説明

半導体発光装置及びその製造方法

【課題】半導体発光装置、例えば高出力の端面出射型スーパールミネッセントダイオードを効率良く得られるようにする。
【解決手段】半導体発光装置は、基板101と、基板101の上に形成され、光ガイド層120を含む複数の半導体層からなる積層構造体とを備えている。積層構造体は、上部に選択的に形成されたストライプ状の光導波路113と、積層構造体の端面からなる光出射端面115とを有している。光ガイド層120における積層面と光出射端面115とがなす角度θは、θ≠90°である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体発光装置に関し、特に、端面出射型のスーパールミネッセントダイオード(SLD)からなる半導体発光装置及びその製造方法に関する。
【背景技術】
【0002】
小型、安価及び高出力等の優れた特徴を持つことから、発光ダイオード(Light Emitting Diode:LED)、半導体レーザ素子(LD)及びSLD等の半導体発光素子が、通信及び光ディスク装置等のIT技術に加え、医療機器又は一部の照明装置等の幅広い技術分野で用いられている。
【0003】
近年では、特に液晶プロジェクタ及び液晶ディスプレイ等の表示装置の小型化、薄型化並びに低消費電力化を実現するために、光源にSLDを用いた表示装置の開発が活発に行われている。このような表示装置における光源には、波長が420nmから660nm程度の赤色光、緑色光及び青色光の、いわゆるRGB光を発光可能な光源が必要となる。このため、従来の表示装置においては、RGB光をそれぞれ発光する3種類のLED(赤色/緑色/青色LED)を組み合わせる構成、又は青色LEDに蛍光体材料を組み合わせて白色光を得る白色LED等が開発されている。また、液晶プロジェクタのような投影型の表示装置の場合は、光源の光をより効率良く画像として投影するために、光源からの出射光は指向性が高く、また、光源自身の発光強度が高いことが好まれる。このような高指向性の発光素子を実現するため、可視光を出射するSLDの開発が進められている。
【0004】
SLDのうち、波長が420nm〜550nmの青色光から緑色光を発光するSLDには、主に窒化ガリウム(GaN)系半導体素子が用いられている。また、波長が550nm〜660nmの赤色光を発光するSLDには、主にガリウム砒素(GaAs)系SLDが用いられている。さらに、GaN系半導体を用いた緑色光から赤色光を発光可能なSLDの研究及び開発が進められている。
【0005】
ところで、SLDの発光強度を高めるには、光が出射する端面の反射率を低くする必要がある。これは、出射端面における反射率が高いと、レーザ発振が生じ、SLDとしての動作が保たれなくなるためである。
【0006】
また、上記のような、光源にSLDを用いるアプリケーションにおいては、SLDを低コストに製造できるようにすることが重要となる。SLDを低コストとするためには、チップ面積を低減して、所定のサイズのウェハから取れる数(取れ数)を増すことが特に重要となる。
【0007】
図9に従来例に係るSLDを示す(例えば、特許文献1を参照。)。図9に示すように、従来例に係るSLD200は、基板1の上に、半導体層2〜10が順次積層された積層構造を有している。積層構造の上部には、光導波路を積層面内で角度θだけ屈曲させることにより、光出射端面(前端面110)における光の反射率を低減する構成としている。このように、光導波路が前端面110となす角度を90°からずらすことにより、前端面110で反射して光導波路に戻り、レーザ発振を引き起こす光(戻り光)の割合を低下させている。これにより、SLDにレーザ発振が生じない、安定した動作を行わせることができる。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特許第4106210号公報
【非特許文献】
【0009】
【非特許文献1】Diode Laser and Photonic Integrated Circuits, 第一版, 46ページ, Eq. (2.45)
【非特許文献2】JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 10, NO. 2, FEBRUARY 1992, PP.215
【発明の概要】
【発明が解決しようとする課題】
【0010】
上述したように、図9に示す従来のSLDにおいては、積層構造の積層面内で、光導波路と前端面110とが角度θをなし、前端面110における光の反射率を低減することにより、SLD動作を得ている。
【0011】
ところで、SLD等の半導体発光素子は、へき開性を有する半導体基板又は絶縁性基板(以下、ウェハと呼ぶ。)の上に作製される。ここで、ウェハの上に多数、通常は数千〜数万個のSLD素子を一括に作製し、該ウェハを素子ごとにへき開することにより、複数のSLD素子を得る。ウェハのへき開は2段階に分けて行われる。すなわち、実質的に光導波路を切断して複数のSLDがバー状に並ぶ1次へき開と、バー状に並ぶSLDをさらに1素子ごとに分離してチップとする2次へき開とがある。
【0012】
1次へき開工程においては、光導波路をへき開することにより、光出射端面に対して積層構造体の上部に形成された光導波路を挟んで対向する後端面が形成される。へき開面は一般に平行面となるため、端面反射率を低減するには、光出射端面と光導波路とを90°と異なる角度で交わるようにする。このため、光導波路の少なくとも一部を積層構造体の表面の面内で光出射端面に対して傾斜させる構成とする。その後、2次へき開工程において、バー状に並ぶSLDを光導波路と並行な方向にへき開して1素子ごとに分離する。ここで、光導波路における傾斜していない領域は、2次へき開面と平行であり、傾斜している領域は2次へき開面と角度θをなす。なお、1次へき開面と2次へき開面とがなす角度は、加工及び取り扱いの容易さから、実質的に90°である。このことから、光導波路における傾斜していない領域がチップの中央部分に配置されている場合は、光出射端面は、光導波路における傾斜している領域の長さと傾斜角度に応じ、チップの中央部分から見てチップの側面方向にずれが生じる。
【0013】
この側面方向のずれは、光導波路が光出射端面となす角度を大きくして、SLDの出力を増大する場合により顕著となる。ここで、SLDのような半導体発光素子を高出力化する場合には、素子を十分に放熱して動作に伴う温度上昇を防ぐことが重要となる。SLD素子の温度上昇を防ぐには、光導波路をチップの側面から十分に離して放熱を確保することが重要となる。
【0014】
このことから、光導波路を傾斜させたSLDにおいては、光導波路の側方においてチップの側面からの距離を傾斜がない場合と同等以上に保つには、2次へき開の間隔を広くしてチップ面積を増大する必要がある。しかしながら、チップ面積を増大すると、1枚のウェハからのチップの取れ数が減少するという問題が生じる。
【0015】
本発明は、前記の問題を解決し、半導体発光装置、例えば、高出力の端面出射型のスーパールミネッセントダイオード(SLD)を効率良く得られるようにすることを目的とする。
【課題を解決するための手段】
【0016】
前記の目的を達成するため、本発明は、半導体発光装置を、光導波路における光出射端面とのなす角度を基板の側面方向(横方向)に傾斜させるのではなく、基板に垂直な方向に傾斜させる構成とする。
【0017】
具体的に、本発明に係る半導体発光装置は、基板と、基板の上に形成され、光ガイド層を含む複数の半導体層からなる積層構造体とを備え、積層構造体は、上部に選択的に形成されたストライプ状の光導波路と、積層構造体の端面からなる光出射端面とを有し、光ガイド層における積層面と光出射端面とがなす角度θ1は、θ1≠90°である。
【0018】
本発明の半導体発光装置によると、光ガイド層における積層面と光出射端面とがなす角度θ1は、θ1≠90°であるため、光出射端面における光の反射率を低減することができる。その上、光導波路は基板(チップ)に対して垂直な方向にずれるため、チップの側面方向にずれを生じることはない。従って、半導体発光装置を効率良く形成することができる。
【0019】
前述したように、従来例においては、積層構造体の上面(積層面内)で、光導波路と光出射端面とが90°とは異なる角度をなし、これにより、端面反射率を低減してSLD動作を得ている。これに対し、本発明においては、積層構造体の積層方向において光ガイド層が光出射端面と90°とは異なる角度をなすことにより端面反射率を低減している。すなわち、光導波路の傾斜が積層構造体の積層方向に設けられていることにより、ウェハ上において、複数の発光装置同士の間隔を広げる必要がない。その結果、チップ面積を増大することなくSLDを得ることができる。また、積層方向への光ガイド層の傾斜と合わせ、積層構造体の上面において光導波路を端面に対して傾斜させる。これにより、積層方向又は表面だけで傾斜させる場合と比べて反射率をさらに低減することができ、チップ面積が同一の条件の下で、SLD動作が可能な領域を大きくすることができる。
【0020】
ここで、光ガイド層とは、積層構造体において生じた光が伝播する層を指し、発光層と、該発光層の上下の近傍に形成された複数の半導体層をまとめて光ガイド層と呼ぶ。このような半導体積層構造の例としては、n側クラッド層及びp側クラッド層、又はn側ガイド層及びp側ガイド層がある。また、光ガイド層における積層面と光出射端面とがなす角度θ1とは、光ガイド層を積層方向に見た中心点を、光導波方向に連続的にプロットして連続線を描き、該連続線が光出射端面となす角度のうち、90°よりも小さい角度を指す。
【0021】
本発明の半導体発光装置において、光ガイド層の少なくとも一部は、基板側が凹状となる湾曲部を有し、光出射端面と反対側の反射端面と光ガイド層における積層面とがなす角度をθ2(但し、θ2≦90°)とすると、θ1<θ2の関係を有することが好ましい。
【0022】
なお、湾曲した光導波路においても、積層方向とは、基板の主面(上面)に垂直な方向を指す。
【0023】
この場合に、基板には、光ガイド層における湾曲部と対応する断面形状を有する湾曲部が形成されていてもよい。
【0024】
このようにすると、積層構造体は、基板に形成された湾曲部の形状を引き継ぐため、光ガイド層を確実に湾曲させることが可能となる。
【0025】
本発明の半導体発光装置において、積層構造体は、III-V族化合物半導体からなっていてもよい。
【0026】
このようにすると、所望の波長を生成することができる。
【0027】
本発明に係る第1の半導体発光装置の製造方法は、基板の上面に対して選択的にエッチングを行うことにより、基板の上面を、基板の前記積層構造体と反対側の面に対して90°−θ1の角度を持つように傾斜させる工程と、傾斜した基板の上に積層構造体を形成する工程とを備えている。
【0028】
本発明に係る第2の半導体発光装置の製造方法は、基板の上面に対して機械研磨を行うことにより、基板における光出射端面側の上面を、基板の積層構造体と反対側の面に対して90°−θ1の角度を持つように傾斜させる工程と、傾斜した基板の上に積層構造体を形成する工程とを備えている。
【0029】
第1又は第2の半導体発光装置の製造方法によると、本発明の半導体発光装置を確実に実現することができる。
【発明の効果】
【0030】
本発明に係る半導体発光装置及びその製造方法によると、例えば高出力の端面出射型のスーパールミネッセントダイオード(SLD)を効率良く作製することができる。
【図面の簡単な説明】
【0031】
【図1】図1(a)〜図1(c)は本発明の第1の実施形態に係る半導体発光装置を表し、図1(a)は平面図であり、図1(b)は図1(a)のIb−Ib線における断面図であり、図1(c)は図1(a)のIc−Ic線における断面図である。
【図2】図2(a)〜図2(c)は本発明の第1の実施形態に係る半導体発光装置の製造方法を示す工程順の断面図である。
【図3】図3(a)及び図3(b)は本発明の第1の実施形態に係る半導体発光装置の製造方法を示す工程順の断面図である。
【図4】図4は本発明の第1の実施形態に係る半導体発光装置における前端面のモード反射率及び注入電流とSLD/LD動作モードとの関係の一例を計算により求めたグラフである。
【図5】図5は本発明の第1の実施形態に係る半導体発光装置における光出射端面のモード反射率と光ガイド層の端面の傾斜角度との関係の一例を計算により求めたグラフである。
【図6】図6(a)〜図6(c)は本発明の第2の実施形態に係る半導体発光装置を表し、図6(a)は平面図であり、図6(b)は図6(a)のVIb−VIb線における断面図であり、図6(c)は図6(a)のVIc−VIc線における断面図である。
【図7】図7は本発明の第2の実施形態に係る半導体発光装置の製造方法における基板の加工工程を示す断面図である。
【図8】図8(a)〜図8(c)は本発明の第3の実施形態に係る半導体発光装置を表し、図8(a)は平面図であり、図8(b)は図8(a)のVIIIb−VIIIb線における断面図であり、図8(c)は図8(a)のVIIIc−VIIIc線における断面図である。
【図9】図9(a)及び図9(b)は従来のスーパールミネッセントダイオード(SLD)を示し、図9(a)は図9(b)のIXa−IXa線における断面図であり、図9(b)は平面図である。
【発明を実施するための形態】
【0032】
(第1の実施形態)
本発明の第1の実施形態に係る半導体発光装置であるスーパールミネッセントダイオード(SLD)について図1(a)〜図1(c)を参照しながら説明する。
【0033】
図1(a)〜図1(c)に示すように、第1の実施形態に係るSLDは、六方晶の窒化ガリウム(GaN)系半導体を用いた、発光波長が450nmの青色SLDである。
【0034】
図1(b)に示すように、本実施形態に係るSLDは、基板101の主面(上面)自体をm軸方向に対して傾斜させている。これにより、光ガイド層120を含む積層構造体の全体が基板101の裏面に対して傾斜して、光ガイド層120の積層面における光出射端面115とのなす角度が90°からずれる。その結果、光出射端面115における光の反射率が低減し、レーザ発振が抑制されてSLD動作を得ることができる。
【0035】
ここで、積層構造体は、基板101の上に順次形成されたn型クラッド層102、n型ガイド層103、活性層(多重量子井戸活性層)104、p型ガイド層105、キャリアオーバフロー抑制(OFS)層106、p型クラッド層107及びp型コンタクト層108により構成される。
【0036】
また、図1(a)及び図1(c)に示すように、p型クラッド層107の上部及びその上のp型コンタクト層108は、平面及び断面が共に直線状のリッジストライプ部を構成する。リッジストライプ部の下方で且つ活性層104を中心とする領域が光導波路113となる。
【0037】
前述したように、光ガイド層120とは、積層構造体に生じた光が伝播する半導体層を指し、活性層104と、該活性層104の上下の近傍に形成された半導体層、ここでは、n型ガイド層103及びp型ガイド層105を含めて光ガイド層120と呼ぶ。
【0038】
また、図中の符号c、a及びmは、六方晶GaN系結晶の面方位を表している。符号cは面方位(0001)面における法線ベクトル、すなわちc軸を表す。符号aは面方位(11−20)面とその等価面との法線ベクトル、すなわちa軸を表す。符号mは面方位(1−100)面とその等価面との法線ベクトル、すなわちm軸を表す。なお、本願明細書においては、面方位におけるミラー指数に付した負符号”−”は、該負符号に続く一の指数の反転を便宜的に表している。
【0039】
p型クラッド層107におけるリッジストライプ部の両側面上及び両側方上の領域には、酸化シリコン(SiO)からなるブロック層(パッシベーション膜)112が形成されている。リッジストライプ部の上面にはp側電極109が形成されている。また、p側電極109とブロック層112におけるリッジストライプ部の両側方部分とを覆うように配線電極110が形成されている。基板101の積層構造体と反対側の面(裏面)上には、n側電極111が形成されている。
【0040】
図1(a)及び図1(b)に示すように、積層構造体における光出射端面115と反対側の端面である後端面116には、複数の誘電体膜が積層されてなる高反射コート膜114が形成されている。
【0041】
以下、前記のように構成されたSLDの製造方法について図2(a)〜図2(c)、図3(a)及び図3(b)を参照しながら説明する。
【0042】
まず、図2(a)に示すように、例えば、主面がc面であるn型の六方晶GaNからなる基板101の主面に対して、m軸方向に沿った断面形状が、底辺の長さ(光導波路113が延びる方向の長さ=チップ長)がLとなる三角波状に加工する。ここでは、長さLを800μmとしている。この長さLは、SLDのほぼ共振器長に相当する。基板101の主面を断面三角波状に加工するには、機械研磨法を用いればよい。また、機械研磨法に代えて、三角波状の底部に達する平面長方形状のエッチング領域を設ける。例えば、エッチング領域は、m軸方向の長さを800μmとし、最深部の深さを177μmとし、a軸方向はウェハの幅程度とする。
その後、熱燐酸又は水酸化カリウムを用いて基板101をエッチングして、例えば(1−102)面を露出させることにより行ってもよい。
【0043】
次に、図2(b)に示すように、表面を三角波状に形成した基板101の主面上に、例えば有機金属気層成長(Metalorganic Chemical Vapor Deposition:MOCVD)法により、厚さが2μmのn型Al0.03Ga0.97Nからなるn型クラッド層102、厚さが0.1μmのn型GaNからなるn型ガイド層103、In0.02Ga0.98Nからなるバリア層及びIn0.16Ga0.84Nからなる量子井戸層の3周期分で構成される多重量子井戸活性層104、厚さが0.1μmのp型GaNからなるp型ガイド層105、厚さが10nmのAl0.2Ga0.8Nからなるキャリアオーバフロー抑制(OFS)層106、厚さがそれぞれ1.5nmのp型Al0.16Ga0.84N層及びGaN層の160周期分で構成される厚さが0.48μmの歪超格子からなるp型クラッド層107、並びに厚さが0.05μmのp型GaNからなるp型コンタクト層108とを順次成長して、積層構造体を形成する。
【0044】
積層構造体を形成する結晶成長法には、MOCVD法に限られず、分子ビーム成長(Molecular Beam Epitaxy:MBE)法又は化学ビーム成長(Chemical Beam Epitaxy:CBE)法等の、GaN系半導体からなるSLD構造を成長可能な成長方法を用いることができる。
【0045】
なお、MOCVD法を用いた場合の原料としては、例えばGa原料としてトリメチルガリウム(TMG)、In原料としてトリメチルインジウム(TMI)及びAl原料としてトリメチルアルミニウム(TMA)を用い、N原料としてアンモニア(NH)を用いればよい。さらに、n型不純物であるSi原料にはシラン(SiH)ガスを用い、p型不純物であるMg原料にはビスシクロペンタジエニルマグネシウム(CpMg)を用いればよい。
【0046】
続いて、例えば熱CVD法により、p型コンタクト層108の上に、膜厚が0.3μmのSiOからなるマスク膜(図示せず)を成膜する。その後、リソグラフィ法及びエッチング法により、マスク膜を幅が1.0μmの複数のストライプ状にパターニングする。
【0047】
続いて、誘導結合プラズマ(ICP)エッチング法により、マスク膜を用いて積層構造体の上部を0.35μmの深さにエッチングする。これにより、p型コンタクト層109とp型クラッド層108の上部とからリッジストライプ部を形成する。その後、マスク膜をフッ化水素酸により除去する。
【0048】
続いて、再度、熱CVD法により、露出したp型クラッド層107の上にリッジストライプ部を含む全面にわたって、膜厚が200nmのSiOからなるブロック層(パッシベーション膜)112を形成する。
【0049】
続いて、リソグラフィ法により、ブロック層112におけるリッジストライプ部の上面に、該リッジストライプ部に沿うと共に幅が1.3μmの開口部を有するレジストパターン(図示せず)を形成する。続いて、例えば三フッ化メタン(CHF)ガスを用いた反応性イオンエッチング(Reactive Ion Etching:RIE)法により、レジストパターンをマスクとしてブロック層112をエッチングすることにより、リッジストライプ部の上面からp型コンタクト層108を露出する。
【0050】
次に、図2(c)に示すように、例えば電子ビーム(Electron Beam:EB)蒸着法により、少なくともリッジストライプ部の上面から露出したp型コンタクト層108の上に、厚さが40nmのパラジウム(Pd)と厚さが35nmの白金(Pt)とからなる金属積層膜を形成する。その後、レジストパターンを除去するリフトオフ法により、金属積層膜におけるリッジストライプ部を除く領域を除去して、金属積層膜からp側電極109を形成する。
【0051】
続いて、リソグラフィ法及びリフトオフ法により、ブロック層112の上にリッジストライプ部の上のp側電極109を覆うように、例えばリッジストライプ部に平行な方向の平面寸法が500μmで、且つリッジストライプ部に垂直な方向の平面寸法が150μmの配線電極110を選択的に形成する。ここで、配線電極110は、それぞれ厚さが50nm、200nm及び100nmのチタン(Ti)/白金(Pt)/金(Au)の金属積層膜により形成する。なお、一般に、基板101はウェハ状態であって、複数のレーザ装置は基板101の主面上に行列状に形成される。従って、ウェハ状態にある基板101から個々のレーザチップに分割する際に、配線電極110を切断すると、該配線電極110と密着したp側電極109がp型コンタクト層108から剥がれるおそれがある。そこで、図1(a)に示すように、配線電極110は互いに隣接するチップ同士で接続されず、離れて形成されていることが望ましい。
【0052】
続いて、配線電極110が形成されたウェハ状態の基板101の裏面に対してダイヤモンドスラリを用いた機械研磨(裏面研磨)を行う。これにより、基板101の厚さを100μm程度にまで薄膜化する。その後、例えばEB蒸着法及びリフトオフ法により、基板101の裏面に、厚さが5nmのチタン(Ti)、厚さが10nmの白金(Pt)及び厚さが1000nmの金(Au)からなる金属積層膜により、n側電極111を形成する。なお、基板研磨法には、スラリによる機械研磨の他、例えばKOH溶液を補助的に用いる化学機械研磨を用いてもよい。
【0053】
次に、図3(a)に示すように、ウェハ状態の基板101を、m軸方向の長さLが800μmとなるようにm面、すなわち三角波状の頂点と底部とに沿って1次へき開する。さらに、へき開したバー状のチップの端面が露出するように、シリコン(Si)等のスペーサ(図示せず)を用いてバー状のチップを挟持する。
【0054】
次に、図3(b)に示すように、例えばECRスパッタ法により、バー状のチップの後端面116に、複数の誘電体膜を積層して高反射率コート膜114を成膜する。
【0055】
次に、図1(a)に示すように、1次へき開された基板101を、a軸方向の長さが200μmとなるようにa面に沿って2次へき開する。
【0056】
図4は、本実施形態に係るSLDにおける高反射率コート膜114の光の反射率を99%とした場合に、前端面(光出射端面115)のモード反射率及びSLDに対する注入電流量と、SLDの動作モード(SLDモード又はLDモード)との関係を計算により求めた結果を表している。この計算には、レーザの発振条件の基本式を利用している(非特許文献1を参照。)。一般に、SLDに注入する電流量を増やすと、光出力を増すことが可能となる。しかしながら、同時にレーザ発振を起こしやすくなって、LDモードに移行してしまう。このため、前端面のモード反射率を低減することにより、レーザ発振に移行する注入電流値(しきい値)を引き上げることができる。すなわち、SLD動作が高い光出力と共に得られることになる。そこで、前端面のモード反射率を低減することが重要となる。
【0057】
図5は、本実施形態に係るSLDにおいて、後方端面の反射率を99%とした場合に、前端面(光出射端面)のモード反射率における光導波路の前端面の傾斜角度依存性を計算により求めた結果を表している。計算には非特許文献2の手法を利用している。上述した図4から明らかなように、SLDを高出力化するには、前端面のモード反射率を小さくすることが必要である。さらに、図5からは、前端面のモード反射率は傾斜角度θに依存することが分かる。特に、90°からの変化が比較的に小さい傾斜角度θ=77.5°、74°、70.7°及び68°程度で傾斜角度θを制御することが重要である。このことから、第1の実施形態においては、光ガイド層120と光出射端面115とがなす角度θは、77.5°、74°、70.7°及び68°程度とすることが好ましい。なお、角度θからのずれを±0.5°としてもよい。
【0058】
なお、第1の実施形態においては、積層構造体の成長用基板に、六方晶系に属するGaN系基板(GaN基板又はAlGaN基板等)を用いたが、GaN系材料を成長可能な基板、例えば炭化シリコン(SiC)、シリコン(Si)、サファイア(単結晶Al)又は酸化亜鉛(ZnO)等を用いることができる。
【0059】
(第2の実施形態)
以下、本発明の第2の実施形態に係る半導体発光装置であるSLDについて図6(a)〜図6(c)を参照しながら説明する。図6において、図1に示す構成部材と同一の構成部材には同一の符号を付している。
【0060】
図6(b)に示すように、第2の実施形態に係るSLDの第1の実施形態に係るSLDとの相違点は、基板101の主面を傾斜させる構成として、斜面に代えて基板101の主面側が凹状となる湾曲部101aを形成する点である。これにより、主面が凹状となる湾曲部101aを有する基板101の主面上に、光ガイド層120を含む積層構造体を成長することにより、基板101の湾曲部101aと対応する湾曲形状を有する光ガイド層120が形成される。
【0061】
この構成により、光ガイド層120を含む積層構造体の光出射端面115側を基板101の裏面に対して傾斜させ、光ガイド層120の積層面における光出射端面115とのなす角度θ1が90°からずれるようになる。その結果、光出射端面115における光の反射率が低減し、レーザ発振が抑制されてSLD動作を得ることができる。
【0062】
第2の実施形態においては、光出射端面115と反対側の後端面116と光ガイド層120における積層面とがなす角度をθ2(但し、θ2≦90°)とすると、θ1<θ2の関係を有する。
【0063】
図7に基板101に湾曲部101aを形成する一工程を示す。図7に示すように、主面がc面であるn型六方晶のGaNからなるウェハ状の基板101の主面に、ローラー研磨機117等を用いてm軸方向に周期的に複数の湾曲部101aを形成する。
【0064】
このとき、湾曲部101aの形成周期をチップ長Lの2倍の長さとする。例えば、SLDの長さが1000μmの場合、形成周期を2000μmとすればよい。
【0065】
この後は、第1の実施形態と同様に、複数の湾曲部101aが形成された基板101の上に、III族窒化物半導体からなる積層構造体を結晶成長により形成し、リッジストライプ部、ブロック層及び電極等を形成する。続いて、一次へき開及び2次へき開を行って、図6に示すSLDを得る。
【0066】
第2の実施形態においては、基板101における光出射端面115側に下方が凹状となる湾曲部101aを形成しているため、光ガイド層120の積層面における光出射端面115とのなす角度θ1を小さくすることが容易となる。
【0067】
(第3の実施形態)
以下、本発明の第3の実施形態に係るSLDについて図8(a)〜図8(c)を参照しながら説明する。図8において、図1に示す構成部材と同一の構成部材には同一の符号を付している。
【0068】
図8(a)に示すように、第3の実施形態に係るSLDの第2の実施形態に係るSLDとの相違点は、光導波路113、すなわちリッジストライプ部が、積層構造体の積層面内においても、出射端面に対して90°と異なる角度θ3で交差するように形成されている点である。
【0069】
この構成により、光ガイド層120を含む積層構造体の光出射端面115側を基板101の裏面に対して傾斜させるだけでなく、積層構造体の積層面内においても光導波路113を傾斜させているため、光出射端面115における光の反射率がさらに低減するので、レーザ発振がより抑制される結果、SLD動作を得やすくなる。
【0070】
本構成においては、積層面内においても光導波路113を傾斜させることから、チップ面積は増大してコスト増となるが、面内方向と積層方向との2種類の傾斜を組み合わせることにより、反射率を極限にまで低減することが可能となり、SLDの光出力を大幅に高めることが可能となる。
【0071】
以下、前記のように構成されたGaN系青色SLDの製造方法の要部を説明する。
【0072】
第2の実施形態と同様に、機械研磨法等により、基板101の主面上に湾曲部101aを形成する。その後、第1の実施形態と同様に、湾曲部101が形成された基板101の主面上に積層構造体を結晶成長により形成する。
【0073】
続いて、例えば熱CVD法により、積層構造体の上部に形成されたp型コンタクト層108の上に、膜厚が0.3μmのSiOからなるマスク膜(図示せず)を成膜する。その後、リソグラフィ法及びエッチング法により、マスク膜を幅が1.0μmの複数のストライプ状にパターニングする。このとき、リッジストライプ部のストライプの平面形状を、光導波路113が光出射端面115に向かって徐々にm軸からa軸方向に傾斜するように湾曲又は屈曲させる。湾曲する割合(曲率半径)は一定であることが好ましい。但し、導波光の損失を生じない範囲であれば、必ずしも湾曲する割合が一定である必要はない。
【0074】
この後は、リッジストライプ部の側面を覆うブロック層及び電極等を形成する。続いて、一次へき開及び2次へき開を行って、図8に示すSLDを得る。
【0075】
なお、リッジストライプ部を各半導体層の積層面内で湾曲させる構成は、第1の実施形態で示した基板101の主面を斜辺とする構成であっても適用できる。
【0076】
また、第2及び第3の実施形態において、後端面116と光ガイド層120がなす角度θ2は90°であるが、前端面(光出射端面115)と光ガイド層120とがなす角度θ1が、θ1<θ2の関係を満たせばよい。さらには、前端面115の反射率が後端面116の反射率よりも小さければ、θ2は90°でなくてもかまわない。
【0077】
また、SLDの積層構造体を構成する半導体材料に窒化ガリウム(GaN)系のIII族窒化物半導体を用いたが、これに限られず、ガリウム砒素(GaAs)系半導体を用いることができる。すなわち、本発明に係る半導体発光装置には、III-V族化合物半導体を用いることができる。
【産業上の利用可能性】
【0078】
本発明に係る半導体発光装置及びその製造方法は、例えば高出力の端面出射型のスーパールミネッセントダイオード(SLD)を効率良く作製することができ、高輝度、低消費電力及び低コストの液晶プロジェクタ装置又はバックライト等に用いることができる。
【符号の説明】
【0079】
101 基板
101a 湾曲部
102 n型クラッド層
103 n型ガイド層
104 活性層(多重量子井戸活性層)
105 p型ガイド層
106 キャリアオーバフロー抑制(OFS)層
107 p型クラッド層
108 p型コンタクト層
109 p側電極
110 配線電極
111 n側電極
112 ブロック層
113 光導波路
114 高反射コート膜
115 光出射端面(前端面)
116 後端面
117 ローラー研磨機
120 光ガイド層

【特許請求の範囲】
【請求項1】
基板と、
前記基板の上に形成され、光ガイド層を含む複数の半導体層からなる積層構造体とを備え、
前記積層構造体は、上部に選択的に形成されたストライプ状の光導波路と、前記積層構造体の端面からなる光出射端面とを有し、
前記光ガイド層における積層面と前記光出射端面とがなす角度θ1は、
θ1≠90°であることを特徴とする半導体発光装置。
【請求項2】
前記光ガイド層の少なくとも一部は、前記基板側が凹状となる湾曲部を有し、
前記光出射端面と反対側の反射端面と前記光ガイド層における積層面とがなす角度をθ2(但し、θ2≦90°)とすると、
θ1<θ2の関係を有することを特徴とする請求項1に記載の半導体発光装置。
【請求項3】
前記基板には、前記光ガイド層における前記湾曲部と対応する断面形状を有する湾曲部が形成されていることを特徴とする請求項2に記載の半導体発光装置。
【請求項4】
前記積層構造体は、III-V族化合物半導体からなることを特徴とする請求項1〜3のいずれか1項に記載の半導体発光装置。
【請求項5】
前記請求項1に記載の半導体発光装置の製造方法であって、
前記基板の上面に対して選択的にエッチングを行うことにより、前記基板の上面を、前記基板の前記積層構造体と反対側の面に対して90°−θ1の角度を持つように傾斜させる工程と、
傾斜した基板の上に、前記積層構造体を形成する工程とを備えていることを特徴とする半導体発光装置の製造方法。
【請求項6】
前記請求項1〜4のいずれか1項に記載の半導体発光装置の製造方法であって、
前記基板の上面に対して機械研磨を行うことにより、前記基板における前記光出射端面側の上面を、前記基板の前記積層構造体と反対側の面に対して90°−θ1の角度を持つように傾斜させる工程と、
傾斜した基板の上に、前記積層構造体を形成する工程とを備えていることを特徴とする半導体発光装置の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate