達成されることができる。パルス幅変調は変調された(たとえば、パルス化された)LED出力を提供する。PWM制御の下で、選択された時間ウィンドウ全体にわたるLED出力の統合強度が、変調された信号のデューティサイクルにより規定される最大値(常にオン)からゼロ(常にオフ)まで制御される。これらの限界間の放出強度はプロセッサ20および/または22によるLEDの高周波パルシングにより実現される。パルスがLEDにより放出される比率を制御することにより、LEDのデューティサイクルが調節されることができる。たとえば、特定のLEDの放出強度を放出強度の最大値から最大値の半分の値まで低減するためには、LEDのデューティサイクルが50%まで低減される。
【0115】
ある種の態様では、個々のLEDの放出強度が固定される。すなわち、LEDのそれぞれに対する適切な放出強度が特定の測定適用に基づき決定され、それぞれに対する所望の強度出力を達成するためにLEDのそれぞれに適用される電流が決定される(実施例3でさらに議論されるように)。各LEDに対して適切な駆動電流が決定された後、各LEDに対する適切な駆動電流を維持するために、LEDのそれぞれに対する駆動回路に抵抗器が駆動回路に導入されることができる。LEDの特定の選択に対する適切な駆動電流(および抵抗器)の決定が較正センサを使用して一度行われることができ、LEDの同じ組合せを使用して構築されるその後のセンサが、1組の所定の抵抗器を含むことができる。各センサの別個の較正は必要とされない。
【0116】
プロセッサ20および/または22は、様々な理由のために多数の放射線放出要素からの放出放射線強度を制御するように構成されることができる。たとえば、ある種の態様では、放射線放出要素の一部の強度が他の強度よりも高いことがある。ある種の放射線放出要素の強度を制御する(たとえば、低減する)ことにより、試料に向けられる照射放射線のスペクトルプロファイルがより一様にされることができ、たとえば、またはより一般的にはスペクトルプロファイルが所望の(および公知の)形状を帯びるように修正されることができる。既知の形状を有する照射放射線を使用することにより、たとえば試料からの測定される散乱放射線中に関心対象のスペクトル特徴を同定することがより容易になることがある。
【0117】
別の例として、一部の態様では、入射放射線に対する検出器12の感度が放射線の波長の関数として変化することがある。したがって、照射放射線のスペクトルプロファイルは、そのような検出器感度の変動から生じる測定される散乱放射線スペクトル中のスペクトル特徴を低減するまたは取り除くように選択されることができる。上記のように、照射放射線のスペクトルプロファイルを選択することは、プロセッサ20および/または22の制御の下の別の放射線放出源に対して、ある種の放射線放出源からの放出放射線強度を増大させるおよび/または低減することを含むことができる。
【0118】
別の例として、ある種の態様では、試料(たとえば、試料30)は、一つまたは複数の周知の波長で入射放射線を吸収する部分を含むことがある。測定される散乱放射線のSN比を強化するためには(およびさらに、吸収の波長で散乱放射線の測定を可能にするためには)、ある種の放射線放出源の放出強度が、別の放射線放出源に対して増やされるおよび/または低減されることができる。具体的には、吸収帯の範囲内に収まる放射線を放出する放射線放出源の放出強度が、別の放出源の放出強度に対して増やされる(または、別の放出源が、吸収帯の範囲内で放出する放出源の放出強度に対して低減されることができる)。
【0119】
典型的には、たとえば、センサ10の各放射線源は、多数の放射線波長を含む放射線を放出する。一部の態様では、各放射線源からの放出放射線のFWHMスペクトル帯域幅は10nm以上(たとえば、15nm以上、20nm以上、50nm以上、100nm以上、200nm以上、300nm以上、400nm以上、500nm以上、700nm以上)である。各放射線源により放出される放射線の使用可能範囲は、検出器12の伝送範囲により決定されることができる。ある種の態様では、たとえば、検出器12は伝送範囲600nmから1100nmまでを有するLVFを含む。放出放射線の使用可能範囲はまた、ある種の態様では、検出器12内の波長分散要素に結合される検出器のスペクトル応答に依存することができる。たとえば、ケイ素から形成されるフォトダイオードアレイ、CCDアレイ、およびCMOSアレイが、典型的には上限約1100nmに達する使用可能なスペクトル応答を有する。別の材料から形成される検出器が、さらにより長い波長で試料応答を測定するために使用されることができる。
【0120】
一般に、センサ10の各放射線源は中心波長を有する放射線を放出する。各放射線源からの放出放射線の中心波長は600nmから1100nmまで(たとえば、650nmから1050nmまで、700nmから1000nmまで、750nmから1000nmまで、800nmから1000nmまで、800nmから1100nmまで)とすることができる。
【0121】
各放射線源(たとえば、放射線源14a〜bおよび16a〜f)は、LEDおよび/またはタングステン線などの一つまたは複数の放射線放出源を含む。放射線放出源はどれも、同じ中心放出波長で放出することができる、または放出源の一部が異なる波長で放出することができる。あるいは、またはさらに、放射線放出源はどれも異なるFWHM放出帯域幅を有することができる、または放出源の少なくとも一部が同じ帯域幅を有することができる。
【0122】
一般に、各放出源は、600nmから1100nmまで(たとえば、650nmから1050nmまで、700nmから1000nmまで、750nmから1000nmまで、800nmから1000nmまで、800nmから1100nmまで)の中心放出波長を有する放射線を放出する。典型的には、たとえば、各放出源は、FWHM放出帯域幅3nm以上(たとえば、5nm以上、10nm以上、15nm以上、20nm以上、30nm以上、40nm以上、50nm以上、60nm以上、80nm以上、100nm以上、150nm以上、200nm以上)を有する。
【0123】
センサ10は、近距離放射線源14a〜bおよび遠距離放射線源16a〜fの両方を有する。近距離放射線源は、図1Aに示されるように、検出器12からx方向に沿って測られた距離sに配置される。典型的には、たとえば、sは約2.5mmである。しかし、一般に、sは0.5mm以上(たとえば、1.0mm以上、1.5mm以上、2.0mm以上、2.5mm以上、3.0mm以上、4.0mm以上、5.0mm以上)、および/または10.0mm以下(たとえば、9.0mm以下、8.0mm以下、7.0mm以下、6.0mm以下)とすることができる。
【0124】
図1Aに示されるように、ある種の態様では、センサ10は2つの近距離放射線源14a〜bを含む。近距離放射線源の数は、典型的には、近距離放射線源が試料を照射するために使用されるとき、検出器12が試料からの散乱放射線で比較的一様に照射されることを保証するように選択される。したがって、一般に、センサ10は一つまたは複数の近距離放射線源を含むことができる。たとえば、一部の態様では、センサ10は検出器12の一方の側に配置されるゼロから4つまでの近距離放射線源を含むことができる。ゼロから4つまでの近距離放射線源はまた、検出器12のもう一方の側に配置されることができる。放射線源のそれぞれが、前に議論されたように一つまたは複数のパッケージを含むことができ、パッケージのそれぞれが一つまたは複数の放射線放出要素を含むことができる。
【0125】
ある種の態様では-たとえば、センサ10が拡大された長さLを有する場合-検出器12のそれぞれの側の近距離放射線源の数はさらに大きくすることができる(たとえば、5つ以上、6つ以上、7つ以上、8つ以上、9つ以上、10以上)。
【0126】
センサ10はまた複数の遠距離放射線源16a〜fを含む。一部の態様では、図1Aに示されるように、センサ10は6つの遠距離放射線源16a〜fを含む。特定の放射線源からの入射放射線が試料に侵入し試料内の関心対象の組織からの検出される散乱放射線を生成する深さは、一般に放射線源と検出器の間の直線距離に関連する。したがって、一般に、センサ10の遠距離放射線源のそれぞれは、試料表面下の一定の深さまでの試料の呼びかけ信号に対応する。典型的には、筋からの反射光が検出器12により適切に測定されるように、試料30の表面下の筋組織36を十分照射するために、上に重なる層を貫通することができる放射線を生成する遠距離放射線源を選択することにより、試料30内の筋組織36を照射するように適切な遠距離放射線源が選択される。一般に、センサ10は、試料の表面下の様々な深さで組織の測定を可能にする任意の数の遠距離放射線源を含むことができる。ある種の態様では、たとえば一つまたは複数の遠距離放射線源(たとえば、2つ以上の遠距離放射線源、3つ以上の遠距離放射線源、4つ以上の遠距離放射線源、5つ以上の遠距離放射線源、7つ以上の遠距離放射線源、9つ以上の遠距離放射線源、またはさらに多くの遠距離放射線源)を含むことができる。遠距離放射線源のすべてが、図1Aに示されるように、検出器12からx方向に沿って測定される異なる距離に配置されることができる、または放射線源の少なくとも一部が検出器12から同じ距離に配置されることができる。
【0127】
典型的には、図1Aに示されるように、任意の遠距離放射線源と検出器12の間の最短距離がdである。近距離放射線源のそれぞれが検出器12からd未満の距離に配置され、遠距離放射線源のそれぞれが検出器12からd以上の距離に配置され、距離はx方向で測定される。一部の態様では、dは5mm以上(たとえば、6mm以上、8mm以上、10mm以上、12mm以上、14mm以上、16mm以上、18mm以上、20mm以上、22.5mm以上、25mm以上、27.5mm以上、30.0mm以上、35.0mm以上、40mm以上、50mm以上)である。
【0128】
再び図1Aを参照すると、一部の態様では、遠距離放射線源のそれぞれの間の間隔hは同じであり、その結果、それぞれの次に続く遠距離放射線源が、さらに距離増分hだけ検出器12から変位される。図1Aに示される態様では、たとえば、6つの遠距離放射線源16a〜fがx方向に沿って測定され、それぞれ検出器12から距離25mm、30mm、35mm、40mm、および45mmで配置される。
【0129】
ある種の態様では、遠距離放射線源のそれぞれの間の間隔は同じでない。たとえば、センサ10は第1の群の遠距離放射線源および第2の群の遠距離放射線源を含むことができ、この場合、第1の群および第2の群のそれぞれの要素が、同じ群の別の要素に比較的近く配置されるが、その他の群中の放射線源から比較的さらに遠く離れて配置される。
【0130】
一般に、任意の2つの遠距離放射線源要素間の間隔hは0.5mm以上(たとえば、1.0mm以上、2.0mm以上、3.0mm以上、4.0mm以上、5.0mm以上、7.5mm以上、10.0mm以上、12.5mm以上、15.0mm以上、17.5mm以上、20.0mm以上、30.0mm以上、40.0mm以上、50.0mm以上、60.0mm以上、70.0mm以上、100mm以上、150mm以上、またはさらに大きい)とすることができる。
【0131】
典型的には、近距離放射線源は、図1Aに示されるようにx方向に沿って測定される距離sだけ検出器12から間隔を置いて配置される。一般に、間隔sは0.5mm以上(たとえば、1.0mm以上、2.0mm以上、3.0mm以上、4.0mm以上、6.0mm以上、8.0mm以上、10.0mm以上、15.0mm以上、20.0mm以上、またはさらに大きい)とすることができる。多数の近距離放射線源がセンサ10内に実装されるとき、多数の近距離放射線源はx方向に沿って均等に間隔を置いて配置されることができる、または一部またはすべての近距離放射線源間の間隔が異なることがある。一般に、任意の2つの近距離放射線源間の間隔は0.5mm以上(たとえば、1.0mm以上、2.0mm以上、3.0mm以上、4.0mm以上、6.0mm以上、8.0mm以上、10.0mm以上、15.0mm以上、20.0mm以上、またはさらに大きい)とすることができる。
【0132】
一部の態様では、回路基板18は可撓性をもたせることができ、試料の形状と少なくとも部分的に相補的な形状を帯びて、試料の表面に取り付けられたとき、変形することができる。一部の態様では、たとえば、回路基板18は可撓性のある回路基板とすることができる。一部の態様では、回路基板18は、一つまたは複数の可撓性のある可塑性物質などの一つまたは複数の変形可能物質から形成されることができる。
【0133】
一部の態様では、回路基板18は比較的剛性があり、変形に耐性があることがある。回路基板18は、たとえば、様々なセンサ放射線源と検出器12の間の距離が回路基板18の変形により著しくゆがめられないことを保証するように比較的剛性のままでいる剛性のあるある種のタイプの可塑性物質から生成されることができる。
【0134】
ある種の態様では、回路基板18は、1方向-図1Aではx方向-に沿った回路基板の変形が使用中に容易に発生しないように形成されることができる。その結果、検出器12と近距離放射線源および遠距離放射線源の間の相対距離が維持されることができ、上に重なる皮膚および脂肪の層の影響を低減するように、測定されたスペクトルの正確で再現できる修正が行われることができることを保証する。しかし、さらに、回路基板18は試料の形状(たとえば、被験者の腕または脚)に適合するように回路基板のエッジで変形されることができ、その結果、センサ10はより快適に目立たずに被験者に装着されることができる。
【0135】
一部の態様では、回路基板18は2つの異なる回路基板構成要素から形成される。第1の比較的剛性のある構成要素が、プロセッサ、放射線源、検出器、電源、インタフェース、および表示装置を含むセンサ10の様々な構成要素が取り付けられる据え付け要素に対応する。第2の比較的可撓性のある構成要素が、第1の構成要素に取り付けられ、また、試料に接触する。2部構成を使用することにより、センサ10は、様々な放射線源と検出器12の間の距離が使用中に比較的一定のままであることを保証するが、また、センサが取り付けられる試料の表面に少なくとも部分的に相補的な形状を帯びる。
【0136】
ある種の態様では、センサ10が接着性のパッドおよび層などの接着性要素を介して試料30に取り付けられることができる。図6Aは接着剤層58を使って試料30に取り付けられるセンサ10の概略図を示す。接着剤層58はセンサ10(たとえば、ハウジング11の底面)と試料30の表面の間に配置される。一部の態様では、層58は、試料にセンサ10を貼るために試料の表面に、および/またはセンサ10の底面に適用されることができる糊または別の同様の物体により変形させられることができる。
【0137】
一部の態様では、接着剤層58は使い捨て可能であり得、2層センサ10の一部を形成することができる。たとえば、図6Bに示されるように、センサ10は、ハウジング11に囲まれる回路基板18、および回路基板18上に据え付けられる構成要素を含む第1の使い捨てできない部分、ならびに、接着剤層58(および別の層も含みうる)を含む第2の使い捨てできる部分を含むことができる。使用後、センサ10の使い捨てできる部分は捨てられ、使い捨てできない部分は将来の使用のために保持されることができる。接着剤層58は、放射線源の一部(たとえば、遠距離放射線源)が据え付けられる可撓性のある物質として実現されることができる。近距離放射線源は回路基板18上に据え付けられ、ハウジング11内部に囲まれることができる。層58が使用後に処分されるとき、近距離放射線源はハウジング11内部に保持される。センサ10を使用して別の測定を行う前に、新しい層58がハウジング11に取り付けられることができる。
【0138】
ハウジング11と試料30の間に配置される接着剤層58は、近赤外線に対して少なくとも部分的に透過性がある。たとえば、図6のセンサが使用中のとき、センサ10の一つまたは複数の放射線源により生成される放射線が接着剤層58を通過し、試料30上に入射する。試料30からの散乱放射線はまた、接着剤層58を通過して、その後、検出器12上に入射する。
【0139】
ある種の態様では、層58は多層構造として実現されることができる。たとえば、層58は2層を、すなわち、比較的可撓性がありセンサ10の構成要素(たとえば、放射線源、プロセッサ、検出器、および別の回路)の一部またはすべてを支持する第1の層、および第1の層に接触し試料にも接触するように構成される第2の層を含むことができる。第2の層は接着剤層とすることができ、第2の層が試料に適用されたとき、試料の表面にマッチするように可撓性をもたせることができる。多くの異なる物質が第1の層および第2の層を形成するために使用されることができる。たとえば、第1の層は一つまたは複数の金属、プラスチック(たとえば、高密度プラスチック)、高分子物質、ならびに紙および/または木をベースとする物質(たとえば、繊維板)を含むことができる。第2の層は一つまたは複数の可塑性物質、高分子物質、ゴム、ラテックス、ゲル、および別のタイプの可撓性のある物質を含むことができる。
【0140】
様々な異なる使い捨てできる構成および使い捨てできない構成が可能である。一部の態様では、たとえば、第1の層も第2の層も使い捨てできる(たとえば、センサ10のすべてが使い捨てできる)。ある種の態様では、どちらの層も使い捨てできない。さらに依然として、一部の態様では、層の一方(たとえば、第2の層)が使い捨てできるが、他方の層(たとえば、第1の層)が使い捨てできない。典型的には、2層構造では、第1の層と第2の層の両方の少なくとも一方が、上記で議論されたように、近赤外線に対して少なくとも部分的に透過性がある、または近赤外線が層を通過できるようにする、層内に配置されるウィンドウを含む。
【0141】
一部の態様では、図7に示されるように、センサ10が接着性パッチ60を使って試料30に取り付けられることができる。接着性パッチ60は試料30の表面に付着する接着性部分62aおよび62bを含み、その結果、センサ10と、試料30の表面の間の接触を維持する。接着性パッチ60は、通信インタフェース28により送信される無線通信信号に対して少なくとも部分的に透過性を有することができる。
【0142】
一部の態様では、センサ10は完全に使い捨て可能であり得る。試料30へのセンサ10の取り付け、一つまたは複数の吸収スペクトルの測定、および試料30の一つまたは複数の特性の計算後、センサ10が試料から取り外され、捨てられることができる。
【0143】
一部の態様では、センサ10の一部が使い捨てできる。たとえば、図1Cを参照すると、センサ10が、検出器12および近距離放射線源を含む第1の回路基板18、ならびに遠距離放射線源を含む第2の基板19を含むことができる。第2の回路基板19は使い捨てできる回路基板とすることができる。センサ10の使用後、第2の回路基板19(遠距離放射線源を含む)は第1の回路基板18から取り外され、捨てられることができるが、第1の回路基板18はその後の使用のために保持される。ある種の態様では、電子部品の大半またはすべてがセンサ10の使い捨てできる部分上に配置されることができる。たとえば、センサ10は、プロセッサ(たとえば、プロセッサ20および/または22)、電子メモリ、電源(たとえば、使い捨てできる電池)、および/または前に開示された別の電子部品と共に、近距離放射線源も遠距離放射線源も取り付けられる使い捨てできる回路基板を含むことができる。センサ10の使用後、使い捨てできる回路基板、および取り付けられた電子部品のすべてが捨てられることができ、センサ10の残りの部分がその後の使用のために保持されることができる。
【0144】
ある種の態様では、センサ10が相補的スリーブを有する試料に取り付けられることができる。図8は試料30の表面に取り付けられたスリーブ64の概略図を示す。たとえば、スリーブ64は、運動しているもしくは有酸素活動を行っている、または医学的治療を受けている患者の腕または脚に取り付けられることができる。
【0145】
スリーブ64はセンサを収容するような寸法に合わせて作られる内部ポケット68を含む。センサ10は、矢印66により示される方向に沿ってポケット68の中にセンサ10を挿入することにより試料30に取り付けられることができる。典型的には、スリーブ64は可塑性物質などの可撓性のある物質から形成される。スリーブ64の少なくとも一部(たとえば、下部70)が、センサ10の一つまたは複数の放射線源により生成される放射線に対して、および/または通信インタフェース28により生成される無線通信信号に対して透過性を有することができる。動作中、一つまたは複数の放射線源からの入射放射線がスリーブ64の下部70を通過し、試料30の中に進む。試料30からの散乱放射線が部分70を通過し、その後、検出器12に入射する。
【0146】
センサ10は電源26を含む。一部の態様では、たとえば、電源26は、病院もしくは治療センタの電源、および/または変圧器ブロックを含むことができる従来の壁に取り付けたコンセントなどの外部電源から電力を受けるコネクタ(たとえば、プラグ)とすることができる。ある種の態様では、電源26は、従来の電源コネクタ、またはコンピュータなどの外部処理装置に接続するUSBコネクタなどのコネクタとすることができる。センサ10はコネクタを介して外部処理装置から電力を受けるように構成されることができる。電源26はまた、一般に変圧器、抵抗器、コンデンサ、インダクタ、トランジスタ、および他の回路素子などの様々なタイプの電子的電力調整装置を含むことができる。
【0147】
ある種の態様では、電源26は電池、光起電力セル、燃料電池、または別のタイプの独立電源などの自立型電源とすることができる。電源26として適切な電池のタイプが、たとえば、ニッケル水素電池、リチウムイオン電池、および固体電解質(一次)電池を含む。一部の態様では、電源電池は再充電可能であるとすることができ、センサ10が使用中でないとき再充電されることができる。ある種の態様では、電源電池は様々なタイプの使い捨てできる電池とすることができる。
【0148】
ある種の態様では、電源26は、患者に装着される(たとえば、患者の腕もしくは脚に装着される、または一つまたは複数のストラップを介して患者に取り付けられる)電池などの携帯できる電源に接続するコネクタを含むことができる。この構成は、電池が回路基板18に直接取り付けられた場合に他の方法で利用できるよりも大きく高容量の電池を使ったセンサ10の使用を可能にしうる。
【0149】
一部の態様では、電源26が、たとえば携帯電話の電池に類似する取り替えできる電池を含むことができる。センサ10は、回路基板18に取り付けられる構成要素に電池が電流を供給できるようにするために、取り替えできる電池の一部とかみ合うコネクタ含むことができる。コネクタは取り替えできる電池を支持するクレードルの一部を形成することができる。この場合、一つの取り替えできる電池が、たとえば古い電池を取り除き、新しい電池をクレードルの中に挿入することにより別の電池と容易に交換されることができる。
【0150】
ある種の態様では、電源26が電池などの再充電可能な構成要素を含むとき、再充電可能な構成要素が充電されながら、充電クレードルがセンサ10を支持するように構成されることができる。図9は支持要素76および電力コネクタ74を含む充電クレードル72の概略図を示す。支持要素76はセンサ10のエッジが収容される垂直の溝を含み、センサ10を充電クレードル72に対して比較的固定した位置に保持する。電力コネクタ74はセンサ10の電源26上のはめ合わせコネクタとかみ合う。電源26は典型的にはたとえば再充電可能電池である。電力は、電源26を再充電するために電力コネクタ74を通って電源26まで供給される。クレードル72は、たとえば、電源26が満充電条件に近づきつつあるときを検出し、次に、過充電を防止するために電源26への電力の流れを制限する電力制限回路を含むことができる。
【0151】
センサ10は電子プロセッサ20を含み、任意で一つまたは複数の別のアプリケーションプロセッサ(たとえば、アプリケーションプロセッサ22)を含む。プロセッサは一般に、入射放射線を生成するように放射線源に指示すること、散乱放射線を受け取り分析するように検出器12に指示すること、および検出器12から受け取ったデータに対して様々な数学的演算を行うことを含むすべてのセンサ機能を調和させる。プロセッサはまた、一般に様々なセンサ構成要素に制御信号を届けること、センサ構成要素から状態信号を受け取ること、センサ構成要素への動作電力の供給、および電源26からの電力の供給を監視すること、表示されるべきデータを表示装置24に送信すること、ならびに通信インタフェース28を介して外部装置との通信信号を送信および受信することに責任がある。センサ10が一つまたは複数のアプリケーションプロセッサ22を含む場合、これらの機能の一部がアプリケーションプロセッサにより提供されることができる。具体的には、アプリケーションプロセッサは、前に議論されたように、データから一つまたは複数の試料特性を得るために、検出器12から受信されたデータに対して数学的演算を行うように構成されることができる。一般に、プロセッサ機能は、望みに応じて、様々なプロセッサ間で分散されることができる。一般にプロセッサ機能の分散を支配する主な基準は、多分プロセッサに関連する遅延なしに比較的効果的なセンサ動作を維持すること、および電力消費を比較的低く保つこと(たとえば、プロセッサのクロック速度を比較的低く保つこと、および冷却装置の使用を避けることによる)を含む。
【0152】
一般に、本明細書において開示される方法はプロセッサ20および/またはアプリケーションプロセッサ22により実行される。具体的には、任意の構成、制御、または分析の段階が、センサ10の一つまたは複数のプロセッサにより自動的に行われることができる。プロセッサ20および/または一つもしくは複数のアプリケーションプロセッサ22は、試料30の吸収度スペクトルを測定するように、ならびに、試料の酸素分圧、酸素飽和度、pH、ヘマトクリット、ヘモグロビン濃度、無酸素性作業閾値、および酸素消費量を含む試料30の一つまたは複数の特性を吸収度スペクトルから得るように構成されることができる。
【0153】
ある種の態様では、センサ10はプロセッサを含まない。たとえば、センサ10は制御信号、構成信号、データ、および分析結果が別の装置(たとえば、コンピュータ、携帯情報端末、制御装置、携帯電話、遠隔操作装置、または別のそのような装置などの別の計算装置)内のプロセッサに届けられることができるコネクタを含むことができる。
【0154】
一部の態様では、センサ10は表示装置24を含むことができる。表示装置24は一般に、たとえば低電力液晶表示装置または有機LED表示装置などの任意のタイプの表示装置とすることができる。表示装置24はプロセッサ20または任意のアプリケーションプロセッサ22からデータを受け取ることができ、センサを着用している被験者に、および/または被験者を監視しているオペレータにデータを表示することができる。受信され表示されるデータは、試料情報、較正情報、試料の吸収度スペクトルから計算される様々なパラメータの値、および別のタイプのデータを含むことができる。表示装置はハウジング11の中に一体化されることができる、および/またはハウジング11から遠く離れて配置され、通信インタフェース28(たとえば、信号ケーブル、および/または無線送信機・受信機の組合せを含むことができる)を介してセンサ10の一つまたは複数のプロセッサと通信するように構成されることができる。
【0155】
ある種の態様では、センサ10は表示装置24を使用して傾向情報を表示するように構成されることができる。期間(ユーザ選択可能とすることができる)にわたり測定された一つまたは複数のパラメータの以前に測定された値が、一つまたは複数のパラメータの時間をかけた進展を示すために、たとえばグラフ形式で表示されることができる。個々のパラメータに対する傾向情報が異なる軸上に表示されることができる。あるいは、またはさらに、ある種のパラメータに対する傾向情報が、たとえば、パラメータ間の関係を示すために、共通軸上に(たとえば、異なる色で、および/または異なる記号を使用して)表示されることができる。センサ10は傾向線を任意のパラメータに対する測定されたデータ点に適合させるように構成されることができる。さらに、センサ10は、一つまたは複数のパラメータに対する傾向線が一定の基準(たとえば、一定の距離よりも近くに接近する、交差する、一定量以上だけ分散する、ある方向の傾きが変化する、一定量以上だけ曲率が変化する)を満たすとき、システムオペテータへの警告(たとえば、可聴警告、可視警句、または両方)を提示することができる。センサ10は、一つまたは複数のパラメータの値が一定の基準(たとえば、所定のしきい値および/またはユーザ選択可能なしきい値に達する)を満たすとき、システムオペレータに警告を提示することができる。
【0156】
センサ10はまた通信インタフェース28を含む。一般に、センサ10は多種多様な異なるタイプの通信インタフェースを含むことができ、1種類よりも多い通信インタフェースを含むことができる。たとえば、ある種の態様では、通信インタフェース28はUSBインタフェースなどの直列通信インタフェースおよび/またはポートを含む。一部の態様では、通信インタフェース28は並列通信インタフェース、または直列/並列混合通信インタフェースを含む。
【0157】
一部の態様では、通信インタフェース28は無線送信機だけ、または無線の送信機と受信機の両方を含む無線通信インタフェースを含むことができる。センサ10上の無線通信インタフェースは、無線周波数、赤外周波数、マイクロ波周波数、および別の周波数でデータを送信および/または受信するように構成されることができる。
【0158】
センサ10は無線と有線の両方の通信インタフェースを介して様々な外部装置とデータを送信および受信するように構成されることができる。たとえば、コンピュータ、携帯情報端末、携帯電話、ならびに/またはスマートホンおよび別の専用処理装置などの外部処理装置にデータが送信されることができる。データはまた、フラッシュドライブ、ならびに磁気記憶装置および/または光記憶装置などの記憶装置に送信されることができる。記憶装置はまた、たとえば被験者により(たとえば、被験者の腰の周りに)装着される、または被験者の衣服内に組み入れられる携帯できる記憶装置(たとえば、被験者の靴の中に組み入れられるチップベースの記憶装置)とすることができる。さらに、データは、プライベートネットワーク、公衆ネットワーク、ローカル・エリア・ネットワークおよび/またはワイド・エリア・ネットワーク、携帯電話網および/またはデータ網、ならびにインターネットを含む一つまたは複数のネットワークを介して装置に送信されることができる。
【0159】
データはまた、医療関係者、運動競技のトレーナ、センサ10を装着している被験者、および分析されたデータを観測する別の職員により使用されることができる一つまたは複数の表示装置に送信されることができる。典型的には、表示装置に送信されるデータは、試料の吸収度スペクトルから得られる一つまたは複数のパラメータを含む。ネットワークおよび/または記憶装置に送信されるデータは、一つまたは複数の計算されたパラメータを含むことができ、たとえば測定された吸収度スペクトル、ならびにセンサ較正情報および/またはセンサ構成情報を含むことができる。
【0160】
図9に示されるようにセンサ10に対して充電クレードルが提供される場合、充電クレードルはまた、(たとえば、電源26の充電中)センサ10からデータを受け取るための通信インタフェースを含むことができる。充電クレードルの通信インタフェースは、記憶装置、表示装置、および様々なネットワークに受信されたデータを送信するように構成されることができる。別の装置にデータを送信するための高電力通信インタフェースを含む充電クレードル72にデータを送信するために、センサ10上の比較的低電力の通信インタフェースを使用することは、センサ10の電力消費全体を低減することができる。
【0161】
前に議論されたように、センサ10は典型的には複数の遠距離放射線源を含み、遠距離放射線源のそれぞれが試料30の表面下の異なる深さにある組織(たとえば、筋組織36)の呼びかけ信号に対応する。使用前に、センサ10は典型的には標準に対して較正され(たとえば、標準化検査ルーチンを実行することによる)、次に、試料(被験者の体の一部など)に取り付けられ、使用するために活動化される。センサ10は、典型的には初期測定段階で試料照射のための適切な遠距離放射線源を選択するように構成される。
【0162】
図10は、センサ10に対する標準化または基準検査手順、および放射線源選択手順での様々な段階を示す流れ図100である。第1の段階102では、センサ10上の近距離放射線源および遠距離放射線源のそれぞれが、時間をかけた放射線放出特性の変化を修正するために較正される。較正は典型的にはセンサ10の底面(たとえば、使用中に試料30に接触する面)に対して参照標準を置く段階を含む。次に、それぞれの近距離放射線源および遠距離放射線源が、選択された期間、順番に活動化され、各放射線源からの放射線が参照標準に入射する。各放射線源に対する参照標準からの反射放射線の強度が検出器12により測定され、測定された強度値が記憶される。検出器12の暗電流信号(たとえば、検出器12に入射する放射線がない)も測定され記憶される。
【0163】
次に、測定された反射放射線強度値が、たとえばアプリケーションプロセッサ22内に記憶される各放射線源に対する基準強度値と比較される。基準強度値はセンサ10の製造時に測定された値に対応することができる。任意の放射線源の統合された放射線強度および/または波長依存性強度が変化した場合、変化した放出特性を有する放射線源からの放射線を使って試料の照射から得られる測定データを後で処理する間に使用するために、修正因子が計算され記憶されることができる。
【0164】
放射線源を標準と比較した後、段階104で、センサが試料に(たとえば、ヒト被験者の腕または脚)取り付けられ、システム最適化ルーチンが電子プロセッサ20により実行される。センサ10は一般に前に議論された任意の取り付け装置を使用して被験者の体に取り付けられることができる。システム最適化は、指定された数の放射線強度カウントが少なくとも検出器12により測定されるが、最大の指定された強度よりも高くならないことを保証する。典型的には、たとえば、システム最適化は、検出器のダイナミックレンジのかなりの部分が散乱放射線信号を測定するために使用されるように実行される。
【0165】
システム最適化は、検出器12による測定信号の電子的増幅の調節(たとえば、検出器利得)、検出器12での信号取得時間(たとえば、測定積分時間)の調節、選択された近距離放射線源および/または遠距離放射線源の放出強度の調節および/またはそれらの放射線源の放射線放出源の放出強度の調節、ならびにこれらの様々な技法の組合せを含むことができる。試料30からの散乱放射線スペクトルは、必要に応じて、検出器の電子的利得、信号取得時間、および照射時間(たとえば、デューティサイクル)に基づき正規化されることができる。適切な散乱放射線強度が被験者に対して所定のスペクトル帯の範囲内で測定されることができれば、検出器12による電子的信号増幅は実現するのが特に簡単なことがある。
【0166】
典型的には、上記の調節の一部またはすべてが、試料から測定データを収集する前に適切な動作構成でセンサを配置する電子プロセッサ20により実行されることができる。調節は、一つのパラメータが調節され(たとえば、検出器利得)、別のパラメータの調節(たとえば、放射線源の強度の一つまたは複数)が続く、交互のやり方で実行されることができる。パラメータのそれぞれが、センサに対して適切な動作構成を達成するために、電子プロセッサ20により2度以上調節されることがある。一例として、放射線源の一つまたは複数に対する信号取得時間を調節するために、電子プロセッサ20は所定の時間間隔の間、近距離放射線源または遠距離放射線源の一つからの光を使って試料を選択的に照射し、次に、検出器12を使用して散乱光を測定することができる。所定の時間間隔に対応する散乱放射線の強度を測定することにより、選択された近距離放射線源または遠距離放射線源に対する適切な信号取得時間が決定されることができる。一般に、任意の特定の放射線源について、検出器12のダイナミックレンジを完全ではないがほぼ満たす散乱光を測定することが望ましい。たとえば、検出器12が4000強度カウントまでのダイナミックレンジを有する場合、電子プロセッサ20は、放射線源の任意の一つからの放射線を使った試料の照射に対応する測定された散乱光が、測定された強度またはほぼ3500カウントを有するように、放射線源のそれぞれに対する信号取得時間を調節するように構成されることができる。
【0167】
プロセッサ20は、所定の時間間隔に適切な倍率を適用することにより各放射線源に対する適切な信号取得時間を決定し、この場合、倍率は所定の時間間隔中の散乱放射線の強度に基づく。一例として、選択された放射線源について、所定の時間間隔50msの間の試料の露出、および時間間隔中の試料からの散乱放射線の測定が、総放射線強度700カウントをもたらすことがある。選択された放射線源に対して強度ほぼ3500カウントを達成するために、プロセッサ20は、倍率3500/700=5が所定の時間間隔に適用されるべきであることを計算する。したがって、プロセッサ20は、選択された放射線源に対する適切な信号取得時間が5×50ms=250msであることを決定する。プロセッサ20は、センサ上のその他の近距離放射線源および/または遠距離放射線源の一部またはすべてに対して適切な信号取得時間の決定を繰り返すことができる。所定の時間間隔および/または目標散乱放射線強度(たとえば、3500カウント)がプロセッサ20により自動的に選択されることができる、またはこの情報がシステムオペレータにより手動で入力されることができる。
【0168】
一部の試料に対し、特に信号取得時間が比較的長くなるときに、加熱が起こりうる。一部の態様では、過度の試料加熱なしに適切な散乱放射線強度が測定されることを保証するために、特定の放射線源に対する信号取得時間の選択が、検出器12の電子的利得の調節と結合されることができる。一部の態様では、センサは手動または自動で決定される最大信号取得時間(たとえば、1000msまたは500ms)を含むことができる。特定の放射線源に対する信号取得時間が最大信号取得時間を超える場合、選択された放射線源からの放射線を使った照射に対応する散乱放射線を検出するとき、検出器12の電子的利得が増やされることができる。具体的には、検出器12の電子的利得は増加的に大きく増やされることができ、より高い利得設定での新しい(たとえば、より低い)信号取得時間を決定するために、選択された放射線源に対して上記で議論された手順が繰り返されることができる。任意の近距離放射線源および/または遠距離放射線源については、検出器12の特定の利得設定での(たとえば、最大信号取得時間よりも低い)適切な取得時間が決定されるまで、検出器12の利得を増やす手順、および信号取得時間を決定する手順が繰り返されることができる。
【0169】
一般に、特定の放射線源からの放射線が別の放射線源からの放射線よりも試料をより大きく加熱することがあるので、最大信号取得時間は異なる放射線源に対して変化することがある。放射線源のそれぞれに対する最大信号取得時間、電子的利得設定、および決定された信号取得時間は、たとえばセンサのオンボードのデータ記憶装置内に、または外部記憶装置もしくは外部記憶媒体内に記憶されることができる。
【0170】
一部の態様では、センサは、測定中の過度の試料加熱を防止するために、試料の温度を測定するために使用されることができる温度モニタを含むことができる。上記で議論されたように、プロセッサ20および/またはプロセッサ22は、試料の温度を監視するために使用されることができる内部温度センサを含むことができる。内部温度センサは、たとえば、回路素子の温度が変化するとき、再現できる方法で変化する抵抗を有する回路素子を含むことができる。回路素子の抵抗が変化するとき、回路素子を通って伝播する電気信号も変化する。プロセッサ20および/またはプロセッサ22は電気信号のそのような変化を検出することができ、電気信号の変化を回路素子の(および、たとえば、センサが試料に取り付けられたときの試料の)温度測定値に変換するソフトウェア命令を含むことができる。
【0171】
あるいは、図1Aに示されるように、温度センサ15はセンサ10の底面上に据え付けられることができる。温度センサ15はプロセッサ20に電気的に結合されることができ、試料の温度に関する情報をプロセッサ20に提供することができる。プロセッサ20は、試料が入射放射線に曝される間に過度の加熱を受けないことを保証するために、この温度情報を使用して信号取得時間、検出器利得、および光源選択を調節することができる。
【0172】
ある種の態様では、システム最適化段階はまた、放射線源のそれぞれの中のパッケージおよび/またはLEDにより生成される放射線の強度の調節を含むことができる。たとえば、特定の放射線源中の個々のLEDおよび/またはパッケージの出力放射線強度は、特定の放射線源が試料を照射するために提供する入射放射線が特定のスペクトル分布を有することを保証するように調節されることができる。一部の態様では、パッケージおよび/またはLEDは、スペクトル波長の特定の範囲全体にわたりほぼ一定の強度を有する入射放射線のスペクトル分布を生成するように調節されることができる。ある種の態様では、パッケージおよび/またはLEDは、他のスペクトル領域よりも決まったスペクトル領域でより強い入射放射線のスペクトル分布を生成するように調節されることができる。たとえば、強い試料吸収に対応するスペクトル領域内の入射放射線の強度が、吸収されないスペクトル領域内よりも大きくなるように調節されることができ、その結果、強く吸収される領域内の散乱放射線が検出器12を使って測定することができるほど十分強くなる。一部の態様では、検出器12の検出効率は波長の関数として変化することがある。入射放射線の強度は、検出効率のそのような変動を補正するように調節されることができる。たとえば、検出効率が低いスペクトル領域では、これらの領域内で測定される散乱放射線信号を増大させるために、入射放射線強度がそれに応じて増やされることができる。
【0173】
一部の態様では、パッケージおよび/またはLEDにより生成される放射線の強度の調節はまた、決まったスペクトル領域内で入射放射線を放出する決まったパッケージを活動化することまたは非活動化することを含むことができる。たとえば、近距離放射線源が、決まった波長領域内で(たとえば、間に入る皮膚および脂肪の層に対して修正するために使用される散乱放射線をもたらす波長領域内で)追加の入射放射線を提供するように、これらの波長領域内で放出するパッケージおよび/またはLEDを活動化することにより調節されることができる。あるいは、またはさらに、近距離放射線源は、間に入る皮膚および脂肪の層に対して修正するために使用される散乱放射線をもたらさない波長領域内で放射線を放出するパッケージおよび/またはLEDを非活動化するように構成されることができる。
【0174】
一般に、パッケージおよび/またはLEDからの放出放射線強度は、前に開示されたように、パッケージおよび/もしくはLEDに印加される制御電圧を変えることにより、ならびに/または、パッケージおよび/もしくはLEDのデューティサイクルを変えることにより調節されることができる。一部の態様では、様々な近距離放射線源および遠距離放射線源が、近距離放射線源も遠距離放射線源も同じまたはほぼ同じ相対スペクトル強度分布を有する入射放射線を生成するように調節されることができる。ある種の態様では、近距離放射線源の一部もしくはすべて、および/または遠距離放射線源の一部もしくはすべてが、異なる相対スペクトル強度分布を有する入射放射線を生成するように調節されることができる。近距離放射線源および遠距離放射線源のそれぞれに対する制御パラメータおよび所望のスペクトル強度値は、たとえばセンサのオンボードのデータ記憶装置内に、または外部記憶装置もしくは外部記憶媒体内に記憶されることができる。
【0175】
システム最適化ルーチンの一部である様々な調節が、一般に適切な遠距離放射線源の選択前またはその後に行われることができる。図10では、システム最適化ルーチンが遠距離放射線源選択前に行われる。しかし、一部の態様では、適切な遠距離放射線源が最初に選択されることができ、次に、近距離放射線源と、遠距離放射線源の任意の一つまたは複数(たとえば、選択された遠距離放射線源)の両方についてシステムの様々な動作パラメータ−信号取得時間、電子検出器利得、および放出される放射線の相対スペクトルプロファイルを含む−がこのとき決定されることができる。
【0176】
任意の段階106では、次に、試料が近距離放射線源の一部またはすべてからの放出放射線を使って照射され、試料からの散乱放射線が検出器12により測定される。波長に依存する散乱放射線強度データがプロセッサ20(および/またはプロセッサ22)により受け取られ、プロセッサは近距離照射に対応する試料に対する吸収度(または反射率)スペクトルを決定する(上記で議論されたように、吸収度および反射率は簡単な数学的変換により関連付けられ、試料に関する実質的に同じ情報を提供する)。
【0177】
次の段階108では、次に、試料が遠距離放射線源の選択された一つからの放出放射線を使って照射され、試料からの散乱放射線が検出器12により測定され、プロセッサ20が、選択された遠距離照射に対応する試料に対する吸収度スペクトルを決定する。手順は遠距離放射線源のそれぞれに対して順番に繰り返され、その結果、それぞれが試料の異なる遠距離照射に対応する一連の吸収度スペクトルが得られる。
【0178】
任意の段階110では、上に重なる皮膚および脂肪の層のスペクトル効果を低減するために、遠距離照射スペクトルのそれぞれが修正される。たとえば図2に示されるように、試料30は典型的には筋組織36、ならびに皮膚32および皮下脂肪34の上に重なる層などの関心対象の組織を含む。皮膚および脂肪の層は、関心対象の筋組織に関連しない、かつスペクトルから計算される試料パラメータの精度を低減することができるスペクトル効果を生成することができる。したがって、上に重なる層によるスペクトル効果が低減される修正された遠距離照射スペクトルを提供するために、近距離照射に対応するスペクトルからのデータが遠距離照射スペクトルの一つからのデータと組み合わせられる。手順は、1組の修正された遠距離照射スペクトルを生成するために、遠距離照射スペクトルのそれぞれに対して繰り返される。
【0179】
遠距離照射スペクトルデータを修正することは、典型的には近距離照射スペクトルから得られるスペクトルデータに対して遠距離データを直交化させることを含む。そのような修正を実現するためのシステムおよび方法が、たとえば、内容全体が参照により本明細書に組み入れられる、米国特許出願公報第2007/0038041号で開示されている。
【0180】
段階112では、修正された(または、段階106および110が省かれた場合、修正されない)遠距離照射スペクトルが、試料のその後のスペクトル測定のための特定の遠距離放射線源を選択するために分析される。前に議論されたように、遠距離放射線源のそれぞれが、試料の表面下の選択された深さまで効果的に探索する。したがって、特定の遠距離放射線源の選択は実質的には、関心対象の組織(たとえば、筋組織36)を最も効果的に照射する遠距離放射線源を選択することに対応することができる。
【0181】
適切な遠距離放射線源を選択するいくつかの方法がプロセッサ20により実現されることができる。一部の態様では、たとえば、修正されたおよび/または修正されない遠距離照射スペクトルがシステムオペレータに提示され、システムオペレータはスペクトルに基づき特定の遠距離放射線源を手動で選択する。遠距離放射線源をオペレータが選択することは、たとえば異なる照射スペクトルの形状を含む様々な基準に基づくことがある。
【0182】
一部の態様では、適切な遠距離放射線源の選択は高度に自動化される、または完全に自動化されることさえできる。プロセッサ20は、様々な遠距離放射線源に対応する修正されたおよび/または修正されない照射スペクトルの分析に基づき特定の遠距離放射線源を選択するように構成されることができる。ある種の態様では、たとえば、試料中の主要な発色団に対するテイラ級数ベースのモデルに修正されたおよび/または修正されない照射スペクトルを適合させ、次に、モデルと、照射スペクトルのそれぞれの間の誤差を決定することにより、プロセッサ20が特定の遠距離放射線源を選択することができる。次に、プロセッサ20は最小誤差を生成する遠距離放射線源を選択する。テイラ級数モデルは、試料中の様々な発色団の性質に部分的に基づき、いくつかの関数形式をとることができる。実現されることができる適切なモデルが、たとえば、内容全体が参照により本明細書に組み入れられる、米国特許第7,532,919号で開示されている。一例として、試料から散乱または放出される放射線の波長λの関数としての光減衰スペクトルAmodel(λ)に対するテイラ級数展開モデルが

であり、ここで、I0(λ)は試料上の入射放射線の強度であり、I(λ)は試料からの反射放射線または散乱放射線の強度であり、c0およびc1は定数であり、<L>は試料を通る反射光または散乱光の平均経路長であり、εHb(λ)は試料中の脱酸化ヘモグロビンに対する波長依存性吸収係数であり、εHbO2(λ)は試料中の酸化ヘモグロビンに対する波長依存性吸収係数であり、cwatは試料中の水の濃度であり、εwat(λ)は試料中の水の波長依存性吸収係数である。
【0183】
一般に、テイラ級数モデルフィッティング誤差は放射線源-検出器距離の増大と共に増大する。したがって、遠距離放射線源が最小フィッティング誤差基準にもっぱら基づき選択された場合、検出器12に最も近い遠距離放射線源が、選択される最高の事前確率を有する。遠距離放射線源選択アルゴリズムから経路長に関連する影響を除去するためには、照射スペクトルはテイラ級数ベースのモデルに適合させる前に正規化されることができる。様々な異なる正規化方法がプロセッサ20により実現されることができる。一部の態様では、たとえば、プロセッサ20は、特定のスペクトル中の吸収度値をスペクトルの最大吸収度値で除算することにより照射スペクトルを正規化する。信号取得時間による正規化、および各特定のスペクトル中の平均値による正規化を含む別の正規化方法もプロセッサ20により実現されることができる。
【0184】
正規化に続き、正規化された照射スペクトルから計算されたテイラ級数モデルフィッティング誤差は、異なる遠距離放射線源に対応する測定信号の異なる放射線源および異なる大きさの変化する光路長による影響が一般にない。むしろ、テイラ級数モデルフィッティング誤差は、試料中の酸素飽和度を決定するための様々な照射スペクトルの安定性に関する正確な測定基準である。したがって、正規化された照射スペクトルに基づく最小テイラ級数モデルフィッティング誤差を生成する遠距離放射線源を選択することは、試料中のターゲット(たとえば、筋組織)のスペクトルを最も正確に生成する遠距離放射線源を選択することに似ている。
【0185】
遠距離放射線源が対応するスペクトルから得られるテイラ級数モデルフィッティング誤差に基づき遠距離放射線源の一つを選択することと共に、放射線源からの入射放射線を使って試料を照射することにより測定されるデータの質が、「3σ」法を使用して最小適合性基準に対して調べられる。3σ法を実現するためには、プロセッサ20は、遠距離放射線源のすべてに対するテイラ級数モデルフィッティング誤差の標準偏差に対応する量σの値を決定する。プロセッサ20はまた、遠距離放射線源のすべてに対するテイラ級数モデルフィッティング誤差の平均値μを決定する。μおよびσの決定は、たとえば、以前に測定されたスペクトル、およびそれらのスペクトルに関連するフィッティング誤差に基づくことができる。
【0186】
プロセッサ20は、テイラ級数モデルフィッティング誤差と、すべての測定周波数全体にわたるテイラ級数モデルフィッティング誤差の平均値との間の差の平方の和を計算し、差の平方の和を測定波長の数で除算し、商の平方根を得ることにより、各スペクトル(たとえば、特定の遠距離放射線源に対応する各スペクトル)に対するテイラ級数モデルフィッティング誤差の二乗平均平方根(RMS)値を決定する。プロセッサ20は特定のスペクトルに対するテイラ級数モデルフィッティング誤差のRMS値をテイラ級数モデルフィッティング誤差の平均値μと比較する。RMS値が、平均値μを中心とし、平均値の両側に3σの幅を有する誤差間隔の範囲内(たとえば、間隔(μ-3σ、μ+3σ))にある場合、プロセッサ20は、少なくとも99%レベルの信頼性で、分析されている特定のスペクトルに対応する遠距離放射線源からの放射線を使って試料を照射することにより測定された試料スペクトルが、試料に対する一つまたは複数の量の正確な決定を行うのに適した品質であると結論づける。次に、分析されている特定のスペクトルに対応する遠距離放射線源は、遠距離放射線源からの放射線を使った照射に応答する試料からの散乱放射線を測定することにより、試料からデータを収集するために使用されることができる。
【0187】
しかし、特定のスペクトルに対するテイラ級数モデルフィッティング誤差のRMS値が上記の間隔の範囲内に収まらない場合、プロセッサ20は、対応する遠距離放射線源が試料から十分な品質のデータを収集するために使用されることができないと決定する。このやり方では、プロセッサ20は3σ法を実現して、任意の特定の遠距離放射線源に対する最小適合性基準を確立する。対応する遠距離放射線源による試料の照射から得られるスペクトルに対するテイラ級数モデルフィッティング誤差のRMS値は、間隔(μ-3σ、μ+3σ)の範囲内に収まらなければならない。
【0188】
3σ法は遠距離放射線源選択手順の様々な時点で実現されることができる。一部の態様では、特定の遠距離放射線源に対応する各スペクトルに対してテイラ級数モデルフィッティング誤差が決定された後、スペクトルが最小適合性基準も満たすことを確認するため、スペクトルが調べられることができる。基準を満たさない遠距離放射線源がさらに進んだ検討から除外されることができる。結局、スペクトルが調べられ、基準を満たすスペクトルだけが保持され、最小RMSテイラ級数モデルフィッティング誤差に対応する遠距離放射線源が使用するために選択されることができる。
【0189】
ある種の態様では、テイラ級数モデルフィッティング誤差が遠距離放射線源のそれぞれに対応するスペクトルに対して最初に決定されることができる。プロセッサ20は最小RMSテイラ級数モデルフィッティング誤差を有するスペクトルを選択し、3σ法を使用してスペクトルを調べて、スペクトルが最小適合性基準を満たすことを確認する。基準が満たされた場合、対応する遠距離放射線源がさらに使用するために選択される。基準が満たされない場合、プロセッサ20は次に最も小さいRMSテイラ級数モデルフィッティング誤差を使ってスペクトルを評価し、最小基準検査を繰り返して、このスペクトルに対応する遠距離放射線源がさらに試料を測定するために適した照射放射線源かどうかを決定する。最小RMSテイラ級数モデルフィッティング誤差に対応し、また、最小適合性基準を満たす遠距離放射線源が同定されるまで、手順全体がさらに繰り返される。次に、この遠距離放射線源は、試料情報の測定のために試料に入射放射線を提供するために使用される。
【0190】
適切な遠距離放射線源を選択するために、さらに、またはあるいは、別の基準も使用されることができる。たとえば、一部の態様では、遠距離放射線源のそれぞれに対する信号取得時間が遠距離放射線源の一つの選択に影響を及ぼすことがある。一般に、信号取得時間は放射線源-検出器間隔の増大と共に増大することが観測された。したがって、いくつかの遠距離放射線源が同等のテイラ級数モデルフィッティング誤差を有する照射スペクトルを生成する場合、および放射線源それぞれが3σ法に従ってターゲット(たとえば、筋組織)スペクトルを正確に得ることができるほど十分高い品質のデータを生成する場合、プロセッサ20は、信号取得時間を低減するために、たとえば、検出器に最も近い遠距離放射線源を選択するように構成されることができる。
【0191】
ある種の態様では、適切な遠距離放射線源を選択するために別の方法が使用される。たとえば、どのスペクトルが関心対象の組織の期待されるスペクトルに最も近く対応するかを決定するために、遠距離スペクトルが分析されることができる。比較は、測定されるスペクトルおよび期待されるスペクトルの全体に基づくことも、スペクトル内部の選択されたスペクトル特徴(たとえば、特定波長での吸収ピークなど)に基づくこともできる。短すぎる深さの探索に対応する遠距離放射線源は、一般に不十分に解像されたスペクトル特徴を生成する。
【0192】
一般に、適切な遠距離放射線源を選択する任意の方法が、間に入る皮膚および脂肪の層によるスペクトル効果を考慮するために、測定された遠距離スペクトルの修正ありまたはなしで使用されることができる。すなわち、一部の態様では、遠距離放射線源を比較する前に、遠距離スペクトルは、近距離放射線源による試料照射に基づき測定された一つまたは複数の試料吸収度スペクトルから得られる情報を使用して修正されることができる。そのような修正は、センサと試料中の関心対象のターゲット(たとえば、筋組織)の間に配置される皮膚および脂肪の層の影響を低減するまたは除去するために使用されることができる。しかし、ある種の態様では、間に入る皮膚および脂肪の層に対する修正を行うことなく遠距離スペクトルが比較されることができる。修正を行うかどうかに関する決定は(たとえば、ユーザ選択可能オプションとして、および/またはセンサからのプロンプトに応答して)システムオペレータにより行われることができる、または決定は、たとえば、遠距離スペクトルの特性に基づきセンサにより自動的に行われることができる。
【0193】
測定されたスペクトルと期待されるスペクトルの間、または測定されたスペクトルおよび期待されるスペクトルのある種の特徴の間の相関関係を計算するおよび/または推定するために、数学的アルゴリズムが適用されることができる。一部の態様では、期待されるスペクトルとの許容できる相関関係を有する測定されるスペクトルを生成する最短の探索深さに対応する遠距離放射線源が、試料の次の呼びかけ信号として選択される。どの遠距離放射線源も適切であると確認されない場合、センサ10は可視信号および/または可聴信号、ならびにセンサの位置を調べて調節するプロンプトの形でシステムオペレータに警告を提供する。いずれの結果も段階114で手順の終了につながる。
【0194】
一部の態様では、センサ10が空間分解分光法(spatially-resolved spectroscopy、SRS)のために使用されることができる。SRSでは、少なくとも3つの異なる遠距離放射線源に基づくスペクトルが、様々な試料特性を決定するために分析される。センサ10がSRSモードで動作するとき、少なくとも3つの異なる遠距離放射線源が、期待されるスペクトルと測定されたスペクトルの間の対応、および/または遠距離放射線源に対する試料のスペクトル特徴に基づき続いて起こる照射のために選択される。少なくとも3つの異なる遠距離放射線源が見つけられることができない場合、センサ10は、可視警報および/または可聴警報、ならびにセンサの位置を調べるプロンプトを提供する。
【0195】
ある種の態様では、センサが多数の近距離放射線源を含む場合、センサは試料照射のために適切な近距離放射線源を選択するように構成されることができる(たとえば、間に入る皮膚および脂肪の層に対して遠距離放射線源を修正するため)。様々な方法が適切な近距離放射線源を選択するために使用されることができる。一部の態様では、近距離放射線源の選択が、遠距離放射線源の選択と共に行われることができる。上記で議論されたように、異なる遠距離放射線源に対応する複数の遠距離スペクトルが得られる。近距離放射線源のそれぞれに対応する近距離スペクトルも得られる。次に、各遠距離スペクトルが、今度は近距離スペクトルのそれぞれの一つを使用して修正される(たとえば、直交化させられる)。遠距離スペクトルと近距離スペクトルの各対について、修正された遠距離スペクトルがテイラ級数ベースのモデルに適合され、モデルフィッティング誤差が決定される。遠距離スペクトルと近距離スペクトルの対のそれぞれからの修正された遠距離スペクトルが適合され、モデルフィッティング誤差が決定された後、修正された遠距離スペクトルが上記で議論された3σ法を使用して調べられ、3σ法に対応する最小適合性基準を満足するスペクトルをもたらさない近距離放射線源と遠距離放射線源の組合せがさらに進んだ検討から除外される。次に、この組合せを使用して測定されたスペクトルが3σ法の最小基準も満たすことを前提にして、センサ10が最小フィッティング誤差を有するスペクトルをもたらす近距離放射線源と遠距離放射線源の組合せを選択する。
【0196】
一部の態様では、適切な近距離放射線源の選択がシステムオペレータにより手動で行われることができる。センサ10は、たとえば、システムオペレータが適切な近距離放射線源を選択することを要求するプロンプトを表示することができる。近距離放射線源の選択はまた、オペレータがセンサ10に(たとえば、プロンプトありまたはなしに)入力する一つまたは複数の構成設定を介して達成されることができる。センサ10は、システムオペレータが適切な近距離放射線源を選択するのを手助けするために、近距離センサを使って測定された一つまたは複数の試料の吸収度スペクトルをオペレータに表示することができる。
【0197】
図10(たとえば、段階102)に関連して上記で議論された標準化ルーチンは任意であり、センサ10を使用して本明細書において開示される測定を行う前に必要とされない。一部の態様では、たとえば、センサ10は使用前に標準化されない。代わりに、センサ10は標準化されない構成で使用されることができる、または標準化情報が、使用前にセンサ10を構成するために(たとえば、外部記憶装置、またはシステムメモリなどのオンボードの記憶装置から)取り出され、使用されることができる。次に、センサ10は、図10に関連して上記で議論されたように、適切な遠距離放射線源を選択するように任意で構成されることができる。
【0198】
適切な一つまたは複数の遠距離放射線源の選択に続いて、試料からのスペクトルデータの測定、およびスペクトルデータからの一つまたは複数のパラメータの計算が開始されることができる。図11は一連の測定段階を含む流れ図200を示す。最初の段階202では、近距離放射線源が活動化され、図10の段階106に関連して議論されたように、試料の近距離吸収度スペクトルが決定される。次に、段階204では、選択された遠距離放射線源が活動化され、図10の段階108と同様のやり方で試料の遠距離吸収度スペクトルが決定される。段階206では、図10の段階110に従って、近距離スペクトルから得られるスペクトル成分に対して遠距離スペクトルを直交化させることにより、皮膚および脂肪の層によるスペクトル効果を低減するように遠距離スペクトルが修正される。
【0199】
段階208では、一つまたは複数の試料パラメータが、修正された遠距離スペクトルデータに基づきプロセッサ20により計算される。前に議論されたように、計算されるパラメータは、試料の一つまたは複数の酸素飽和度、酸素分圧、pH、ヘマトクリット、ヘモグロビン濃度、無酸素性作業閾値、含水量、および酸素消費量を含むことができる。段階210では、測定されたデータおよび/または計算されたパラメータは、一つまたは複数の記憶装置内に記憶される、および/または一つもしくは複数の外部装置もしくはネットワークに送信されることができる。表示装置24が存在する場合(または別の表示装置がセンサ10に連結される場合)、表示装置は新しい測定値および/または計算値で更新されることができる。前に議論されたように、傾向情報-一つまたは複数のパラメータの以前に測定された値を含む-がユーザ選択可能時間ウィンドウとして表示装置24上に表示されることができる。傾向情報は、一つまたは複数のパラメータの別の値がセンサにより測定されたとき、表示装置24上で更新されることができる。
【0200】
判断212では、プロセッサ20および/または22が、試料を監視し続けるか、(たとえば、ユーザにより起動された中断信号に応答して)データ取得を終結させるかどうか決定する。試料の測定が継続されるべき場合、流れの制御が檀家202に戻り、測定手順が繰り返される。測定が終結されるべき場合、手順は段階214で終了する。
【0201】
プロセッサ20はデータ取得中に一連の別の自動化された機能を実行することができる。一部の態様では、たとえば、プロセッサ20は、試料に対して測定されたスペクトルデータが、最大強度しきい値を超えているか、最小強度しきい値に達しないかどうかを決定するように構成される。しきい値はシステムオペレータにより手動で入力される、プロセッサ20により自動で決定される、またはプロセッサ20によりセンサメモリもしくは記憶装置から、または外部記憶装置もしくは外部記憶媒体から取り出されることができる。スペクトルデータが最大強度しきい値を超えているかどうか検査するために、スペクトルデータは吸収度スペクトルに変換される前に分析される。プロセッサ20は、測定されたスペクトルデータ中の最も高い強度値を最大強度しきい値と比較する。最も高い強度値が最大強度しきい値を超えない場合、スペクトルデータは吸収度スペクトルに変換され、次に、吸収度スペクトルはプロセッサ20によりさらに分析される。しかし、最も高い強度値が最大強度しきい値を超える場合、スペクトルデータは吸収度スペクトルに変換されず、選択された遠距離放射線源からの入射放射線を試料に向けて、試料からの散乱光を測定することにより、別のスペクトルデータ(たとえば、別の照射スペクトル)が得られる。
【0202】
次に、プロセッサ20は別のスペクトルデータ中の最も高い強度値を最大強度しきい値と比較する。別のスペクトルデータ中の最も高い強度値が最大強度しきい値を超えない場合、別のスペクトルデータが吸収度スペクトルに変換され、次に、吸収度スペクトルがプロセッサ20によりさらに分析される。しかし、別のスペクトルデータ中の最高の強度値が最大強度しきい値を超える場合、スペクトルデータは吸収度スペクトルに変換されない。次に、プロセッサ20は遠距離放射線源に対する信号取得時間を再決定し、ある種の態様では、近距離放射線源の一部またはすべてに対する信号取得時間を再決定することができる。典型的には、遠距離放射線源に対する信号取得時間は、検出器12により測定される散乱放射線の累積強度をさらに制限するように低減される。
【0203】
検出器12により測定される散乱放射線信号が小さすぎるかどうか決定するために、プロセッサ20は、測定されたスペクトル強度値のそれぞれを最小強度しきい値と比較する。測定されたスペクトル強度値のどれも最小強度しきい値よりも小さくない場合、プロセッサ20はスペクトルデータを試料に対する吸収度スペクトルに変換し、吸収度スペクトルをさらに分析する。しかし、測定されたスペクトル強度値の一つまたは複数が最小強度しきい値よりも小さい場合、スペクトルデータは吸収度スペクトルに変換されない。代わりに、プロセッサ20は、選択された遠距離放射線源からの入射放射線を試料に向けて、検出器12を介して試料からの散乱光を測定することにより別のスペクトルデータ(たとえば、別の照射スペクトル)を得る。
【0204】
次に、プロセッサ20は別のスペクトルデータを最小強度しきい値と比較する。別のスペクトルデータ中の測定されたスペクトル強度値のどれもが最小強度しきい値よりも小さくない場合、プロセッサ20は別のスペクトルデータを試料に対する吸収度スペクトルに変換し、吸収度スペクトルをさらに分析する。しかし、別のスペクトルデータ中の測定されたスペクトル強度値の一つまたは複数が最小強度しきい値よりも小さい場合、スペクトルデータは吸収度スペクトルに変換されない。代わりに、次に、プロセッサ20は遠距離放射線源に対する信号取得時間を再決定し、ある種の態様では、近距離放射線源の一部またはすべてに対する信号取得時間を再決定することができる。典型的には、遠距離放射線源に対する信号取得時間は、検出器12により想定される散乱放射線の累積強度を増大させるために増やされる。
【0205】
一部の態様では、検出器の電子的利得の調節が、近距離放射線源および/または選択された遠距離放射線源に対する信号取得時間の再決定の代わりに、またはそれと組み合わせて使用されることができる。たとえば、検出器12により測定される放射線の強度を低減するために、プロセッサ20は、選択された遠距離放射線源の信号取得時間を低減するように、選択された遠距離放射線源からの入射放射線を使った試料の照射に続いて試料からの散乱放射線が測定されたときに検出器12の電子的利得を低減するように、または両方を行うように構成されることができる。逆に、検出器12により測定される放射線の強度を増すために、プロセッサ20は、選択された遠距離放射線源の信号取得時間を増すように、選択された遠距離放射線源からの入射放射線を使った試料の照射に続いて試料からの散乱放射線が測定されるときに検出器12の電子的利得を増すように、または両方を行うように構成されることができる。
【0206】
ある種の態様では、異なる遠距離放射線源の選択が、近距離放射線源および/もしくは遠距離放射線源に対する信号取得時間の再決定、ならびに/または検出器の電子的利得の調節の代わりに、またはそれと組み合わせて使用されることができる。たとえば、信号取得時間を増すことおよび/または測定されるスペクトルデータの強度を増すために電子的利得を増すことに加えて、プロセッサ20は、試料を照射する新しい遠距離放射線源を選択するように構成されることができる。選択された遠距離放射線源は、最初の遠距離放射線源よりも検出器12に近くすることができる。あるいは、信号取得時間を低減すること、および/または測定されるスペクトルデータの強度を低減するために電子的利得を低減することに加えて、プロセッサ20は試料を照射する新しい遠距離放射線源を選択するように構成されることができる。選択された遠距離放射線源は最初の遠距離放射線源よりも検出器12からさらに遠くすることができる。
【0207】
電子的利得調節および異なる遠距離放射線源の選択は、選択される遠距離放射線源に対する信号取得時間が既に比較的長いときに、特に有用である。長い信号取得時間は試料の加熱につながることがあり、スペクトルデータに基づく様々な試料特性の値の不正確な決定につながる誤ったスペクトルデータをもたらす。そのような誤差を避けるために、信号取得時間が比較的小さい量だけ増やされる(または、全く増やされない)が、代わりに、電子的利得などの別のシステムパラメータ、および選択される遠距離放射線源が調節されることができる。典型的には、利得調節がプロセッサ20により最初に行われ、そのような調節が、所望の測定強度範囲内で、および/または試料を著しく加熱することなく、スペクトルデータをもたらすのに不十分な場合、プロセッサ20は試料を照射する異なる遠距離放射線源を選択することができる。
【0208】
信号取得時間、電子的利得、および選択される遠距離放射線源の一つまたは複数の調節はまた、スペクトルデータの測定中の試料の変化を補正するために使用されることができる。たとえば、試料がヒト被験体の組織である場合、被験者が運動しているとき、血流および他の生理学的パラメータの著しい変化が起こり得る。そのような変化は、検出器12により測定される散乱光の量を増すまたは低減することによりスペクトル測定に影響を及ぼすことができる。本明細書において開示されるセンサは、変化の影響を補正するために信号取得時間、電子的利得、および選択される遠距離放射線源などのパラメータを調節することにより、そのような変化を補正することができる。
【0209】
任意の調節段階および分析段階が、システムオペレータが介在して、またはオペレータの介在なしにプロセッサ20により完全に自動的に行われることができる。一部の態様では、たとえば、プロセッサ20が、スペクトルデータがリアルタイムまたはほぼリアルタイムで得られたときにスペクトルデータを調べるように、および所望の範囲の信号強度内に収まる測定信号をもたらすようにセンサの様々な動作パラメータを適切に調節するように構成される。
【0210】
一部の態様では、センサ10は、図1Aに示される配列と異なる配列で放射線源(たとえば、近距離放射線源および/または遠距離放射線源)を含むことができる。たとえば、図31は、複数の近距離放射線源14とは検出器12の反対側に配列される複数の遠距離放射線源16を含むセンサ10の底面図を示す。図32はセンサのx方向に沿って検出器12から間隔を置いて配置される複数の近距離放射線源14、およびセンサのy方向に沿って検出器12から間隔を置いて配置される複数の遠距離放射線源16を含むセンサ10の底面図を示す。図33は、ほぼ円形の形状を有し、環状の近距離放射線源14および複数の環状の遠距離放射線源16を含むセンサ10の底面図を示す。
【0211】
一般に、センサ10の態様は、任意の数の近距離放射線源および任意の数の遠距離放射線源を含むことができる。様々な放射線源が、円もしくは円弧の形状、正方形、長方形、および/または別の規則的もしくは不規則な形状を含む異なる形状を有することができる。放射線源の分散が本明細書において開示されるセンサ10の機能と矛盾がないことを前提にして、一般に互いに対して任意のやり方で放射線源が分散されることができる。
【0212】
ある種の態様では、センサ10は多数の検出器を含むことができる。たとえば、センサ10の態様が単一の放射線源および多数の検出器を、または多数の放射線源および多数の検出器を含むことができる。図34は単一の放射線源25および複数の検出器23a〜fを含むセンサ10の底面図を示す。放射線源25は一般にたとえば放射線源14a〜cおよび16a〜eと関連して本明細書において開示される任意の特性を有することができる。検出器23a〜fのそれぞれが典型的にはたとえば検出器12と関連して本明細書において開示される任意の特性を有することができる。
【0213】
検出器23aは短い放射線源-検出器間隔に対応するが、検出器23b〜fのそれぞれは長い放射線源-検出器間隔に対応する。検出器23b〜fにより検出される散乱放射線は、前に議論されたように、試料表面下の異なる探索深さに対応する。したがって、図34におけるセンサ10の動作は一般に、たとえば図1Aのセンサ10の動作に似ている。遠距離検出器23b〜fの一つが、図10の手順に類似する手順に従って、試料内部の関心対象の組織からの散乱放射線を検出するように選択される。試料の遠距離照射に対応するスペクトルは-検出器23b〜fにより測定されるが-検出器23aにより測定される近距離スペクトルデータから得られるスペクトル成分に対する直交化により、皮膚および脂肪の層のスペクトル効果を低減させるように修正される。図34におけるセンサ10のその他の特性および特徴は、一般に本明細書において開示されるその他のセンサの特性および特徴と似ている。
【0214】
図34の検出器の数および位置は、一般に望みに応じて選択されることができる。任意の数の検出器が、図31〜33に示される態様での放射線源の配置と類似するやり方で、センサ10の底面上に配置されることができる。検出器23a〜fは一般に円、環、長方形、正方形、ならびに他の規則的および/または不規則な形状を含む多種多様な形状を有することができる。検出器23a〜fの数、位置、および形状は、本明細書において開示されるセンサ10の機能と矛盾がないように選ばれる。
【0215】
一部の態様では、センサ10は多数の近距離放射線源を含むことができる。近距離放射線源の一部は他の近距離放射線源に対して検出器から異なる間隔を置いて配置されることができる。図35は、複数の近距離放射線源34a〜c、および複数の遠距離放射線源36a〜fを含むセンサ10の例示的態様を示す。近距離放射線源34a〜cはそれぞれ、検出器32に対して異なる間隔を置いて配置される。たとえば、一部の態様では、検出器32に対する放射線源34a〜cの間隔sは、それぞれ6mm、3mm、および9mmである。一般に、センサ10は、試料スペクトルを測定すること、および/または測定された遠距離スペクトルを修正することのための適切な近距離入射放射線を提供するために、任意のやり方で検出器32から間隔を置いて配置される任意の数の近距離センサを含むことができる。
【0216】
応用
本明細書において開示されるセンサは、ヒトと動物の両方の被験者を監視するための様々な異なる応用で使用されることができる。センサの比較的低いプロファイル、小さなサイズおよび重さ、ならびに必要なものを完備した性質のために、センサは被験者に対して負担になる動きの制約を課すことなく快適に装着されることができる。
【0217】
一部の態様では、本明細書において開示されるセンサは、訓練療法を受けている運動選手など、運動を行っている被験者を監視するために使用されることができる。無酸素性作業閾値、酸素消費量、および筋温度などの適切な筋組織特性を測定することにより、療法の進展が見守られ評価されることができる。訓練中、センサは運動選手により装着されることができ、ほぼリアルタイムの測定結果が監視ステーションに無線で送信されることができ、監視ステーションでは、コーチ、トレーナ、医師、または別の人が運動選手の進展および状態を監視することができる。
【0218】
同様のやり方で、センサは傷害後の身体的リハビリテーション、または評価センタでのストレステストを受ける被験者を監視するために使用されることができる。センサはリハビリテーションプログラムの有効性に関係するデータを提供することができ、身体的な激しい活動中に被験者の状態の監視も備えることができる。センサは、たとえば、無線で、または表示装置および/もしくはデータ記憶装置に接続される一つまたは複数のワイヤを介してデータを送信することができる。表示装置はトレッドミルおよびエクササイズバイクなどの訓練装置の様々な部分の中に組み入れられることができ、センサは被験者の監視が行われるときに、これらの装置の一部またはすべてにデータを送信することができる。
【0219】
一部の態様では、センサは危険な活動および/またはストレスの多い活動に従事する個人の状態を監視するために使用されることができる。たとえば、センサは兵士および/または宇宙飛行士を監視するために使用されることができる。出血は兵士の死の主要な原因である。兵士が大きな傷害を生き残るのを手助けするために、重傷を負った兵士が迅速に同定され、適切な蘇生術が適用されるべきである。かなりの出血はショックにつながり、今度はショックが不適切な臓器かん流および組織酸素化を生み出す。ショックからの蘇生は、危険な臓器の利用できる酸素と酸素要求量の間の食い違いを修正する。したがって、最初の1時間以内の出血に対する急速な応答-ショックからの蘇生を含む-が心血管虚脱および死を防ぐことができる。ショックを評価する従来の方法は-血圧、心拍数、尿排出量、ならびに酸素配達および酸素消費、血中乳酸、動脈のpH、ならびに塩基過剰などの酸素運搬の系統的測定を含む-ショックの開始および/または終点、ならびに蘇生に対する応答に関して不確定なマーカを提供することがある。
【0220】
末梢の筋組織中の酸素分圧および/または酸素飽和度の測定値は、血液を骨格筋および内臓器官(たとえば、肝臓、胃、腸、腎臓)から心臓および脳に流し血圧を保つ血行力学的代償性応答のマーカとして中心血液量の変化に関連付けられる。したがって、これらの量は、ショックの開始(血圧の低下)前に内出血の目安を提供し、出血中の適切な蘇生のより正確で早い目安を提供することができる。本明細書において開示されるセンサは、筋組織中の酸素分圧および/または酸素飽和度のリアルタイム、またはほぼリアルタイムの尺度を提供するために使用されることができ、したがって、出血性ショックを示している最も危険な兵士の早い同定のために使用されることができる。筋酸素化の低下が急速に逆戻りさせられなければ、患者の筋pHが下がる。正常レベルの筋pHを回復することのない正常な筋酸素を回復するための蘇生は、患者の不十分な予後につながることがある。したがって、本明細書において開示されるセンサは、筋酸素飽和度/分圧、および/またはpHの連続監視を可能にし、センサから管理センタに送信されるデータが、たとえば、傷害が持続しているときに、医学的配慮の必要性に対して補助する職員に警告するために使用されることができる。本明細書において開示されるセンサは、一部の態様では、兵士および/または宇宙飛行士により着られる衣服に組み入れられることができ、これらの個人の監視をさらにより目立たなくする。蘇生が行われるとき、センサは、一部の事例では治療装置の電子制御装置に入力を提供することにより、蘇生治療を指導するために、筋酸素飽和度/分圧および/またはpHを監視するために使用されることができ、それにより、患者の予後を改善する。本明細書において開示されるセンサから入力情報および/または制御信号を受け取ることができる治療装置は、たとえば、薬物注入ポンプ(たとえば、一つまたは複数の薬および/または血液もしくは生理食塩水などの液体を届けるため)、人工呼吸器、および液体を患者に届けるおよび/または患者の状態を監視するように構成される別の装置を含むことができる。
【0221】
一部の態様では、本明細書において開示されるセンサは、患者の運搬中(たとえば、空中の救急輸送機および地上の救急車の中)、および現場で、病院(たとえば、手術室、緊急処置室、および集中治療室)などの治療施設で危篤の疾患患者および/または慢性疾患患者を監視するために使用されることができる。センサはまた、診療室、外来患者診療所で、および患者の家で患者を監視するために使用されることができる。医者、看護師、および他の患者介護者が患者の状態を監視し、緊急状態の事象、または別の重大な事象に適切な措置をとることができるように、センサから監視ステーションまでデータが送信されることができる。患者の到着前に救急車から受け入れ病院に直接データが送信されることができ、その結果、到着するとすぐに病院職員が患者を処置する準備がされていることができる。一部の応用では、うっ血性心不全などの慢性疾患を有する患者が、本明細書において開示されるセンサを家で連続的にまたは断続的に使用して、患者の身体の状態が、医療介入が示唆されるおよび/または必要となる段階まで悪化するときに医師に警告することができる。
【0222】
本明細書において開示されるセンサは、外傷、敗血症を有する患者、および手術を受けている患者の監視および治療を伴う応用に特に最適である。これらの状況のそれぞれに共通の一つの要因が、死および合併症がしばしば、腸、肝臓、胃、および腎臓などの重要な臓器への不十分な血流の結果であることであり、この状況は典型的には不十分な組織かん流と呼ばれる。不十分な組織かん流が初期に確認された場合、不十分な組織かん流は、適切な量の体液を与えること、および必要ならば、血流を改善するための薬物療法により治療されることができる。しかし、不十分な組織かん流が治療されず続く場合、不十分な組織かん流は、細胞障害および組織死につながる組織のアシドーシス(低い組織pH)をもたらすことがある。このことは、敗血症および多臓器不全の原因の一つであり、長い入院、費用がかかる医学的治療、および高い死亡率をもたらすことがある。
【0223】
本明細書において開示されるセンサは、被験者の組織からの散乱放射線に基づき、内臓器官酸素化の代用の測定値を提供する筋酸素レベルを決定することができる。このことが、不十分な組織かん流の早い同定につながることができる。センサはまた、患者管理中に典型的にはしきい値レベルよりも高く維持されなければならない筋pHおよび筋酸素飽和度を決定することができる。これらのセンサからの出力は、組織かん流を改善し適切なレベルの組織酸素およびpHを回復する目的で体液、薬物、または別の治療を届ける別の装置に接続されることができる。これらのセンサからの出力は、筋酸素、pH、およびヘマトクリットが所定のレベルでとどまるように、そのような治療装置を制御するために使用されることができる。本明細書において開示されるセンサにより決定される別の特性も、急性的にも慢性的にも苦しむ患者のための管理治療プログラムを査定するために評価され使用されることができる。
【0224】
ハードウェアおよびソフトウェアの実装
本明細書において記載されている方法段階および手順は、ハードウェアで、またはソフトウェアで、または両方の組合せで実装されることができる。具体的には、プロセッサ20(および/またはプロセッサ22などのセンサ10の別のプロセッサ)が、上記に議論された任意の方法を実行するためのソフトウェアおよび/またはハードウェア命令を含むことができる。方法は、本明細書において開示される方法段階および図面に従う標準的プログラミング技法を使用してコンピュータプログラムの形で実装されることができる。本明細書において記載されている機能を実行するためにプログラムコードが入力データに適用される。プリンタ、または表示装置、またはたとえば遠隔監視のためのWebサイトへのアクセスを伴うコンピュータモニタ上のWebページなどの一つまたは複数の出力装置に出力情報が適用される。
【0225】
各プログラムは、プロセッサと通信するために高レベル手続きプログラミング言語またはオブジェクト指向プログラミング言語で実装されることが好ましい。しかし、希望すれば、プログラムはアセンブリ言語または機械語で実装されることができる。いずれの場合も、言語はコンパイルされる言語でも、解釈される言語でもよい。各コンピュータプログラムは、本明細書において記載される手順を実行するようにプロセッサを構成し動作させるために、プロセッサにより読出し可能な記憶媒体または記憶装置(たとえば、電子メモリ)上に記憶されることができる。
【実施例】
【0226】
本発明は、特許請求の範囲に記載されている本発明の範囲を限定するものではない以下の例でさらに説明される。
【0227】
実施例1
テイラ級数モデルフィッティング誤差の大きさおよび分布を評価するために、成人が仰向けの位置にいる間に、6人の成人被験者から体の異なる部分で近赤外スペクトル反射率測定値が得られた。被験者の皮膚と関心対象の筋組織の間に介在する脂肪層、および位置が厚さ5mmから20mmまでの範囲に及ぶように、各被験者に対して多数の測定位置が選択された。脂肪厚の測定値は超音波スキャナ(ワシントン州、Bothell、SonoSite)を使用して定量的に決定された。各被験者の各位置で、5回または6回の重複する測定が行われた。重複するスペクトルが正規化され、次に、テイラ級数モデルに適合され、測定されたスペクトルとテイラ級数モデルの間の二乗平均平方根誤差(たとえば、誤差の二乗の和を各スペクトル中の個々の波長点の数で除算された商の平方根)としてテイラ級数モデルフィッティング誤差が決定された。すべての測定値および誤差が決定された後、平均フィッティング誤差、およびフィッティング誤差の標準偏差が、重複する測定値から各位置に対して決定された。
【0228】
被験者の1人に対する例示的スペクトルが図12A〜Dに示されている。スペクトルは被験者のふくらはぎ(図12A、脂肪厚9.4mm)、肩(図12B、脂肪厚9.4mm)、高位の大腿(図12C、脂肪厚13.1mm)、および標準的大腿(図12D、脂肪厚9.6mm)に対して異なる放射線源-検出器分離(L1=30mm、L2=35mm、L3=40mm、L4=45mm、L5=50mm)で行われた測定に対応する。脂肪厚および測定位置の違いにもかかわらず、スペクトルのすべてが同様の形状を有し、760nm近くに最大の吸収がある。様々な放射線源-検出器間隔の関数として最小の違いがある。最大の脂肪厚に対応するスペクトル(図12C)が、より小さい脂肪厚に対応するスペクトルよりも大きな分散を示すように見える。
【0229】
図12A〜Dに示されるスペクトルから得られる酸素飽和度の測定値、および酸素飽和度測定値に関連するフィッティング誤差が、それぞれ図13Aおよび13Bに示されている。一般に、被験者の様々な位置および脂肪厚に対して決定された酸素飽和度測定値は図13A中の大きさでは似ている。このことは、テイラ級数モデルフィッティングが、試料測定のためにどの遠距離放射線源が選択されるかを決定する信頼できる方法であることを示唆する。一般に、入射放射線が皮膚/脂肪の層を通り筋の中に侵入し、近距離修正(たとえば直交化)が皮膚および脂肪からのスペクトル寄与を適切に低減または除去するという前提で、テイラ級数モデルフィッティング誤差は(酸素飽和度測定値と同様に)脂肪厚とは無関係である。この例では、異なる脂肪厚が、計算された酸素飽和度値を大きく変えないという観測結果は、光の侵入が適切であり、かつ皮膚および脂肪の修正が十分であることを示唆する。
【0230】
さらに、酸素飽和度の誤った測定値をもたらすスペクトルが、テイラ級数モデルフィッティング誤差を決定するように構成された電子プロセッサにより比較的容易に同定され、さらに進んだ検討から除外されることができる。測定されたデータセットから異常なスペクトルを削除することの実現可能性を調べるために、34人の異なる成人のヒト被験者から近赤外スペクトル反射率スペクトルが放射線源-検出器間隔30mmでコンパクトな分光計(Ocean Optics USB2000、フロリダ州、Dunedin、Ocean Opticsから入手可能)に結合された光ファイバプローブを使用して訓練期間中に得られた。図14Aは34人の被験者の1人に対して測定された複数のスペクトルを示す。測定されたスペクトルのそれぞれが正規化され、テイラ級数モデルに適合され、テイラ級数モデルフィッティング誤差が計算された。
【0231】
スペクトルのそれぞれに対するテイラ級数モデルフィッティング誤差が図14Bに示されている。誤差グラフから、被験者に対して収集されたスペクトルの中でも、2つ(最初および最後に記録されたスペクトル)が異常であったことは明らかである。これらのスペクトルが酸素飽和素を決定するために使用された場合、結果は誤る可能性が高い。したがって、これら2つのスペクトルに対して計算されたテイラ級数フィッティング誤差の異常に大きな値が、異常なスペクトルの正確な予測子の役割を果たす。電子プロセッサは上記で開示されるテイラ級数フィッティング誤差を実装することができ、次に、所定の信号レベルまたは前の信号レベルに対するしきい値処理または比較などの処理により、測定されたデータセットから、誤りがある計算されたパラメータ値をもたらす可能性が高いスペクトルを容易に同定し、除去することができる。
【0232】
実施例2
多数の個々のLEDを活動化することによる入射放射線スペクトルの合成を調べるために、異なる2組のLEDを使って研究が行われた。1組目のLEDは以下のピーク波長、すなわち735nm、810nm、850nm、850nm、890nm、および940nmで放出するように構成されるダイオードを含む。2組目のLEDは以下の波長、すなわち735nm、780nm、810nm、850nm、890nm、および940nmで放出するように構成されるダイオードを含む。LEDの各組について、1組内のLEDのそれぞれに印加される駆動電流が、LEDのそれぞれに対する駆動電流の調節可能なほんの一部分であった。本研究では、ほんの一部分が1組内の個々のLEDのそれぞれに対して等しくなるように調節された。LEDのそれぞれからの放射を含む各組のスペクトルが、99%SPECTRALON(登録商標)反射率標準からの反射光を検出するために、30mmの放射線源-検出器間隔を使用して測定された。図15は2組目のLEDの測定されたスペクトルを示す。図15に示されるスペクトルは、関心対象の特定周波数領域で多数のLEDを同時に活動化することにより、比較的なめらかな入射放射線スペクトルが得られることができることを示唆する。血液の近赤外スペクトル測定では、最も重要な波長が、デオキシヘモグロビンの最大吸収の波長であるほぼ760nmである。しかし、図15では760nmの近傍のスペクトル強度が適度の減少を示す。さらに、940nmで放出するLEDが、測定される入射放射線に大きな強度を与えないように見える。したがって、個々のLED放射源の異なる分布が、具体的には、940nmのLEDが、760nmにより近いピーク放出波長を有するLEDと置き換えられた分布が、血液の近赤外反射率スペクトルを測定するためにより適した合成スペクトルをもたらすことがある。センサの具体的な応用に応じて、LEDの異なる分布が、スペクトルの近赤外領域での測定信号の質を改善するために使用するために選択されることができる。
【0233】
実施例3
1組のLEDからのスペクトル放出は、LEDの個々の放出スペクトルと、検出器のスペクトル応答のたたみこみである。図15に示されるように、たとえば、LEDのそれぞれが放出スペクトル全体にほぼ等しく寄与するときでさえ、スペクトルの決まった部分で測定される放出放射線は、検出器のスペクトル応答関数により、スペクトルの別の部分よりも強度が弱くなることがある。例示として、図15では、約700nmと780nmの間の放射線強度が780nmと860nmの間の放射線強度よりも弱い。
【0234】
しかし、いくつかのLEDの組み合わせられた出力のスペクトル強度プロファイルを調節するために、スペクトルの異なる部分で放出される放射線の相対的量を調節するために、異なるLEDに異なる駆動電圧が印加されることができる。あるいは、またはさらに、前に議論されたように、個々のLEDのそれぞれのデューティサイクルが調節されることができる。実施例2では、第1の組および第2の組のLEDは、各LEDが同じ組の中のその他のLEDと同じ割合の最大駆動電流を受けるように調節された。しかし、この実施例では、第2の組の中の個々のLEDに供給される駆動電流(または、あるいは、もしくはさらに、第2の組のLEDのデューティサイクル)が、1組のダイオードに対して測定される放出スペクトルで700nmと780nmの間でスペクトル強度を増すように調節された。1組中の個々のダイオードは、以下の駆動電流(各LEDに対する最大駆動電流のパーセンテージで表現される)、すなわち735nmでは35%、780nmでは15%、810nmでは15%、850nmでは15%、890nmでは15%、940nmでは15%の駆動電流を使って調節された。調節されたLEDは図16に示されるような合成放出放射線スペクトルをもたらした。図16では760nmでのスペクトル強度に対して700nm〜780nmからのスペクトル強度の量が図15の合成スペクトルに対して増えた。したがって、LEDに印加される駆動電流、LEDのデューティサイクル、または両方を調節することにより、各LEDからの出力が制御されることができ、入射放射線の完全なスペクトルプロファイルに対する制御をもたらし、スペクトルで変化する検出器応答などのある種のハードウェアおよび/または固有の測定限界に対する補正を可能にする。
【0235】
実施例4
一般に、入射放射線の量の増加をもたらすことにより、本明細書において開示されるセンサ上の一つまたは複数の放射線源はより強い反射信号を示し、それにより、検出される信号に基づくパラメータのより正確な決定につながる。しかし、LEDは動作中に熱を発生し、遠距離放射線源を使用する入射放射線の量の増加をもたらすことは、たとえば患者の皮膚の加熱につながることがあり、皮膚の加熱は測定された放射線信号に基づくパラメータの決定を誤りやすくすることがある。酸素飽和度などのパラメータの値を正確に決定するために、十分な量の測定される反射率スペクトルをもたらすことができるほどの十分な量の入射放射線の提供につながる動作条件を確立する際、患者の皮膚の過熱を避けるように注意が払われるべきである。
【0236】
一連の実験で、1組のLEDからの入射放射線に試料を曝しながら、1組により生成される放射線の総強度を調節することにより、試料加熱の影響が調査された。LEDに印加される最大動作電流の割合(たとえば、0〜100%)を制御することにより、および曝露時間(たとえば、LEDが入射放射線を生成し、検出器が試料からの反射率スペクトルを測定する時間の量)を制御することにより、強度調節が行われた。LEDにより生成される入射放射線の量はまた、LEDのデューティサイクルを調節することにより、またはLEDのそれぞれに対する駆動回路の固定抵抗器を変更することにより制御されることができた。
【0237】
最初に、曝露時間5000ms未満ですべてのLEDから一様な強度照射をもたらす動作条件が同定された。この構成でLEDのそれぞれに供給される駆動電流は、各LEDに対する最大電流のパーセンテージとして、735nmでは35%、780nmでは15%、810nmでは15%、850nmでは15%、890nmでは15%、940nmでは15%であった。
【0238】
次に、試料温度が40℃を超えなかったことを保証するために、試料に対する最大許容可能曝露時間、および適切なデューティサイクルを決定するために、温度の研究が行われた。温度の研究は、最初はシリコンファントム試料に対して行われた。次に、LEDに対する決定された動作条件が、皮膚および筋中の血流への温度の影響を評価するために、ヒト被験者に対する別の実験により確認された。すべての実験で、2つのマイクロサーモカプラ(microthermocoupler)が使用された。第1のサーモカプラは、センサ上の複数の遠距離放射線源を覆うガラス窓に取り付けられた。このサーモカプラはLED温度の測定値をもたらした。第2のサーモカプラは、センサの真下ではないがセンサに近い位置でファントムまたは被験者に取り付けられた。第2のサーモカプラは試料温度の測定値をもたらした。
【0239】
研究中、目標は、両方のサーモカプラからの温度読取り値を40℃未満に維持しながら、LEDの動作条件を調節することであった。温度測定値は、30分間収集された。図17はヒト被験者について、サーモカプラのそれぞれからの温度測定データだけでなく2つのサーモカプラ間の計算された差を時間の関数としてのグラフを示す。シリコンファントム研究から、曝露時間は最大ほぼ4000msに限定されるべきであり、30秒の遅延が連続する測定の間に実現されるべきであることが決定された。この手順がヒト被験者に対して評価され、皮膚温度増加4.5℃を生み出したが、被験者の皮膚温度は40℃未満のままであった。温度測定値で観測された振動は、試料の4000ms曝露に続く26秒の冷却期間からなる連続サイクルから生じた。冷却期間中の温度緩和が一連の測定中の全体的な温度増加と比べて比較的小さい。
【0240】
実施例5
一部の事例では、最大曝露時間4000msが短すぎるため、酸素飽和度などのパラメータの測定値を抽出することができるほど十分な量のスペクトルデータを得ることができないことがある。この困難を克服するためには、検出器の電子的利得を増して、試料からの比較的弱い反射率信号の検出を強化することができることがある。この感度増大は、試料の曝露時間を増大させることなく達成されることができ、それにより、さらに試料が加熱されるのを防止する。検出器利得を増すことは、たとえば、皮膚表面と関心対象の組織の間にある比較的黒い皮膚および/または脂肪の薄い層を有する被験者に対して特に役立つことがある。
【0241】
スペクトル反射率測定値に対する異なる利得設定の影響を調査するために研究が行われた。3つの異なる検出器利得設定が使用された(公称、1.35X、1.68X、および2.0X)。シリコンファントム試料に対して、および99%SPECTRALON(登録商標)反射率標準に対して測定が行われた。測定は6回繰り返され、毎回6つの異なる遠距離放射線源のそれぞれに対応する反射率スペクトルを収集した。検出器が飽和していなかったことを保証するために、電子的利得が公称2.0X設定に調節され、入射放射線強度が約3500カウントの検出器反射率信号をもたらすように調節された。3つの利得レベルのそれぞれでの測定値が電子的利得のない測定値に正規化された。
【0242】
図18は、放射線源-検出器間隔30mmで照射された99%SPECTRALON(登録商標)反射率標準に対する測定結果を示す。結果は、SPECTRALON(登録商標)標準およびファントム試料について、その他の放射線源-検出器間隔で同様であった。図18は、利得のない、および3つの異なる利得レベル(スペクトルエンベロープ形状のほとんどを除くように正規化された)での反射率スペクトルを示す。結果の利得スペクトルは波長依存性をほとんど全く示さない(たとえば、図18では、縦座標軸上の画素位置が波長と相関関係がある)。最初の8つの画素では異なる利得レベルに対する結果の中に何らかの変動が見える。したがって、これらの画素は計算される平均利得に含まれない。画素15〜120が、図18に示される利得平均を決定するために使用された。
【0243】
計算された利得平均に基づき、これらの測定に使用された特定のセンサについて、公称利得設定1.35Xが実際には利得1.44Xをもたらすことが明らかである。同様に、公称利得設定1.68Xが実際の利得1.80Xをもたらし、公称利得設定2.0Xが実際の利得2.34Xをもたらす。前述の方法は、検出器の電子的利得の波長依存性を調査し、別のセンサに対する様々な利得設定を較正するために使用されることができる。
【0244】
実施例6
使用前に、本明細書において開示されるセンサは、典型的には正確な波長特有測定値を提供するために較正される。センサは、反射率標準から反射される測定された光強度に対する試料からの反射光強度の比を計算することにより反射率スペクトルおよび/または吸収度スペクトルを決定する。本明細書において開示されるセンサの較正安定性を評価するために、99%SPECTRALON(登録商標)反射率標準(ニューハンプシャ州、North Sutton、Labsphereから入手可能)に対して例示的センサを標準化するために研究が行われた。99%反射率標準から反射される放射線が、センサの放射線源から放出される放射線の近似尺度を提供した。センサの較正は、同じ研究で行われた光ファイバベースのプローブの較正と比較された。センサと光ファイバプローブの両方について、同様に50%および2%のSPECTRALON(登録商標)反射率標準(同様にLabsphereから入手可能)から反射される放射線を測定するための実験も行われた。
【0245】
光ファイバプローブを較正するために、プローブは各反射率標準の上の固定した距離に配置され、入射光を生成するために放射線源が活動化され、プローブが反射率標準から反射される入射光を測定するために使用された。反射率標準の上のプローブの高さは、プローブの高さの小さな変動に対してできるだけ感度の悪いスペクトル反射率測定値をもたらすように選択された。一般に、異なる高さが遠距離放射線源および近距離放射線源についてこの条件を達成する。前の実験では、光ファイバプローブに対する適切な高さが、近距離照射に対して11mm、および遠距離照射に対して75mmであると決定された。これらの高さはさらに調査することなく本研究で使用された。
【0246】
例示的センサが、99%、50%、および2%の反射率標準に対して同様なやり方で較正された。センサについては、近距離照射に対する反射率標準の上の適切な高さが16mmであると決定され、遠距離照射については適切な高さが65mmであると決定された。選択された高さは遠距離放射線源-検出器間隔の差に最も感度が悪かった測定データをもたらした高さであるという別の制約の下で、センサ上の近距離放射線源および遠距離放射線源のすべての対について研究が繰り返された。
【0247】
公知の反射率標準に対して光ファイバプローブを標準化することにより、同様のプローブに対して開発された較正方程式が、たとえば、それぞれの内容全体が参照により本明細書に組み入れられる、Soyemiらの「Standardization method for correcting spectral differences across multiple units of a portable near infrared-based medical monitor,」Proc.SPIE 5702:135-142(2005)、および米国特許出願公報第2007/0112258号で説明されているように、本研究でのプローブに移転されることができた。較正手順は、たとえば、光学素子中の製造に誘発される変動に起因する異なるプローブ中の変動の補正を可能にする。
【0248】
別のシステム(たとえば、光ファイバプローブ、および/または本明細書において開示されるタイプの別のセンサ)のために開発された較正方程式が本研究のセンサに移転されることができるかどうか調べるために、試料の近距離照射および遠距離照射について、センサの測定される応答の線形性が、5つの異なる波長(725nm、760nm、800nm、840nm、880nm)で異なる反射率標準に対して調査された。図19Aおよび19Bは、5つの異なる波長のそれぞれで、それぞれ光ファイバプローブおよびセンサに対する異なる反射率標準による強度測定値を示す。図19Aおよび19Bは放射線源-検出器間隔30mmに対応する。これらの図に示されるように、光ファイバプローブとセンサの両方の測定された強度応答は、標準の公称反射率とほぼ線形にスケール適合する。したがって、較正方程式は非線形性検出器応答による大きな誤差なしに光ファイバプローブとセンサの両方にうまく移転されることができる。
【0249】
図20Aおよび20Bは、それぞれ光ファイバプローブおよびセンサに対する放射線源-検出器間隔3mmでの異なる反射率標準による強度測定値を示す。光ファイバプローブとセンサの両方の測定された強度応答は、標準の公称反射率とほぼ線形にスケール適合し、その結果、較正方程式は、同様に近距離照射に対してプローブとセンサの両方にうまく移転されることができる。
【0250】
センサは、典型的には特定の検出器画素を放射線の特定波長に写像するように波長で較正される。波長に依存する測定について本明細書において開示されるセンサを較正するために様々な方法が使用されることができる。異なる波長較正方法を評価するために研究が行われた。較正方法はそれぞれ被験者の反射率スペクトル中の単一スペクトルピークに対して参照された。被験者は10分間血管閉塞を受け、1分の運動の期間が続いた。被験者の血液中の大部分のヘモグロビンがこの手順を介してデオキシヘモグロビンに変換された。デオキシヘモグロビンは760nmに特徴的な吸収ピークを有する。
【0251】
波長較正のための入射放射線を提供するために2つの異なる放射線源が使用された。第1の放射線源は6つの近赤外LEDを含んでいた。第2の放射線源は3つの近赤外レーザダイオードを含んでいた。レーザダイオードは典型的にはLEDよりも狭いスペクトル放出ピークを有していた。個々のLEDおよびレーザダイオードの放出ピークの実際の波長が、較正された分光計(Ocean Optics USB2000、フロリダ州、Dunedin、Ocean Opticsから入手可能)を使用して測定された。特定の実験で選択された放射線源は、直接センサを照射するために、または距離65mmだけセンサから間隔を置いて配置される99%反射率標準を照射するために使用された。どちらのタイプの照射についても、放射線源はセンサの検出器と同じ水平面内に配置され、30mmだけ検出器から間隔を置いて配置された。センサは、直接照射、または標準からの反射放射線を測定するために使用された。
【0252】
図21は、2つの異なるセンサ(「V2」および「V5」)について放射線源と照射の幾何学的配列の異なる組合せに対する波長較正結果を示す。各センサについて、直接照射が、反射率標準から反射される光を使った照射と少し異なる画素位置で760nmピークの検出につながる。これらのスペクトル結果がヒト組織試料から記録された波長較正測定値と比較されたとき、LEDにより生成され反射率標準から反射される放射線の検出が、ヒト組織試料中の760nmにあるデオキシヘモグロビンピークの位置を最も確実に再現した較正を生み出したことが認められた。理論により縛られることを望むことなく、この較正方法は、実際の組織試料が照射され、組織試料のスペクトルが測定されたとき、実験条件を最も近く近似するので、この較正方法は最も正確な結果を生み出したと信じられる。したがって、LEDベースの照射、および99%反射率標準からの反射光の検出が、本明細書において開示されるセンサを波長について較正するために使用するために選択された方法であった。
【0253】
研究の過程の間に、主ピーク-上記のデオキシヘモグロビンに起因する-が少し異なる波長に移動した。たとえば、ピークが、閉塞の終了近くおよび運動中に760nmの最も近くに現れ、回復中に760nmからさらに離れた波長に移動した。この効果を実証する例示的反射率スペクトルが図22に示されている。図22に示されるスペクトルのそれぞれは、酸素飽和度パラメータにより規定される割合でデオキシヘモグロビンとオキシヘモグロビンの両方の純粋なスペクトルの混合状態を含む。760nmにあるデオキシヘモグロビンピークは、モル吸収係数1.67mM-1cm-1を有する。800nmと900nmの間に、デオキシヘモグロビンは吸収係数ほぼ0.8mM-1cm-1を有するが、オキシヘモグロビン吸収度は、800nmでの約0.8mM-1cm-1から900nmでの約1.34mM-1cm-1まで増加する。回復中にオキシヘモグロビンの濃度が増すにつれ、760nmより大きな波長での吸収度が、760nm未満の波長での吸収度に対して増加し始めるので、スペクトルピーク全体がより長い波長に移動する。図23は、図22に示される反射率スペクトルから計算され、時間の関数として描かれた酸素飽和度を示す。閉塞中、酸素飽和度が下がり、被験者の血液中デオキシヘモグロビンの割合が増すにつれ、デオキシヘモグロビンピークが760nmのより近く移動する。回復中、酸素飽和度が増し、被験者の血中オキシヘモグロビンの割合が増すにつれ、デオキシヘモグロビンピークが760nmからさらに離れて移動する。
【0254】
実施例7
本明細書において開示されるセンサにより提供される様々な放射線源-検出器間隔が、様々な厚さの上に重なる脂肪層を含む組織の非侵襲呼びかけ信号を可能にする。センサ上の様々な放射線源からの放射線の侵入深さを決定するために研究が行われた。たとえば、内容全体が参照により本明細書に組み入れられる、Yangらの「Simultaneous correction of skin color and fat thickness for tissue spectroscopy using a two-distance fiber optic probe and orthogonalization techniques,」Optics Letters,30:2269-2271(2005)に記載される方法を使用して、2層ファントムが準備された。ファントムでは、低減された散乱係数(μ’’)が脂肪の散乱係数と同様になるように、脂肪が公知の量のイントラリピドを含む寒天を使ってシミュレートされた。脂肪層は、2mm、4mm、6mm、8mm、10mm、および20mm厚の脂肪層を生成するために公知の厚さの型の中に注がれ、その結果、2mmの増分で2mmから20mmまでの脂肪厚が2つ以下のファントムを組み合わせることにより得られることができた。ファントムにメラニンを付加することにより(中間色調の皮膚および黒い色調の皮膚それぞれについて0.15mg/mLおよび0.25mg/mL)、実際の皮膚の低減された散乱係数とマッチするように調節された低減された散乱係数を有する中間色調および黒い色調のファントムを生成するために、1mm厚の皮膚層が成形された。脂肪層(一つまたは2つの脂肪ファントムからなる)の上に皮膚層が置かれ、層が黒く吸収度が高い支持物質上に配置された。光ファイバセンサと、本明細書において開示されるセンサの一つの両方を使用して、各ファントムについて反射率スペクトルが測定された。センサを使用して記録されたスペクトルが、様々な異なる信号取得時間を使用して測定された。入射放射線の深さ侵入を決定するために、反射放射線の強度が脂肪厚の関数として測定された。理論では、図24に示されるようなS字形曲線が、反射放射線強度と脂肪厚の間の関係を説明すると期待される。具体的には、放射線が皮膚および脂肪の層を通って完全に侵入する場合、放射線は黒い支持物質により吸収される。したがって、測定される反射率信号は比較的小さい。しかし、放射線が皮膚および脂肪の層の中に部分的にしか侵入しないとき、入射放射線のより多くの部分が反射され、検出器に到達する。したがって、測定される反射率信号は増加する。測定される反射率信号は、入射放射線のほぼすべてが皮膚および脂肪の層に侵入できず、反射されるときに最大に達する(たとえば、図24では大きな厚さの値にある強度の平坦部)。
【0255】
図25Aおよび25Bは、それぞれ中間色調(図25A)および黒い色調(図25B)の皮膚を有するファントムについて脂肪厚の関数として測定された反射放射線強度を示す。これらの図では、少ない脂肪厚での低い方の平坦部領域が欠けており、入射放射線のどれも、吸収する支持物質に侵入しないことを示している。この状況は望ましい。近距離スペクトルが、関心対象の組織による放射線吸収度による寄与を含む場合、これらの寄与は、関心対象のターゲットだけを表す修正されたデータから取り除かれ、誤差のあるデータをもたらす。図25A〜Bのスペクトルは、脂肪厚6mmと8mmの間で水平になるように見え、(特定の選択された近距離での)近距離照射が、厚さ6mm〜8mmまでの上に重なる皮膚および脂肪の層の影響を低減するために使用されることができることを示している。
【0256】
図27は、図25Aおよび25Bと同じファントムについて、反射放射線強度を脂肪厚の関数として示すが、光ファイバプローブを使って測定された。光ファイバの結果はまた、図25A〜Bと同じ近距離照射では、入射放射線が深さ6mm〜8mmまで侵入することを示す。
【0257】
組織ファントムに対して遠距離照射実験も行われた。光ファイバプローブもセンサも、放射線源-検出器間隔30mmで反射スペクトルを得るために使用された。図26Aおよび26Bは、中間色調および黒い色調の皮膚ファントムについて、センサを使って測定された、遠距離照射に対する反射放射線強度を脂肪厚の関数として示す。図28は光ファイバプローブを使用して得られた、同様の条件下での測定結果を示す。図26A〜Bおよび28のデータは、遠距離入射放射線が脂肪厚少なくとも8mm〜10mmに侵入し、さらに、下にあるターゲットからかなりの量の信号を提供することを示す。より厚い脂肪層についてさえ、反射放射線の測定強度が上の方の平坦部に到達せず、脂肪層の下にある組織に関する別の情報が得られることがあることを示す。
【0258】
一連の測定でターゲット濃度依存性も調査された。たとえば、内容全体が参照により本明細書に組み入れられる、Yangらの「Removal of analyte-irrelevant variation in near infrared tissue spectra」Applied Spectroscopy,60:1070-1077(2006)に記載される方法に従って、筋、皮膚、および脂肪の層を含む3層ファントムが製造された。筋組織中の吸収体は墨であり、筋層の散乱係数は20%イントラリピドを追加することにより調節した。白っぽい、中間の、および黒い皮膚の色調を生成するために3つの異なる濃度のメラニンが皮膚層に使用された。新しい筋層が製造されるたびに、新しい脂肪および皮膚の層が製造された。すべてのファントムが一晩中冷蔵され、水分の損失を避けるために密封された。様々な筋、脂肪、および皮膚の層の成分がそれぞれ表1、2、および3に示されている。
【0259】
【表1】

【0260】
【表2】

【0261】
【表3】

【0262】
光ファイバプローブと、本明細書において開示されるセンサの例示的一つを使用して、筋だけを表す物質から、および筋、脂肪、および皮膚を表す物質からなるファントムが平行して測定された。近距離放射線源により生成される入射放射線の強度を低減するために、センサの近距離放射線源に中間の濃さのフィルタが取り付けられた。センサに対して選択された近距離放射線源および遠距離放射線源のそれぞれの出力放射線強度が、各放射線源内のLEDのそれぞれに印加される駆動電流を制御することにより調節された。各LEDに対する最大駆動電流のパーセンテージとして示される、近距離放射線源LEDに印加される駆動電流は以下のとおりであった。すなわち、735nmでは17%、780nmでは5%、810nmでは2%、850nmでは2%、890nmでは2%、940nmでは2%であった。各LEDに対する最大駆動電流のパーセンテージで示される、遠距離放射線源LEDに印加される駆動電流は以下のとおりであった。すなわち、735nmでは35%、780nmでは15%、810nmでは15%、850nmでは15%、890nmでは15%、940nmでは15%であった。
【0263】
センサおよび光ファイバプローブを使って測定を行う前に、センサの近距離放射線源および遠距離放射線源とプローブの両方が、上記で議論されたように、99%、50%、および2%のSPECTRALON(登録商標)反射率標準に対して較正された。測定取得時間が可能な限りセンサの検出器上でできるだけ多くのカウントを達成するように選択された。スペクトルに基づきさらに計算を行う前に、すべての基準スペクトルおよび試料スペクトルが取得時間に従って正規化された。
【0264】
光ファイバプローブとセンサの両方を使用した3層ファントムからのスペクトルの測定および正規化に続き、各測定ファントム中の墨濃度を予測するために、部分最小二乗(PLS)法を使用してスペクトルが分析された。各組中のスペクトルの総数が90であった。Anderssonの方法(たとえば、それぞれの内容全体が参照により本明細書に組み入れられる、Yangらの「Simultaneous correction of skin color and fat thickness for tissue spectroscopy using a two-distance fiber optic probe and orthogonalization technique,」Optics Letters 30:2269-2271(2005)、および米国特許第7,532,919号を参照のこと)に従って近距離スペクトルを使用して遠距離スペクトルが直交化された。次に、直交化されたスペクトルが、必要に応じてPCALCにより処理され、クロス確認を伴うPLSモデルが計算された。すべてのスペクトルおよび濃度が平均を中心に置かれた。すべてのスペクトルが予測されるまで、クロス確認法が各パスですべての試料スペクトルの20%のランダム群を残すことを含んだ。すべてのスペクトルのクロス確認が20回の反復の間に繰り返され、平均化された結果が報告された。平均された相関係数(R2)およびクロス確認の二乗平均平方根(RMSECV)値を得るために、モデル計算が4回繰り返された。
【0265】
試料スペクトルの残差プロットが、Q残差、Hotelling T2残差、Y Studentized残差、およびてこ比プロットを使用してスペクトル外れ値候補のために調べられた。Q残差はスペクトルとPLSモデルの間の適合の欠如を同定するために使用された。Y Studentized残差は測定濃度と予測濃度の間に大きな差を有するスペクトルを同定するために使用された。Hotelling T2残差およびてこ比プロットは個々のスペクトルとその他のスペクトルの間の差を同定するために使用された。試料の残余の残差よりもはるかに大きな残差を有する試料が、測定誤差を示すと理解された。
【0266】
異なる前処理を伴うスペクトル、および2つの異なる器具(たとえば、2つの異なるセンサ)を使って測定されたスペクトルについて、前述の分析が繰り返された。器具間のRMSECV差が統計的に意味があるかどうかを決定するために、PCALC後に、直交化された1組のスペクトル(Andersson直交化)について、濃度残差の通常の統計分析が行われた。各分光計から2群に編成された各試料スペクトルについて、使用された方法が濃度残差の二方向母数効果ANOVA試験であった。特定の試料および器具に対する平均値と、試料および器具に対する測定値の間の差の平方として残差が計算された。各群中の等しい試料数(83)を保証するために、分析前に2組からの外れ値試料が両方の組から除外された。
【0267】
光ファイバプローブを使って測定されたスペクトルに対するPLS分析による結果が表4に示されている。PCALC前処理を適用することが、R2およびRMSECVの値により測定されたように、濃度予測を一般に改善するように見える。直交化はPCALC前処理よりも結果の改善への寄与が大きいように見える。この組のファントムでは、直交化が皮膚および脂肪の層からのスペクトル干渉を取り除く、または低減したが、PCALCは低減された散乱係数の変動から生じる筋層から生じるスペクトル変動を低減する。調査されたファントムは2つの異なる低減された散乱係数しか含まず、異なる係数の値は依然として比較的近かった。
【0268】
【表4】

【0269】
調査されたファントムでは、墨による入射放射線の強い吸収が、調査されることができる濃度範囲を制限する。その結果、研究では異なるファントム間の濃度差は比較的小さかった(たとえば、濃度0.0055%、0.0060%、0.0065%、0.0070%、および0.0075%が使用された)。そのような小さな濃度差によるスペクトル変動は、筋および脂肪の層での入射放射線の散乱などの別の要因による変動と大きさが同等となり得る。さらに、墨は近赤外領域中に明瞭に規定されたスペクトル吸収ピークを有しない。したがって、墨のスペクトル寄与はイントラリピドによる散乱寄与と共にたたみこまれる。明瞭に規定された吸収ピークを有し、かつヘモグロビンスペクトル中の濃度に誘発される変化が容易に同定されるヒト被験者については、同様の問題は生じない。
【0270】
【表5】

【0271】
表5はセンサを使って測定されたスペクトルに対するPLS分析による結果を示す。表4のように、表5中のデータは、スペクトルのPCALC前処理がセンサを使って測定されたスペクトルについてスペクトル直交化のように改善された予測結果を提供することを示す。有意水準α=0.05に対するANOVA結果がp値0.765を示し、類似する(しかし異なる)センサに対するRMSECV間の差は統計的に意味がないことを示す。
【0272】
ヒト被験者に対する光ファイバプローブとセンサの性能の間の差を調査するために、1群の被験者が2つの異なる場合で同一の試験プロトコルを受けた。最初に研究所に訪問したとき、各被験者は収縮期血圧にわたり90mmでのカフ閉塞を含み、閉塞状態で1分のハンドグリップ運動負荷が続いた試験プロトコルを受けた。光ファイバプローブを使用して反射率スペクトルが測定された。研究所への2回目の訪問中(少なくとも48時間後)、各被験者は同じプロトコルを受け、センサを使って反射率スペクトルが測定された。
【0273】
上記で議論されたように、センサは3つの異なる反射率標準に対して毎日較正された。センサは、医療グレードの接着剤を使って各被験者の深指屈筋に取り付けられた。30秒ごとにスペクトルが測定され、たとえば、内容全体が参照により本明細書に組み入れられる、Yangらの「Quantitative measurement of muscle oxygen saturation without influence from skin and fat using continuous-wave near infrared spectroscopy,」Optics Express 15:13715-13730(2007)に記載される方法を使用して、プロトコル全体を通じて筋酸素飽和度が計算された。異なる被験者による結果を比較するために、研究の4つの時点が同定され、時点のそれぞれでの被験者のすべてに対する筋酸素飽和度値が平均された。同定された時点は以下のとおりであった。すなわち、ベースライン(閉塞前の最後の3分)、閉塞(ハンドグリップ運動負荷前の最後の3分)、運動負荷(1分のハンドグリップ運動負荷および閉塞)、および回復(閉塞解放後最初の3分)である。各時点で光ファイバプローブにより、およびセンサにより決定された筋酸素飽和度の値が、有意であると考えられるp<0.05を使って対応のあるt-検定(paired t-test)を使用して比較された。
【0274】
光ファイバプローブおよびセンサに対する筋酸素飽和度の結果が表6および図29に示されている。試験プロトコルのすべての段階で、光ファイバプローブおよびセンサから得られた測定結果が類似しており、センサは様々な応用で光ファイバプローブの適切な代用品であることを示す。
【0275】
【表6】

【0276】
測定されたスペクトルはまた、センサを使用して筋pHを決定することの実現可能性を調査するために使用された。典型的には、筋pHを計算する方法は、筋酸素飽和度を計算するために使用される方法よりも、反射率スペクトルを得るために使用される光学系に強く依存する。筋pHは光ファイバプローブのために開発された部分最小二乗モデルを使用して、測定されたスペクトルから計算される(たとえば、内容全体が参照により本明細書に組み入れられる、Sollerらの「Noninvasive determination of exercise-induced hydrogen ion threshold through direct optical measurement,」Journal of Applied Physiology 104: 837-844(2008)を参照のこと)。光ファイバプローブおよびセンサを使って測定されたスペクトル中の小さな差は十分意味があるので、プローブのために開発されたPLSモデル方程式はセンサを使って収集されたスペクトルに適用されることができなかった。
【0277】
センサを使って測定されたスペクトルに対する筋pHモデルを直接開発することの実現可能性を調査するために、光ファイバプローブを使用して決定されたpH値が、試験プロトコルの対応する時点でセンサを使用して測定されるスペクトルに対して、PLSモデル開発のための「公知の」pH値として使用された。センサを使用して測定されたスペクトルが直交化され、外れ値が取り除かれた。5回のデータ分割および20回の反復を伴う「ランダム部分集合」クロス確認を使ってモデル精度が評価された。それぞれの別個の被験者に対してモデルが開発された。
【0278】
【表7】

【0279】
6人の被験者のそれぞれに対する精度測定基準が表7に示されている。各モデルに対するR2値がモデルの傾向能力の目安を提供し、RMSECV値が各モデルの精度の推定値を提供する。図30は被験者の1人に対する公知の筋pH値と計算された筋pH値の間の対応を示す。一般に、被験者の中では、測定されたpHの範囲(6.9〜7.5)と比較して、R2値が高く、RMSECV値が低い。これらの結果は、血管閉塞中にウサギの筋中のpH測定電極を使用して得られたデータと同等である(たとえば、内容全体が参照により本明細書に組み入れられる、Zhangらの「Partial least-squares modeling of near-infrared reflectance data for noninvasive in vivo determination of deep-tissue pH,」Applied Spectroscopy 52:400-406(1998)を参照のこと)。ウサギのスペクトルは、筋組織から直接得られたが、本研究では、筋スペクトルは皮膚および脂肪の層を通して筋組織を照射し、モデル開発前に皮膚および脂肪の層からの寄与を低減または除去するために、測定されたスペクトルを修正することにより得られた。このことは、本明細書において開示されるセンサが、反射率スペクトルを測定するために使用される光学的構成の影響を比較的受けやすいパラメータを含む多種多様な生理学的パラメータの正確な推定値を得るために使用されることができることを示唆する。
【0280】
別の態様
いくつかの態様が説明された。それにもかかわらず、本開示の精神および範囲を逸脱することなく様々な修正が行われることがあることが理解されるであろう。したがって、別の態様が以下の特許請求の範囲内に入る。

【特許請求の範囲】
【請求項1】
電子プロセッサを含む回路基板と;
それぞれが該回路基板に取り付けられた複数の放射線源と;
該複数の放射線源の一つまたは複数に由来する放射線を分析するように構成されている、前記回路基板に取り付けられたスペクトル検出器と
を含むセンサであって、
使用中、センサが、被験者の体の一部に装着されるように構成され;
電子プロセッサが、複数の放射線源の2つ以上に入射放射線を被験者に向けさせ、スペクトル検出器に被験者からの放射線を分析させ、被験者からの放射線に基づき被験者の一つまたは複数の特性を決定させるように構成されている、
センサ。
【請求項2】
電子プロセッサが、入射放射線を生成するために、放射線源の少なくとも一つを選択的に調節するように構成されている、請求項1記載のセンサ。
【請求項3】
電子プロセッサが、選択されたスペクトル形状を有する入射放射線を生成するために、(i)放射線源のそれぞれのデューティサイクル、および(ii)放射線源のそれぞれに供給される電気的駆動電流、の少なくとも一つを選択的に調節するように構成されている、請求項2記載のセンサ。
【請求項4】
放射線源が、検出器から距離9mm以下に配置される近距離放射線源と、検出器から距離10mm以上にそれぞれが配置される少なくとも2つの遠距離放射線源とを含む、請求項1記載のセンサ。
【請求項5】
放射線源が、少なくとも2つの近距離放射線源と、少なくとも3つの遠距離放射線源とを含む、請求項1記載のセンサ。
【請求項6】
電子プロセッサが、遠距離放射線源のそれぞれにより生成される入射放射線を使って被験者を照射し、該遠距離放射線源のそれぞれによる照射に対応する被験者の吸収度スペクトルを測定し、測定された吸収度スペクトルを比較して該遠距離放射線源の一つを選択することにより、入射放射線の少なくとも一部を生成する該遠距離放射線源の一つを選択するように構成されている、請求項4記載のセンサ。
【請求項7】
前記比較が、
遠距離放射線源のそれぞれについて、該遠距離放射線源に対応する吸収度スペクトルを被験者の吸収度スペクトルに関するテイラ級数モデルに適合させ、吸収度スペクトルとモデルの間の平均誤差を決定する段階と、
吸収度スペクトルとモデルの間の最小平均誤差に対応する遠距離放射線源を選択する段階と
を含む、請求項6記載のセンサ。
【請求項8】
前記比較が、遠距離放射線源に対応する吸収度スペクトルを適合させる段階の前に、近距離放射線源からの放射線に被験者を曝すことにより得られる吸収度スペクトルに由来する情報を使用して、被験者内の皮膚および脂肪の層によるスペクトル効果を低減するために、前記遠距離放射線源に対応する吸収度スペクトルのそれぞれを修正する段階をさらに含む、請求項7記載のセンサ。
【請求項9】
遠距離放射線源を選択する段階が、選択された遠距離放射線源が最小適合性基準を満たすかどうか決定する段階をさらに含む、請求項7記載のセンサ。
【請求項10】
選択された遠距離放射線源が最小適合性基準を満たすかどうか決定する段階が、モデルフィッティング誤差の平均値(μ)および標準偏差(σ)を決定する段階を含み、電子プロセッサが、モデルと前記選択された遠距離放射線源に対応する吸収度スペクトルとの間の平均誤差が間隔(μ−3σ、μ+3σ)の範囲内にある場合、該遠距離放射線源を選択するように構成されている、請求項9記載のセンサ。
【請求項11】
放射線源が2つ以上の近距離放射線源を含み;
電子プロセッサが:
被験者を近距離放射線源のそれぞれにより生成される入射放射線を使って照射し;
近距離放射線源のそれぞれに対応する吸収度スペクトルを測定し;
近距離放射線源に対応するスペクトルのそれぞれを使って遠距離放射線源に対応するスペクトルのそれぞれを修正し;
修正されたスペクトルを被験者の吸収度スペクトルに関するテイラ級数モデルに適合させ、修正されたスペクトルのそれぞれとモデルの間のフィッティング誤差を決定し;
修正されたスペクトルの中で最小フィッティング誤差に対応する近距離放射線源と遠距離放射線源とを含む組合せを同定すること
により、入射放射線の少なくとも一部を生成する近距離放射線源と遠距離放射線源の組合せを選択するように構成されている、
請求項10記載のセンサ。
【請求項12】
入射放射線が複数の放射線源により放出される表面とは反対側のセンサの表面上に配置される表示装置であって、被験者の一つまたは複数の特性の少なくとも一部の値および被験者の一つまたは複数の特性の以前に測定された値を表示するように構成されている表示装置をさらに含む、請求項1記載のセンサ。
【請求項13】
センサとの間でデータを送信するように構成される無線の送信機および受信機を含む通信インタフェースをさらに含み、センサがネットワークを介してデータを送信するように構成されている、請求項1記載のセンサ。
【請求項14】
一つまたは複数の特性が、被験者の酸素飽和度、酸素分圧、pH、ヘマトクリット、ヘモグロビン濃度、無酸素性作業閾値、含水量、および酸素消費量の少なくとも一つを含む、請求項1記載のセンサ。
【請求項15】
電子プロセッサが、被験者からの放射線の分析中、信号強度の所定の範囲内の非ゼロの測定された検出器信号強度を維持するように構成されている、請求項1記載のセンサ。
【請求項16】
所定の範囲内に検出器信号強度を維持することが、信号強度を制御するために、検出器の電子的利得および信号取得時間の少なくとも一つを調節することを含む、請求項15記載のセンサ。
【請求項17】
所定の範囲内に検出器信号強度を維持することが、被験者に入射放射線を向けるために、複数の放射線源の異なる一つを選択することを含む、請求項15記載のセンサ。
【請求項18】
複数の放射線源の異なる一つを選択することが、検出器から距離10mm以上に配置される放射線源の中から異なる放射線源を選択することを含む、請求項17記載のセンサ。
【請求項19】
複数の放射線源の異なる一つを選択することが、検出器から距離9mm以下に配置される放射線源の中から異なる放射線源を選択することを含む、請求項17記載のセンサ。
【請求項20】
電子プロセッサが、治療装置を制御するために、被験者の一つまたは複数の特性に関する情報を治療装置に提供するように構成されている、請求項1記載のセンサ。
【請求項21】
試料に直接付着するよう構成され、かつ試料に付着するときに試料の少なくとも一部に対応する形状を帯びるように構成されている接着性表面を含む可撓性のある据え付け要素と;
該据え付け要素に取り付けられる複数の放射線源、スペクトル検出器、および電子プロセッサと、
を含むセンサであって、
電子プロセッサが、放射線源の少なくとも2つに入射放射線を試料に向けさせ、スペクトル検出器に試料からの放射線を分析させ、試料からの放射線に基づき試料の一つまたは複数の特性を決定するように構成されている、
センサ。
【請求項22】
据え付け要素が、試料に接触する第1の使い捨てできる部分と、複数の放射線源、検出器、および電子プロセッサが取り付けられる第2の使い捨てできない部分とを含み、使い捨てできる部分が、近赤外線に対して少なくとも部分的に透過性であり、放射線源により生成される入射放射線が試料に到達するように通過するウィンドウを形成する、請求項21記載のセンサ。
【請求項23】
一つまたは複数の特性が、試料の酸素分圧、酸素飽和度、pH、ヘマトクリット、ヘモグロビン濃度、無酸素性作業閾値、含水量、および酸素消費量の少なくとも一つを含む、請求項21記載のセンサ。
【請求項24】
一つまたは複数の試料特性を測定する方法であって、
複数の放射線源の一つを選択し、選択された放射線源からの放射線を試料に入射するように向ける段階、試料からの放射線を検出する段階、および検出された放射線に基づき一つまたは複数の試料特性を決定する段階とを含み、
前記選択する段階が、
複数の放射線源のそれぞれ一つについて、試料を放射線源からの放射線に曝すことにより試料の吸収度スペクトルを測定する段階;
吸収度スペクトルを試料の吸収度に関するモデルに適合させ、各スペクトルについてモデルに対する平均フィッティング誤差を決定する段階;および
最小平均適合誤差を有するスペクトルに対応する放射線源を選択する段階
を含む方法。
【請求項25】
選択する段階が、平均フィッティング誤差を決定する段階の前に、試料中の皮膚および脂肪の層によるスペクトル効果を低減するために、吸収度スペクトルのそれぞれを修正する段階をさらに含む、請求項24記載の方法。
【請求項26】
選択する段階が、フィッティング誤差に関連する平均値μおよび標準偏差値σを決定する段階と、放射線源に対応する吸収度スペクトルから決定される平均フィッティング誤差が間隔(μ−3σ、μ+3σ)の範囲内にある放射線源を選択する段階とをさらに含む、請求項24記載の方法。
【請求項27】
試料からの放射線を検出中、検出される放射線信号の強度をゼロよりも大きく、かつ信号強度の所定の範囲内に維持する段階をさらに含む、請求項24記載の方法。
【請求項28】
所定の範囲内に信号強度を維持する段階が、信号強度を制御するために、検出器の電子的利得、および放射線が検出される信号取得時間の少なくとも一つを調節する段階を含む、請求項27記載の方法。
【請求項29】
所定の範囲内に信号強度を維持する段階が、試料に放射線を向けるために、複数の放射線源の異なる一つを選択する段階を含む、請求項27記載の方法。
【請求項30】
一つまたは複数の試料特性が、試料の酸素飽和度、酸素分圧、pH、ヘマトクリット、ヘモグロビン濃度、無酸素性作業閾値、含水量、および酸素消費量の少なくとも一つを含む、請求項24記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate


【公表番号】特表2011−530351(P2011−530351A)
【公表日】平成23年12月22日(2011.12.22)
【国際特許分類】
【出願番号】特願2011−522286(P2011−522286)
【出願日】平成21年8月7日(2009.8.7)
【国際出願番号】PCT/US2009/053183
【国際公開番号】WO2010/053617
【国際公開日】平成22年5月14日(2010.5.14)
【出願人】(505231659)ユニバーシティ オブ マサチューセッツ (23)
【Fターム(参考)】