説明

原子操作方法、原子操作装置、及び識別体形成方法

【課題】 たとえ基板が絶縁性であっても、基板表面又は該基板表面の面上の原子を操作することができる原子操作方法などを提供する。
【解決手段】 Sn原子60aの上方に探針32の先端を移動させ(図3(d))。探針32に所定の原子間力が作用するまで基板51に近づけ(図3(e))、探針32に所定の原子間力が作用した状態を維持しながら、Ge原子70aに対応する位置まで、探針32を主走査方向(横方向)に移動させる(図3(f))。そして、探針32に作用する原子間力が弱くなるように、探針32を基板51から遠ざける(図3(g))。図3(d)〜図3(g)の処理を繰り返し、探針32に所定の原子間力が作用した状態で、探針32を横方向に移動するとき(図3(e)→図3(f))に、探針32の先端とSn原子60a及びGe原子70aとの間に作用した原子間力によって、Sn原子60aとGe原子70aとの位置が交換される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、原子操作方法、原子操作装置、及び識別体形成方法に関し、より具体的には、物質に作用する力を検出する力検出部、例えば、原子間力が作用する探針を備える原子間力顕微鏡(AFM:Atomic Force Microscope)を用い、探針と原子との間に作用する原子間力を利用して、基板表面又は基板表面上の原子を操作することができる原子操作方法及び原子操作装置、並びに、該原子操作方法で原子を操作して、原子サイズの識別体を基板表面に形成することができる識別体形成方法に関する。
【背景技術】
【0002】
微細加工技術に代表される半導体製造技術の進展によって、集積度の向上に加えて、量子サイズ効果を利用した単一電子トランジスタ及び単一電子メモリなどのナノスケールの微小デバイス(ナノデバイス)が提案されている。このようなナノデバイスを製造する方法としては、従来、フォトリソグラフィ技術などを用いて、半導体基板(例えば、Si,GaAsなど)から小さな構造のデバイスを製造するというトップダウン的アプローチによって行われてきた。しかし、トップダウン的アプローチは、微細化に限界があると考えられ、原子1つ1つからデバイスを製造するボトムアップ的アプローチの開発が要望されている。
【0003】
ボトムアップ的アプローチの1つとして、走査型トンネル顕微鏡(STM:Scanning Tunneling Microscope)を用い、鋭利に研磨した電極針を非常に微細な隙間を残して被加工物体の表面に接近させ、電極針と被加工物体との間に電圧を印加したときにそれらの間に流れるトンネル電流によって被加工物体の微細加工を行う方法が提案されている(例えば、特許文献1、非特許文献1参照。)。
【0004】
また、AFMを用い、探針を試料に対して垂直方向に移動し、探針先端の原子を試料の原子に「あてる」ことで、試料の原子を引き抜く方法が提案されている(例えば、非特許文献2、非特許文献3参照。)。
【特許文献1】特開平6−215722号公報
【非特許文献1】アイグラー(D.M.Eigler)、他1名著,「走査型トンネル顕微鏡を用いた原子操作(Positioning single atoms with a scanning tunneling microscope)」,ネイチャー(Nature),1990年発行,344巻,p524-526)
【非特許文献2】第50回物理関係連合講演会、講演予稿集(2003.03)
【非特許文献3】第51回物理関係連合講演会、講演予稿集(2004.03)
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、STMを用いた微細加工方法は、トンネル電流を電極針と被加工物体との間に印加する必要があることから、例えば、導電性基板に吸着しているXe原子及びCO分子など、導電性基板上の原子(分子を含む)を操作することはできるが、原理上、絶縁性基板上での原子の操作は極めて困難である。また、原子を操作するためには、極低温(例えば4K)の環境が必要であり、工業用途として種々の分野で利用されるまでには至っていない。
【0006】
例えば、非特許文献1に開示されている技術では、CuやNi基板上のXeやCOなどの原子を操作することができるが、Xe原子やCO原子は基板上に存在しているが、基板原子との吸着力は小さく、室温(300K)では熱エネルギーによって拡散し、位置が移動してしまうことから、これらの原子を操作するには、極低温の環境下、つまり熱エネルギーが小さい状態にする必要があった。このように、従来の技術では、原子操作を行うための環境が制限され、かつ対象となる原子についても制限があることから、将来実用性があるとは考え難い。
【0007】
また、非特許文献2及び非特許文献3に開示されている技術では、探針を試料に対して垂直方向に移動することから試料の原子を引き抜くことはできるが、試料上の2つの原子の位置を交換することは不可能である。したがって、物質の原子配置が変化した場合の物性を研究するには、引き抜いた原子を別の位置に配置する必要があるが、引き抜いた原子を所望の位置に配置する技術はまだ実現されていないのが実情である。
【0008】
本発明は斯かる事情に鑑みてなされたものであり、原子間力が作用する探針を用いて、所定の原子間力が作用した状態で探針を走査させることにより、基板表面の原子又は基板表面の面上の原子を操作することができる原子操作方法及び原子操作装置の提供を目的とする。
【0009】
また本発明は、例えば探針に作用する原子間力を測定(算出)しながら、所定の原子間力が作用した状態で、探針を基板表面の隣り合う2つの原子を結ぶ直線と略平行な方向に走査させることにより、たとえ基板が絶縁性であっても、2つの原子の位置を交換することができる原子操作方法及び原子操作装置の提供を目的とする。
【0010】
また本発明は、例えば探針に作用する原子間力を測定(算出)しながら、所定の原子間力が作用した状態で、探針を基板表面と略平行な方向に走査させることにより、たとえ基板が絶縁性であっても、原子を基板表面から抜き出すことができる原子操作方法及び原子操作装置の提供を目的とする。
【0011】
また本発明は、例えば探針に作用する原子間力を測定(算出)しながら、所定の原子間力が作用した状態で、探針を基板表面と略平行な方向に走査させることにより、たとえ基板が絶縁性であっても、基板表面の面上の原子の位置を移動することができる原子操作方法及び原子操作装置の提供を目的とする。
【0012】
また本発明は、原子間力が作用する探針を用いて、探針の基板表面からの距離を制御して、その距離に基づいた原子間力が作用した状態で、基板表面と略平行な方向に走査させることにより、原子間力を直接的に検出することなく、極めて簡単かつ高精度で原子の位置を操作することができる原子操作方法及び原子操作装置の提供を目的とする。
【0013】
さらに本発明は、上述した原子操作方法で原子を操作して、原子サイズの文字及びマークなどの識別体を基板表面に形成することができる識別体形成方法の提供を目的とする。
【課題を解決するための手段】
【0014】
第1発明に係る原子操作方法は、原子間力が作用する探針を用いて、基板表面の原子又は基板表面の面上の原子を操作する原子操作方法であって、所定の原子間力が作用した状態で前記探針を走査させて、前記基板表面の原子又は前記基板表面の面上の原子を操作することを特徴とする。
【0015】
本発明にあっては、所定の原子間力が作用した状態で探針を走査させる。探針の走査によって、探針の先端と基板表面の原子又は基板表面の面上の原子との間に作用した原子間力によって、基板表面の原子又は基板表面の面上の原子の位置を操作することができる。ここで、原子間力とは、探針と基板表面の原子又は基板表面の面上の原子との間に作用するすべての力、具体的には、化学的な結合力、ファン・デル・ワールス力、共有結合力、イオン結合力、金属結合力、静電気力、磁気力、交換力などを示す。探針を原子に接触することなく、探針と原子との間に作用する原子間力によって原子を操作することができる。また、従来の原子操作方法では、電極針と被加工物体との間に流れるトンネル電流を測定する必要があるので絶縁体には適用できないという制限があったが、本発明では、原子間力によって原子を操作することから、絶縁体であっても操作することが可能である。このように、操作対象の制限をなくすことができ、極めて有効な手段となる。
【0016】
第2発明に係る原子操作方法は、前記探針を、所定の原子間力が作用した状態で前記基板表面の隣り合う2つの原子を結ぶ直線と略平行な方向に走査させて、前記2つの原子の位置を交換することを特徴とする。
【0017】
本発明にあっては、探針を、所定の原子間力が作用した状態で、基板表面の隣り合う2つの原子を結ぶ直線と略平行な方向に走査させる。このような探針の走査によって、探針の先端とそれぞれの原子との間に作用した原子間力によって、2つの原子の位置が交換される。物質の表面状態を原子間力によって、上述した走査の際における原子の配置状態を画像化するようにすれば(例えばAFMを用いれば)、利用者は原子の位置が交換されたことを時系列で視認することができる。このような原子操作を繰り返すことによって、物質の原子配置を自由に制御することができるので、原子配置が変化した物質を容易に創生して、その物性を研究するための有効な手段となる。
【0018】
第3発明に係る原子操作方法は、前記所定の原子間力が作用した状態で前記2つの原子のうちの一方の原子の対応位置から他方の原子の対応位置への前記探針の走査と、前記所定の原子間力より弱い原子間力が作用した状態で前記他方の原子の対応位置から前記一方の原子の対応位置への前記探針の走査とを繰り返すことを特徴とする。
【0019】
本発明にあっては、所定の原子間力が作用した状態で2つの原子のうちの一方の原子の対応位置(例えば上方)から他方の原子の対応位置(例えば上方)への探針の走査と、所定の原子間力より弱い原子間力が作用した状態で他方の原子の対応位置(例えば上方)から一方の原子の対応位置(例えば上方)への探針の走査とを繰り返す。このように探針の走査を繰り返すことによって、2つの原子の位置を確実に交換することができる。
【0020】
第4発明に係る原子操作方法は、前記探針を、所定の原子間力が作用した状態で前記基板表面と略平行な方向に走査させて、前記基板表面の原子を前記基板表面から抜き出すことを特徴とする。
【0021】
本発明にあっては、探針を、所定の原子間力が作用した状態で、基板表面と略平行な方向に走査させる。このような探針の走査によって、探針の先端と基板表面の原子との間に作用した原子間力によって、対応する位置の原子を基板表面から抜き出すことができる。物質の表面状態を原子間力によって、上述した走査の際における原子の配置状態を画像化するようにすれば(例えばAFMを用いれば)、利用者は原子が基板表面から抜き出されたことを時系列で視認することができる。
【0022】
第5発明に係る原子操作方法は、前記探針を、所定の原子間力が作用した状態で前記基板表面と略平行な方向に走査させて、前記基板表面の面上の原子の位置を移動することを特徴とする。
【0023】
本発明にあっては、探針を、所定の原子間力が作用した状態で、基板表面と略平行な方向に走査させる。このような探針の走査によって、探針の先端と基板表面の面上に配置された原子との間に作用した原子間力によって、原子の位置を探針の走査方向に移動することができる。物質の表面状態を原子間力によって、上述した走査の際における原子の配置状態を画像化するようにすれば(例えばAFMを用いれば)、利用者は原子が移動したことを時系列で視認することができる。
【0024】
第6発明に係る原子操作方法は、前記探針と操作対象の原子との間に作用する原子間力を測定しながら前記原子を操作することを特徴とする。
【0025】
本発明にあっては、探針と操作対象の原子との間に作用する原子間力を測定しながら原子を操作することから、高精度で原子の位置を操作することができる。また、例えば、AFMにて原子間力を測定するようにすることにより、その距離依存性からどのような種類の原子間力によって原子が動かされているのか否かを判断することができるという利点を有する。
【0026】
第7発明に係る原子操作方法は、前記探針の前記基板表面からの距離を制御して原子間力を調整することを特徴とする。
【0027】
本発明にあっては、探針の基板表面からの距離を制御して原子間力を調整する。探針と基板表面とに作用する原子間力は、探針と基板表面との距離に基づいて決定されることから、必ずしも原子間力を検出する必要はなく、探針と基板表面との距離を制御することによって、探針と基板表面との間に所定の原子間力が作用した状態とすることができる。
【0028】
第8発明に係る原子操作方法は、前記探針と前記基板表面との間に流れる電流を検出し、検出した電流に基づいて前記探針の前記基板表面からの距離を制御して原子間力を調整することを特徴とする。
【0029】
本発明にあっては、探針と基板表面との間に流れる電流(トンネル電流)を検出し、検出した電流に基づいて探針の基板表面からの距離を制御する。探針に作用する原子間力は、主に、探針と基板表面との距離に基づいて決定されることから、探針と基板表面との距離を制御して原子間力を調整する。トンネル電流を検出できる材料系、つまり導電性基板で本発明を適用する場合、探針に作用する力を検出する部分が必要でなくなる。そのため、装置を小さくすることができ、装置剛性が高まる。一般的に、トンネル電流を測定する走査型トンネル顕微鏡は力を検出する原子間力顕微鏡に比べて、装置構成が単純で安定に測定できると考えられている。以上のことから、トンネル電流によって距離を制御することは比較的簡単であることから、基板が導電性である場合には、導電性の探針を用いてトンネル電流を検出するようにすれば、極めて高精度で、探針に作用する原子間力を調整することができる。
【0030】
第9発明に係る原子操作方法は、前記探針又は前記基板表面に光を照射して近接場光を生じさせ、前記探針と前記基板表面との近接場相互作用に基づく散乱光を検出し、検出した散乱光に基づいて前記探針の前記基板表面からの距離を制御して原子間力を調整することを特徴とする。
【0031】
本発明にあっては、探針又は基板表面に光を照射して近接場光を生じさせ、探針と基板表面との近接場相互作用に基づく散乱光を検出し、検出した散乱光に基づいて探針の基板表面からの距離を制御する。探針と基板表面との距離に応じて、その近接場相互作用の大きさが決定されることから、検出された散乱光のスペクトル分布及び強度によって探針と基板表面との距離を推定することができる。したがって、検出された散乱光に基づいて探針と基板表面との距離を制御することによって、探針に作用する原子間力を調整することができる。
【0032】
第10発明に係る原子操作方法は、前記探針と前記基板表面との間の静電容量を検出し、検出した静電容量に基づいて前記探針の前記基板表面からの距離を制御して原子間力を調整することを特徴とする。
【0033】
本発明にあっては、探針と基板表面との間の静電容量を検出し、検出した静電容量に基づいて探針の基板表面からの距離を制御する。探針と基板表面との距離に応じて、その静電容量の大きさが決定されることから、静電容量によって探針と基板表面との距離を推定することができる。したがって、検出された静電容量に基づいて探針と基板表面との距離を制御することによって、探針に作用する原子間力を調整することができる。
【0034】
第11発明に係る原子操作装置は、原子間力が作用する探針を備え、基板表面の隣り合う2つの原子の位置を交換する原子操作装置であって、前記探針に作用する原子間力が所定範囲であるか否かを判定する判定部と、該判定部にて前記原子間力が所定範囲であると判定された場合に、前記探針を、前記原子間力が作用した状態で前記2つの原子を結ぶ直線と略平行な方向に走査する走査部とを備えることを特徴とする。
【0035】
本発明にあっては、判定部によって、探針に作用する原子間力が所定範囲であるか否かを判定し、判定部にて原子間力が所定範囲であると判定された場合に、原子間力が作用した状態で探針を2つの原子を結ぶ直線と略平行な方向に走査する。したがって、探針に作用する原子間力が原子操作に有効である場合にのみ、探針の走査を行うことになるので、無駄な走査を行う虞はない。
【0036】
第12発明に係る原子操作装置は、原子間力が作用する探針を備え、基板表面又は該基板表面の面上の原子の位置を操作する原子操作装置であって、前記探針に作用する原子間力が所定範囲であるか否かを判定する判定部と、該判定部にて前記原子間力が所定範囲であると判定された場合に、前記探針を、前記原子間力が作用した状態で前記基板表面と略平行な方向に走査する走査部とを備えることを特徴とする。
【0037】
本発明にあっては、判定部によって、探針に作用する原子間力が所定範囲であるか否かを判定し、判定部にて原子間力が所定範囲であると判定された場合に、原子間力が作用した状態で探針を基板表面と略平行な方向に走査する。したがって、探針に作用する原子間力が原子操作に有効である場合にのみ、探針の走査を行うことになるので、無駄な走査を行う虞はない。
【0038】
第13発明に係る原子操作装置は、前記判定部にて前記原子間力が所定範囲でないと判定された場合に、探針と前記基板表面との離隔長を変更する手段をさらに備えることを特徴とする。
【0039】
本発明にあっては、判定部にて原子間力が所定範囲でないと判定された場合に、探針と基板表面との離隔長を変更することによって、探針に作用する原子間力が所定範囲となるように制御することができる。
【0040】
第14発明に係る原子操作装置は、原子間力が作用する探針を備え、基板表面の隣り合う2つの原子の位置を交換する原子操作装置であって、前記探針と前記基板表面との距離を制御する制御部と、前記距離が所定範囲であるか否かを判定する判定部と、該判定部にて前記距離が所定範囲であると判定された場合に、前記探針を、前記距離に基づく原子間力が作用した状態で前記2つの原子を結ぶ直線と略平行な方向に走査する走査部とを備えることを特徴とする。
【0041】
本発明にあっては、判定部によって、探針と基板表面との距離が所定範囲であるか否かを判定し、判定部にて所定範囲であると判定された場合に、探針と基板表面との距離に基づく原子間力が作用した状態で探針を2つの原子を結ぶ直線と略平行な方向に走査する。このような探針の走査によって、探針の先端とそれぞれの原子との間に作用した原子間力によって、2つの原子の位置が交換される。探針と基板表面とに作用する原子間力は、探針と基板表面との距離に基づいて決定されることから、必ずしも原子間力を検出する必要はなく、探針と基板表面との距離を制御することによって、探針と基板表面との間に所定の原子間力が作用した状態とすることができる。
【0042】
第15発明に係る原子操作装置は、前記探針と前記基板表面との間に流れる電流を検出する検出部を備え、前記制御部は、前記検出部にて検出された電流に基づいて前記探針の前記基板表面からの距離を制御するようにしてあることを特徴とする。
【0043】
本発明にあっては、探針と基板表面との間に流れる電流(トンネル電流)を検出し、検出した電流に基づいて探針の基板表面からの距離を制御する。探針に作用する原子間力は、探針と基板表面との距離に基づいて決定されることから、探針と基板表面との距離を制御(フィードバック)して原子間力を調整する。
【0044】
第16発明に係る原子操作装置は、前記探針又は前記基板表面に光を照射して近接場光を生じさせる照射部と、前記探針と前記基板表面との近接場相互作用に基づく散乱光を検出する検出部とを備え、前記制御部は、前記検出部にて検出された散乱光に基づいて前記探針の前記基板表面からの距離を制御するようにしてあることを特徴とする。
【0045】
本発明にあっては、探針又は基板表面に光を照射して近接場光を生じさせ、探針と基板表面との近接場相互作用に基づく散乱光を検出し、検出した散乱光に基づいて探針の基板表面からの距離を制御する。探針と基板表面との距離に応じて、その近接場相互作用の大きさが決定されることから、検出された散乱光のスペクトル分布及び強度によって探針と基板表面との距離を推定し、推定した距離に応じて、探針の基板表面からの距離を制御(フィードバック)することによって、探針に作用する原子間力を調整することができる。
【0046】
第17発明に係る原子操作装置は、前記探針と前記基板表面との間の静電容量を検出する検出部を備え、前記制御部は、前記検出部にて検出された静電容量に基づいて前記探針の前記基板表面からの距離を制御するようにしてあることを特徴とする。
【0047】
本発明にあっては、探針と基板表面との間の静電容量を検出し、検出した静電容量に基づいて探針の基板表面からの距離を制御する。探針と基板表面との距離に応じて、その静電容量の大きさが決定されることから、静電容量によって探針と基板表面との距離を推定し、推定した距離に応じて、探針の基板表面からの距離を制御(フィードバック)することによって、探針に作用する原子間力を調整することができる。
【0048】
第18発明に係る識別体形成方法は、上述した第1発明乃至第10発明のいずれか1つの原子操作方法で原子を操作して、原子サイズの識別体を基板表面に形成することを特徴とする。
【0049】
本発明にあっては、無秩序に分布している原子を操作することによって、所定の位置に配置したり、抜き出したりすることができるので、原子の操作を繰り返すことで、原子サイズの文字及びマークなどの識別体を基板表面に形成することができる。
【発明の効果】
【0050】
本発明によれば、原子間力が作用する探針を用いて、所定の原子間力が作用した状態で前記探針を走査させることにより、基板表面の原子又は前記基板表面の面上の原子を操作することができる。
【0051】
本発明によれば、探針を、所定の原子間力が作用した状態で、基板表面の隣り合う2つの原子を結ぶ直線と略平行な方向に走査させることにより、たとえ基板が絶縁性であっても、2つの原子の位置を交換することができる。
【0052】
本発明によれば、探針を、所定の原子間力が作用した状態で、基板表面と略平行な方向に走査させることにより、たとえ基板が絶縁性であっても、原子を基板表面から抜き出すことができる。
【0053】
本発明によれば、探針を、所定の原子間力が作用した状態で、基板表面と略平行な方向に走査させることにより、たとえ基板が絶縁性であっても、基板表面の面上の原子の位置を移動することができる。
【0054】
本発明によれば、原子間力が作用する探針を用いて、探針の基板表面からの距離を制御して、その距離に基づいた原子間力が作用した状態で、基板表面と略平行な方向に走査させることにより、原子間力を検出することなく、極めて簡単かつ高精度で原子の位置を操作することができる。
【0055】
したがって、原子を操作して、原子サイズの文字及びマークなどの識別体を基板表面に形成することができる。また、様々な原子に対して、その位置を交換することが可能となり、本発明に係る原子操作方法によって、2種類以上の原子を複数個組み合わせて、特定の機能を有するデバイスや機能材料の探索に極めて有効である。さらに、薬学及び生命科学分野においては、機能性物質及び生体の原子種を交換して、その機能の変化を実際に確認することが可能となる。さらにまた、自己組織化の手法では作成できないような材料探索や、カンチレバー及び探針をアレイ状又はマトリクス状に並べて本発明を実施することで、一度に大量の原子操作による材料作成及び評価が可能となり、効率よく新しい機能を有する材料を原子レベルで探索する、いわゆるコンビナトリアルの手法にも適用することが可能となる等、優れた効果を奏する。
【発明を実施するための最良の形態】
【0056】
以下、本発明をその実施の形態を示す図面に基づいて詳述する。
【0057】
(実施の形態1)
図1は本発明の実施の形態1に係る原子操作装置の構成例を示すブロック図である。
本発明に係る原子操作装置1は、CPUで構成された制御部10を備えている。制御部10は、ROM11、RAM12、操作部13、表示部14及びAFM20と接続され、これら各部を制御し、ROM11に予め格納されているコンピュータプログラムに従って種々の機能を実行し、各部と連携して又は単独で本発明における各種の手段として機能する。RAM12は、制御部10によるコンピュータプログラムの実行時に発生する一時的なデータを記憶するもので、例えばDRAM、SDRAMなどにより構成される。
【0058】
AFM20は、カンチレバー31、カンチレバー31の一端に取り付けられた探針32、及びカンチレバー31の他端に取り付けられた加振用圧電素子33から構成される走査ユニット21と、被操作対象である試料Sを載置するための試料台22と、試料台22を3次元方向に駆動制御する走査用圧電素子23とを備えている。なお、走査ユニット21は、真空チャンバー内に設けられており、探針32の走査を超高真空中(10-9Pa)で行えるようになっている。カンチレバー31は、交換を容易にするため、カンチレバーホルダに取り付けられる場合があり、その場合、加振用圧電素子33をカンチレバーホルダ又はカンチレバーホルダをうける装置本体部分に取り付けるようにしてもよく、カンチレバー31を加振できる構成であれば、加振用圧電素子33の配置に関して限定されるものではない。
【0059】
加振用圧電素子33は、カンチレバー31の機械的共振周波数又はその近傍の周波数、かつ所定の振幅でカンチレバーを振動させる。カンチレバー31は、その長さが例えば100〜200μmの微小な板ばねであり、加振用圧電素子33によって生じた振動がカンチレバー31を通じて探針32に伝達される。一方、走査用圧電素子23は、試料Sと探針32との3次元の相対位置及び相対距離を変化させる。なお、探針先端に作用する力学的相互作用を検出できるものであれば、カンチレバー及び変位検出部は必ずしも必要ではない。例えば、水晶振動子に探針を取り付ける方法(例えば、森田清三(S.Morita,R.Wiesendanger,E.Meyer)著,「非接触型原子間力顕微鏡(NoncontactAtomic Force Microscopy)」,スプリンガー(Springer),2002年7月24日発行参照)を用いても適応可能である。
【0060】
探針32には、長さが10μm、先端が数nmφの弧状のシリコンを用いた。このような微細な探針32は半導体の微細加工技術によって得ることができる。なお、探針32の材料については限定されるものではないが、例えば、表面観察用のシリコン製探針を用いる場合、探針の表面に被覆されている酸化物及びゴミなどを除去することにより、より原子間力の感度を高めて分解能を向上させることが好ましい。
【0061】
また、AFM20は、変位検出部24と、FM復調部25と、AGC部(自動利得制御部)26と、移相器27と、フィードバックコントローラ部28とを備えている。
【0062】
探針32を試料Sに接近させた場合、探針32と試料Sとに作用する力学的な相互作用によって、カンチレバー31の実効的なばね定数が変化し、機械的共振周波数が変化する。そこで、AFM20は、変位検出部24にて、探針32が取り付けられたカンチレバー31の一端側の変位量、すなわち探針32の変位量を検出し、検出された変位量に基づいて、探針32と試料Sと相互作用によるカンチレバー31の機械的共振周波数の変化量(Δf)をFM復調部25にて検出する。FM復調部25は、検出した機械的共振周波数の変化量に係る信号を制御部10へ出力する。
【0063】
また、AFM20は、カンチレバー31の変位が一定に維持されるように、変位検出部24にて検出された変位量に基づいて、変位検出部24、AGC部26、移相器27及び走査ユニット21(加振用圧電素子33)によって正帰還発信ループを構成する。こうして、カンチレバー31が所定の周波数及び振幅で加振される。
【0064】
フィードバックコントローラ部28は、FM復調部25によって検出された機械的共振周波数の変化量に基づいて、探針32と試料Sとの離隔長が略一定となるように走査用圧電素子23のZ方向の駆動を制御する。また、フィードバックコントローラ部28は、探針32と試料Sとの離隔長が略一定となるように制御することから、この制御に係る信号を試料Sの表面の画像信号を生成するための信号として制御部10へ出力する。
【0065】
制御部10は、AFM20(フィードバックコントローラ部28)から出力された信号に基づいて画像信号を生成し、表示部14へ出力する。表示部14は、液晶ディスプレイ,CRTディスプレイなどの表示手段であり、入力された画像信号に係る画像を表示する。利用者は、表示部14に表示された画像によって、試料Sの表面状態、すなわち表面における原子の配列を確認することができる。
【0066】
操作部13は、原子操作装置1を操作するための走査開始位置入力部13aと走査終了位置入力部13bとを備える。本発明では、原子の位置を操作するために、探針32を横方向に走査することを特徴としており(詳細は後述する)、走査開始位置入力部13aにて探針32の走査を開始する原子の位置を受け付け、走査終了位置入力部13bにて探針32の走査を終了する原子の位置を受け付ける。
【0067】
また、制御部10は、AFM20(FM復調部25)から出力された機械的共振周波数の変化量に係る信号に基づいて、探針32と試料S(原子)とに作用する力学的作用(原子間力)を算出し、原子間力が所定範囲であるか否かを判定する。そして、原子間力が所定範囲であると判定された場合、探針32をその状態で所定の方向に走査するように走査信号を生成し、走査信号によって走査用圧電素子23のX方向及びY方向の駆動を制御する。このようにして、試料Sに対する探針32の走査方向を制御する。なお、試料台22を走査用圧電素子23にて3次元方向に駆動制御する場合について説明したが、試料台22をZ方向にのみ駆動制御し、カンチレバー側をX方向及びY方向に走査し、試料Sに対する探針32の走査方向を制御するようにしてもよい。つまり、探針と試料との3次元の相対位置を変更できるならば、どのような素子をどのような配置で用いてもよい。以下、本発明に係る原子操作方法が分かりやすいように、カンチレバー側をX方向及びY方向に走査して試料Sに対する探針32の走査方向を制御する場合について説明する。
【0068】
次に、上述した原子操作装置1を用いて、基板表面の隣り合う2つの原子の位置を操作する原子操作方法について説明する。図2及び図3は本発明の実施の形態1に係る原子操作方法を示す説明図であり、図2は上面図、図3は断面図である。
【0069】
図2(a)は、単結晶Geの基板51の表面([111]面)にSn原子60が埋め込まれた状態の試料Sを示しており、Ge原子70とSn原子60とが無秩序で配列されている。このような状態にするには、図4の断面図に示すように、下地となる単結晶Geの基板51の表面にSn原子60を蒸着する(図4(a))。なお、Sn原子60は、基板51の平坦部では下側のGe原子との相互作用(結合力)しか生じないが、段差部では下側のGe原子及び横側のGe原子との結合力が生じるため、段差部に取り込まれやすい。そして、略600K(ケルビン)でアニールすることによって、熱的エネルギーをGe原子70及びSn原子60へ与えて、Ge原子70とSn原子60とが、基板表面上に無秩序に配置された状態にする(図4(b))。
【0070】
Sn原子の蒸着量としては、基板51に少量のSn原子が埋め込まれる程度とし、基板本来(Ge)の結晶構造が維持されるようにする。すなわち、Sn原子のGe原子に対する割合は少なく、Ge原子が露出している領域を確保する。また、Sn原子のサイズがGe原子よりも略40%大きいため、Sn原子は、基板内部に注入されることはなく、基板表面に形成することができる。つまり、操作しようとする2種類の原子のうち、サイズの小さな原子の基板にサイズの大きな原子を蒸着して、基板表面に2つの原子が混在した状態にする。なお、蒸着量によって表面が再構成する場合があるが、本発明では表面の構造に関係なく原子位置の交換が可能となる。また、化合物半導体のような複数の原子からなる物質表面の原子操作も可能である。なお、蒸着法としては、MBE法(分子線エピタキシャル成長法)及びMOCVD法(有機金属化学的気相成長法)などの公知の技術が利用でき、埋め込む原子に好適な方法を適宜選択する。
【0071】
まず、Sn原子60を表面に埋め込んだ基板51に対して、カンチレバー31の一端に設けられた探針32の先端と基板51の表面とを近づけた状態で、基板表面を走査(破線で示す)して、Ge原子70及びSn原子60の配列を観察する(図2(b))。このようにして、図5に示すような基板表面のAFM像(画像)を取得する。この走査は、従来のAFMによる表面観察と同様である。
【0072】
利用者は、取得された画像から、基板表面のGe原子70及びSn原子60の形状及び配列を視認することができ、位置交換させたいGe原子(ここではGe原子70aとする)及びSn原子(ここではSn原子60aとする)の一対を決定する。
【0073】
位置交換させたいGe原子70a及びSn原子60aが決定されると、探針32の走査方向を、位置交換させたいGe原子70aとSn原子60aとを結ぶ直線90と平行な方向に変更する(図2(c))。
【0074】
そして、Sn原子60aの上方に探針32の先端を移動させる(図3(d))。この移動のときは、探針32の先端が基板表面の各原子に作用しないように、探針32の先端と基板表面との距離を上述した観察時の距離以上にすることが好ましい。換言すれば、探針32の先端を基板表面に近づけると、基板表面の原子の配列が変化する虞があり、本発明においては好ましくない。
【0075】
次に、探針32に所定の原子間力が作用するまで基板51に近づけ(図3(e))、探針32に所定の原子間力が作用した状態を維持しながら、Ge原子70aに対応する位置まで探針32を主走査方向(横方向)に移動させる(図3(f))。そして、探針32に作用する原子間力が弱くなるように、探針32を基板51から遠ざける(図3(g))。
【0076】
上述した図3(d)〜図3(g)の処理を繰り返し、探針32に所定の原子間力が作用した状態で、探針32を横方向に移動するとき(図3(e)→図3(f))に、探針32の先端とSn原子60a及びGe原子70aとの間に作用した原子間力によって、図6に示すように、図5と比較して、Sn原子60aとGe原子70aとの位置が交換される。なお、AFM20は、物質の表面状態を原子間力によって観察するという目的で開発され、上述した走査の際における原子の配置状態を画像化することができるので、利用者は画像を見ながら操作することができる。
【0077】
本発明では、探針32を縦方向及び横方向に走査し、位置を交換したい2つの原子の上方(図7のA−A線)に探針32が走査された場合、縦方向の走査を停止して、探針32を基板51に近づけた状態で横方向(1次元方向)にだけ走査する。つまり、図7のA−A線以降は、位置を交換したい2つの原子の画像が時系列的に取得されることになる。したがって、利用者は、原子の位置が交換されたこと(図7のB−B線)を時系列で把握することができる。図7において、A−A線とB−B線との間では、左側の画像がSn原子60a、右側の画像がGe原子70aを示し、B−B線以降は、左側の画像がGe原子70a、右側の画像がSn原子60aを示しており、利用者は、B−B線にて原子の位置の交換が生じたことを把握することができる。
【0078】
ここで、原子操作装置1に、AFM20によって取得した画像に基づいて、原子の位置の交換が生じたか否かを判断する交換判断部30(図1参照)を設けるようにしてもよい。交換判断部30は、交換したい一方の原子の位置における画像の輝度と、他方の原子の位置における画像の輝度とを求め、2つの輝度の変化に基づいて原子の位置交換が生じたか否かを判断する。例えば、図7に示したように、原子の位置交換前は左側の画像の輝度が右側の画像の輝度よりも高いが、原子の位置交換後は左側の画像の輝度が右側の画像の輝度よりも低くなることから、原子の位置交換が生じたか否かを2つの輝度の変化から自動的に判断することができる。もちろん、原子の位置交換が生じたか否かの判断精度を向上すべく、AFM20によって取得した画像を適宜、画像処理するようにしてもよい。
【0079】
また、Sn原子60aとGe原子70aとは共有結合によって常温(室温)環境下で安定しているため、両原子の位置の交換を常温で行うことができるので、低コストでの原子操作が可能となるという利点を有する。
【0080】
上述したように、基板表面のSn原子とGe原子との位置を交換する処理を繰り返すことにより、例えば、図8に示すように、無秩序に分布しているSn原子(図8(a))を移動させて、「Sn」の文字を書くことができる(図8(b))。なお、Sn原子及びGe原子は、基板表面、すなわち同一の層に存在していることから、AFMにて表面を観察する場合、Sn原子及びGe原子を共に観察することができるので、Sn原子は明るい輝点、Ge原子は暗い輝点として画像化される。
【0081】
また、本実施の形態では、Geの基板上にSn原子を埋め込み、Ge原子とSn原子との位置を交換するようにしたが、原子間力で位置を交換することが本発明の主旨であることから、基板が絶縁性であってもよく、導電性である必要はない。したがって、混晶状態及び合金状態の様々な原子に対して、その位置を交換することが可能となり、2種類の原子の位置を操作して、特定の機能を有するデバイスの探索に極めて有効である。例えば、ダイアモンドの中に原子を混合し、所定の位置になるように原子の移動を制御して、ワイヤ状又はクラスタ状の新規デバイスを開発する有力な手段となりうる。また、薬学及び生命科学分野においては、機能性物質及び生体の原子種を交換して、その機能の変化を実際に確認することが可能となる。
【0082】
(実施の形態2)
実施の形態1では、基板表面の2種の原子(Ge原子及びSn原子)を結ぶ方向に探針を走査して2つの原子の位置を交換するようにしたが、基板表面に対して横方向に探針を走査することにより、基板表面から原子を抜き出すことができる。図9及び図10は本発明の実施の形態2に係る原子操作方法を示す説明図であり、図9は上面図、図10は断面図である。
【0083】
図9(a)は、試料Sである単結晶Geの基板51の表面状態を示している。まず、単結晶Geの基板51に対して、カンチレバー31の一端に設けられた探針32の先端と基板51の表面とを近づけた状態で、基板表面を走査(破線で示す)して、Ge原子70の配列を観察する(図9(b))。このようにして、図11に示すような基板表面の画像が取得され、利用者は、基板表面から抜き出したいGe原子70bを決定する。
【0084】
次いで、抜き出したいGe原子70bと、Ge原子70bに隣り合うGe原子(ここではGe原子70cとする)とを結ぶ直線91と平行な方向に、探針32の走査方向を変更する(図9(c))。
【0085】
そして、Ge原子70bの上方に探針32の先端を移動させ(図10(d))、探針32に所定の原子間力が作用するまで基板51に近づけ(図10(e))、探針32に所定の原子間力が作用した状態を維持しながら、Ge原子70cに対応する位置まで探針32を横方向に移動させる(図10(f))。そして、探針32に作用する原子間力が弱くなるように、探針32を基板51から遠ざける(図10(g))。
【0086】
上述した図10(d)〜図10(g)の処理を繰り返し、探針32に所定の原子間力が作用した状態で、探針32を横方向に移動するとき(図10(e)→図10(f))に、探針32の先端とGe原子70b及びGe原子70cとの間に作用した原子間力によって、図12に示すように、Ge原子70bが基板51から抜き出され、Ge原子70cの上面に移動する。
【0087】
単結晶Geの基板51の場合、c(2×8)のユニットセルを構成することから、抜き出したいGe原子70bと隣合うGe原子の選択によって、探針32の走査方向に対するGe原子の配列が相違する。つまり、探針32の走査方向について限定されるものではなく、図13に示すように、探針32を矢印95の方向に走査した場合であっても(図13(a))、Ge原子70bを基板51から抜き出すことができる(図13(b))。
【0088】
(実施の形態3)
実施の形態2では、基板表面に対して横方向に探針を走査することにより、基板表面から原子を抜き出すようにしたが、同様の走査によって、下地の基板(表面上)に配置されている原子の位置を、1つ隣りの位置へ移動することができる。図14は本発明の実施の形態3に係る原子操作方法を示す説明図である。
【0089】
図14(a)は、試料Sである単結晶Geの基板51の表面上に原子80が配置されている状態を示している。例えば、上述した実施の形態2によって、単結晶Geの基板51からGe原子を抜き出し、抜き出したGe原子を基板51の表面上に配置することができる。
【0090】
まず、単結晶Geの基板51に対して、カンチレバー31の一端に設けられた探針32の先端と基板51の表面とを近づけた状態で、基板表面を走査して基板の表面を観察し、図15に示すような基板表面の画像を取得する。基板表面上に配置された原子80は、その近傍と比較して高い位置に存在することになることから、図15のように相対的に原子80のみが画像化されて、基板表面のGe原子70の構造が確認しにくい場合があるが、画像処理などを適宜行って確認することは可能である。したがって、利用者は、取得された画像を確認しながら、移動させたい原子80を確実に指定することができる。
【0091】
そして、原子80の上方に探針32の先端を移動させ(図14(a))、探針32に所定の原子間力が作用するまで基板51に近づけ(図14(b))、探針32に所定の原子間力が作用した状態を維持しながら、原子80の直下のGe原子70eに隣り合うGe原子(ここではGe原子70fとする)に対応する位置まで探針32を横方向に移動させる(図14(c))。そして、探針32に作用する原子間力が弱くなるように、探針32を基板51から遠ざける(図14(d))。探針32に所定の原子間力が作用した状態で、探針32を移動するとき(図14(b)→図14(c))に、探針32の先端と原子80との間に作用した原子間力によって、図16に示すように、原子80の位置が、Ge原子70eの上面からGe原子70fの上面へ移動する。
【0092】
より詳述すると、図15は、基板表面をΔf=−28.8Hz(−0.8nN)で走査した場合を示し、Ge表面上に1つの原子が画像化されている。一方、図16は、同一の基板表面を、破線CまでΔf=−3.20Hz(−1.0nN)で走査し、破線C以降は、探針32を近づけて、Δf=−28.8Hz(−0.8nN)で走査した場合を示す。図16では、原子が探針の走査によって移動されながら画像化されるため、原子が2つあるように見える。この2つの原子は、同一の原子80であり、下側に画像化されている原子が移動前の原子を示し、上側に画像化されている原子が移動後の原子を示す。このように、探針を振動させながら基板表面を走査することによって、表面上の原子の位置を移動させることができる。なお、このときの探針32の走査速度は、基板51の結晶構造(結晶方向)及び原子80の種類に応じて適宜調整する。
【0093】
なお、STMを用いて原子を移動させることは、例えば非特許文献1に示されており、探針にファン・デル・ワールス力が働いている可能性があると指摘されている。しかしながら、上述の先行技術には探針先端に働く力を測定するという機能がなく、それを実証できていない。また、ファン・デル・ワールス力は原子間力のなかでも長距離力であり、本当に原子を動かしている要素であるかどうかを判断することは不可能である。一方、本発明では、AFMにて原子間力を測定することができ、その距離依存性からどのような種類の原子間力によって原子が動かされているのか否かを判断することができる。したがって、探針32に所定の原子間力が作用したことを確認したうえで探針32を移動させることから、原子を確実に所望の位置へ移動させることができる。
【0094】
なお、原子操作装置として、図1に示したように、制御部10がAFM20(FM復調部25)から出力された機械的共振周波数の変化量に係る信号に基づいて、探針32と試料Sとに作用する原子間力を算出するような形態について説明したが、探針32と試料Sとに作用する原子間力は、探針32と試料Sとの距離に基づいて決定されることから、探針32と試料Sとの距離を制御して原子間力を調整するようにしてもよく、必ずしも原子間力を直接的に検出する必要はない。
【0095】
図17は本発明の実施の形態1に係る原子操作装置の他の構成例を示すブロック図である。
本発明に係る原子操作装置2は、CPUで構成された制御部10を備えている。制御部10は、ROM11、RAM12、操作部13、表示部14及びSTM120と接続されている。STM120は、探針32と、試料Sを載置するための試料台22と、試料台22を3次元方向に駆動制御する走査用圧電素子23とを備えている。さらに、STM120は、電圧印加/電流検出部121とフィードバックコントローラ部122とを備えている。
【0096】
電圧印加/電流検出部121によって探針32と試料Sとの間に電圧を印加するとともに、探針32を試料Sの表面に接近させ、探針32と試料Sとの間に流れるトンネル電流を電圧印加/電流検出部121にて検出する。探針32と試料Sとの距離に応じて、トンネル電流の大きさが決定されることから、電圧印加/電流検出部121にて検出されたトンネル電流の値によって探針32と試料Sとの距離を推定することができる。
【0097】
そこで、フィードバックコントローラ部122は、電圧印加/電流検出部121にて検出されたトンネル電流の値に基づいて走査用圧電素子23のZ方向の駆動を制御、すなわち、探針32と試料Sとの距離を制御することによって、探針32と試料Sとの間に作用する原子間力を調整する。つまり、基板表面の隣り合う2つの原子の位置を操作する場合には、トンネル電流の値によって探針32と試料Sとの距離を推定することによって原子間力を調整することが可能であり、必ずしも原子間力を直接的に検出する必要はない。その他の構成は、図1と同様であるので、対応する部分には同一の符号を付してその詳細な説明を省略する。なお、本実施の形態の制御部10は、探針32と試料Sとの距離が所定範囲であるか否かを判定し、所定範囲であると判定された場合、探針32をその状態で所定の方向に走査するように走査信号を生成し、走査信号によって走査用圧電素子23のX方向及びY方向の駆動を制御する。このようにして、試料Sに対する探針32の走査方向を制御する(以下、同様)。
【0098】
なお、図17では、試料S側に設けた走査用圧電素子23がフィードバックコントローラ部122によってZ方向の駆動を制御されるようにしたが、探針32側に圧電素子のような駆動素子123を設け、フィードバックコントローラ部122が駆動素子123のZ方向の駆動を制御するようにしてもよい。
【0099】
図18は本発明の実施の形態1に係る原子操作装置の他の構成例を示すブロック図である。
本発明に係る原子操作装置3は、CPUで構成された制御部10を備えている。制御部10は、ROM11、RAM12、操作部13、表示部14及び近接場光学顕微鏡(NSOM:Near-field Scanning Optical Microscopy)220と接続されている。NSOM220は、探針32と、試料Sを載置するための試料台22と、試料台22を3次元方向に駆動制御する走査用圧電素子23とを備えている。さらに、NSOM220は、レーザ221、偏光素子222、第1ハーフミラー223、レンズ224、光ファイバ225、第2ハーフミラー226、分光素子227、検出部228、フィードバックコントローラ部229を備えている。
【0100】
レーザ221から照射された光は、偏光素子222によって偏光され、第1ハーフミラー223へ導光される。第1ハーフミラー223を直進した光は、レンズ224によって集光され、光ファイバ225の一端側へ導光される。光ファイバ225の他端側は探針32に接続されている。探針32の先端は微小な開口部32aを有しており、開口部32aを通じて試料Sに光を照射する。試料S自体の構造によって、試料Sの表面には、その特徴的なサイズ程度に局在した近接場が存在しており、探針32と試料Sとの近接場相互作用に基づいて散乱光が生じる。開口部32aの直径が空間分解能(すなわち距離分解能)となることから、化学的エッチングなどを行うことによって探針32の先鋭化を図ることが好ましい。
【0101】
散乱光は、光ファイバ225を通じて、レンズ224に導光される。そして、散乱光は、レンズ224にて集光され、第1ハーフミラー223及び第2ハーフミラー226の表面で反射され、その進行方向が変えられて分光素子227へ導光される。分光素子227によって分光された散乱光は、検出部228にて検出される。探針32と試料Sとの距離に応じて、その近接場相互作用の大きさが決定されることから、検出部228にて検出された散乱光のスペクトル分布及び強度によって探針32と試料Sとの距離を推定することができる。
【0102】
そこで、フィードバックコントローラ部229は、検出部228にて検出された散乱光のスペクトル分布及び強度に基づいて走査用圧電素子23のZ方向の駆動を制御、すなわち、探針32と試料Sとの距離を制御することによって、探針32と試料Sとの間に作用する原子間力を調整する。つまり、基板表面の隣り合う2つの原子の位置を操作する場合には、散乱光のスペクトル分布及び強度によって探針32と試料Sとの距離を推定することによって原子間力を調整することが可能であり、必ずしも原子間力を直接的に検出する必要はない。その他の構成は、図1と同様であるので、対応する部分には同一の符号を付してその詳細な説明を省略する。
【0103】
なお、図18では、試料Sに近接場照射するとともに、近接場相互作用に基づいて生じた散乱光を集光する場合に探針32の開口部32aを利用するIllumination-Collection(I-C)モードの例について説明したが、試料Sに近接場照射する場合に探針32の開口部32aを利用するIllumination(I)モード、近接場相互作用に基づいて生じた散乱光を集光する場合に探針32の開口部32aを利用するCollection(C)モードであってもよい。また、探針32側に圧電素子のような図示しない駆動素子を設け、フィードバックコントローラ部229が駆動素子のZ方向の駆動を制御するようにしてもよい。
【0104】
図19は本発明の実施の形態1に係る原子操作装置の他の構成例を示すブロック図である。
本発明に係る原子操作装置4は、CPUで構成された制御部10を備えている。制御部10は、ROM11、RAM12、操作部13、表示部14及び走査型キャパシタンス顕微鏡(SCM:Scanning Capacitance Microscopy)320と接続されている。SCM320は、探針32と、試料Sを載置するための試料台22と、試料台22を3次元方向に駆動制御する走査用圧電素子23とを備えている。さらに、SCM320は、バイアス電源321、交流電源322、静電容量検出部323、ロックインアンプ324、フィードバックコントローラ部325を備えている。
【0105】
バイアス電源321及び交流電源322を用いて、探針32と試料Sとの間にオフセットされた交流電圧を印加する。探針32と試料Sとの間の静電容量は極めて小さく、その絶対値を検出することが困難であるため、探針32と試料Sとの間の静電容量を静電容量検出部323にて検出し、静電容量の変化量をロックインアンプ324にて検出する。探針32と試料Sとの距離に応じて、その静電容量の大きさが決定されることから、静電容量によって、探針32と試料Sとの距離を推定することができる。
【0106】
そこで、フィードバックコントローラ部325は、検出された静電容量に基づいて走査用圧電素子23のZ方向の駆動を制御、すなわち、探針32と試料Sとの距離を制御することによって、探針32と試料Sとの間に作用する原子間力を調整する。つまり、基板表面の隣り合う2つの原子の位置を操作する場合には、静電容量によって探針32と試料Sとの距離を推定することによって原子間力を調整することが可能であり、必ずしも原子間力を直接的に検出する必要はない。その他の構成は、図1と同様であるので、対応する部分には同一の符号を付してその詳細な説明を省略する。
【0107】
なお、図19では、試料S側に設けた走査用圧電素子23がフィードバックコントローラ部325によってZ方向の駆動を制御されるようにしたが、探針32側に圧電素子のような駆動素子326を設け、フィードバックコントローラ部325が駆動素子326のZ方向の駆動を制御するようにしてもよい。
【0108】
上述した各構成の原子操作装置2,3,4を用いて、実施の形態1と同様の原子操作方法を行って基板表面上の原子を操作することができるが、その方法は、探針32の試料S(基板表面)からの距離を制御して原子間力を調整し、探針32に所定の原子間力が作用した状態を維持しながら探針32を走査すればよく、実施の形態1と同様であるため、その詳細な説明を省略する。
【0109】
以上、詳述したように、本発明の主旨は、探針と原子とに所定の原子間力が作用している状態を維持しながら、探針を操作することによって、基板に埋め込まれている原子(下地原子と強く結合しているために室温でも拡散することなく安定的な原子)であっても、その原子を操作できる点にある。従来の技術(例えば非特許文献1参照)は、基板と弱い吸着力で結合している原子を移動させたい方向に、探針を走査することで原子の位置を制御するが、例えば、実施の形態1にて説明したように、隣接する原子と位置を交換しながら、目的の原子を目的の方向に移動することが可能となる。
【0110】
また、従来の技術(例えば非特許文献1参照)は、トンネル電流で距離を制御しているといっても、電流が流れやすい場所と原子位置とが必ずしも一致しているわけではなく、真の凹凸に反映した距離の制御は不可能であるが、本発明では、原子に作用する力を直接的又は間接的に測定しながら原子を操作できるため、目的の原子を目的の方向に確実に移動することができる。
【0111】
以上、本発明に係る原子操作方法及び原子操作装置について、具体的な実施の形態を示して説明したが、本発明はこれらに限定されるものではない。当業者であれば、本発明の要旨を逸脱しない範囲内において、上述した実施の形態に係る発明の構成及び機能に様々な変更又は改良を加えることが可能である。
【図面の簡単な説明】
【0112】
【図1】本発明の実施の形態1に係る原子操作装置の構成例を示すブロック図である。
【図2】本発明の実施の形態1に係る原子操作方法を示す説明図である。
【図3】本発明の実施の形態1に係る原子操作方法を示す説明図である。
【図4】単結晶Geの基板表面にSn原子を埋め込む方法を示す断面図である。
【図5】原子操作前の基板表面の原子の配列を示す画像である。
【図6】原子操作後の基板表面の原子の配列を示す画像である。
【図7】原子操作中の画像である。
【図8】本発明の実施の形態1に係る原子操作方法の適用例を示す画像である。
【図9】本発明の実施の形態2に係る原子操作方法を示す説明図である。
【図10】本発明の実施の形態2に係る原子操作方法を示す説明図である。
【図11】原子操作前の基板表面の原子の配列を示す画像である。
【図12】原子操作後の基板表面の原子の配列を示す画像である。
【図13】探針の走査方向の他の例を示す平面図である。
【図14】本発明の実施の形態3に係る原子操作方法を示す説明図である。
【図15】原子操作前の基板表面の原子の配列を示す画像である。
【図16】原子操作後の基板表面の原子の配列を示す画像である。
【図17】本発明の実施の形態1に係る原子操作装置の他の構成例を示すブロック図である。
【図18】本発明の実施の形態1に係る原子操作装置の他の構成例を示すブロック図である。
【図19】本発明の実施の形態1に係る原子操作装置の他の構成例を示すブロック図である。
【符号の説明】
【0113】
1,2,3,4 原子操作装置
10 制御部
11 ROM
12 RAM
13 操作部
13a 走査開始位置入力部
13b 走査終了位置入力部
14 表示部
20 AFM
21 走査ユニット
22 試料台
23 走査用圧電素子
24 変位検出部
25 FM復調部
26 AGC部(自動利得制御部)
27 移相器
28 フィードバックコントローラ部
30 交換判断部
31 カンチレバー
32 探針
33 加振用圧電素子
51 基板
60,60a Sn原子
70,70a,70b,70c,70e,70f Ge原子
80 原子
120 STM
121 電圧印加/電流検出部
122 フィードバックコントローラ部
220 NSOM
221 レーザ
228 検出部
229 フィードバックコントローラ部
320 SCM
323 静電容量検出部
324 ロックインアンプ
325 フィードバックコントローラ部

【特許請求の範囲】
【請求項1】
原子間力が作用する探針を用いて、基板表面の原子又は基板表面の面上の原子を操作する原子操作方法であって、
所定の原子間力が作用した状態で前記探針を走査させて、前記基板表面の原子又は前記基板表面の面上の原子を操作すること
を特徴とする原子操作方法。
【請求項2】
前記探針を、所定の原子間力が作用した状態で前記基板表面の隣り合う2つの原子を結ぶ直線と略平行な方向に走査させて、前記2つの原子の位置を交換すること
を特徴とする請求項1に記載の原子操作方法。
【請求項3】
前記所定の原子間力が作用した状態で前記2つの原子のうちの一方の原子の対応位置から他方の原子の対応位置への前記探針の走査と、
前記所定の原子間力より弱い原子間力が作用した状態で前記他方の原子の対応位置から前記一方の原子の対応位置への前記探針の走査とを繰り返すこと
を特徴とする請求項2に記載の原子操作方法。
【請求項4】
前記探針を、所定の原子間力が作用した状態で前記基板表面と略平行な方向に走査させて、前記基板表面の原子を前記基板表面から抜き出すこと
を特徴とする請求項1に記載の原子操作方法。
【請求項5】
前記探針を、所定の原子間力が作用した状態で前記基板表面と略平行な方向に走査させて、前記基板表面の面上の原子の位置を移動すること
を特徴とする請求項1に記載の原子操作方法。
【請求項6】
前記探針と操作対象の原子との間に作用する原子間力を測定しながら前記原子を操作すること
を特徴とする請求項2乃至請求項5のいずれかに記載の原子操作方法。
【請求項7】
前記探針の前記基板表面からの距離を制御して原子間力を調整すること
を特徴とする請求項2又は請求項3に記載の原子操作方法。
【請求項8】
前記探針と前記基板表面との間に流れる電流を検出し、検出した電流に基づいて前記探針の前記基板表面からの距離を制御して原子間力を調整すること
を特徴とする請求項7に記載の原子操作方法。
【請求項9】
前記探針又は前記基板表面に光を照射して近接場光を生じさせ、前記探針と前記基板表面との近接場相互作用に基づく散乱光を検出し、検出した散乱光に基づいて前記探針の前記基板表面からの距離を制御して原子間力を調整すること
を特徴とする請求項7に記載の原子操作方法。
【請求項10】
前記探針と前記基板表面との間の静電容量を検出し、検出した静電容量に基づいて前記探針の前記基板表面からの距離を制御して原子間力を調整すること
を特徴とする請求項7に記載の原子操作方法。
【請求項11】
原子間力が作用する探針を備え、基板表面の隣り合う2つの原子の位置を交換する原子操作装置であって、
前記探針に作用する原子間力が所定範囲であるか否かを判定する判定部と、
該判定部にて前記原子間力が所定範囲であると判定された場合に、前記探針を、前記原子間力が作用した状態で前記2つの原子を結ぶ直線と略平行な方向に走査する走査部と
を備えることを特徴とする原子操作装置。
【請求項12】
原子間力が作用する探針を備え、基板表面又は該基板表面の面上の原子の位置を操作する原子操作装置であって、
前記探針に作用する原子間力が所定範囲であるか否かを判定する判定部と、
該判定部にて前記原子間力が所定範囲であると判定された場合に、前記探針を、前記原子間力が作用した状態で前記基板表面と略平行な方向に走査する走査部と
を備えることを特徴とする原子操作装置。
【請求項13】
前記判定部にて前記原子間力が所定範囲でないと判定された場合に、探針と前記基板表面との離隔長を変更する手段をさらに備えること
を特徴とする請求項11又は請求項12に記載の原子操作装置。
【請求項14】
原子間力が作用する探針を備え、基板表面の隣り合う2つの原子の位置を交換する原子操作装置であって、
前記探針と前記基板表面との距離を制御する制御部と、
前記距離が所定範囲であるか否かを判定する判定部と、
該判定部にて前記距離が所定範囲であると判定された場合に、前記探針を、前記距離に基づく原子間力が作用した状態で前記2つの原子を結ぶ直線と略平行な方向に走査する走査部と
を備えることを特徴とする原子操作装置。
【請求項15】
前記探針と前記基板表面との間に流れる電流を検出する検出部を備え、
前記制御部は、前記検出部にて検出された電流に基づいて前記探針の前記基板表面からの距離を制御するようにしてあること
を特徴とする請求項14に記載の原子操作装置。
【請求項16】
前記探針又は前記基板表面に光を照射して近接場光を生じさせる照射部と、
前記探針と前記基板表面との近接場相互作用に基づく散乱光を検出する検出部とを備え、
前記制御部は、前記検出部にて検出された散乱光に基づいて前記探針の前記基板表面からの距離を制御するようにしてあること
を特徴とする請求項14に記載の原子操作装置。
【請求項17】
前記探針と前記基板表面との間の静電容量を検出する検出部を備え、
前記制御部は、前記検出部にて検出された静電容量に基づいて前記探針の前記基板表面からの距離を制御するようにしてあること
を特徴とする請求項14に記載の原子操作装置。
【請求項18】
請求項1乃至請求項10のいずれか1つに記載の原子操作方法で原子を操作して、原子サイズの識別体を基板表面に形成することを特徴とする識別体形成方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate


【公開番号】特開2006−110706(P2006−110706A)
【公開日】平成18年4月27日(2006.4.27)
【国際特許分類】
【出願番号】特願2005−127045(P2005−127045)
【出願日】平成17年4月25日(2005.4.25)
【新規性喪失の例外の表示】特許法第30条第1項適用申請有り 2004年6月11日 インターネットアドレス(http://www.engr.washington.edu)にて発表
【新規性喪失の例外の表示】特許法第30条第1項適用申請有り 2004年9月1日 社団法人応用物理学会発行の「2004年(平成16年)秋季 第65回 応用物理学会学術講演会講演予稿集 第2分冊」に発表
【出願人】(504176911)国立大学法人大阪大学 (1,536)
【Fターム(参考)】