説明

吸光分析装置

【課題】高い測定精度で安定して測定できる吸光分析装置を提供する。
【解決手段】第1光カプラ18と光検出器20との間に負帰還増幅型半導体光増幅器34が備えられ、その負帰還増幅型半導体光増幅器34は、第1入力光Linを負帰還増幅することにより、制御光Lc と同じ波長λ2を有し、且つ第1入力光Linの第1周囲光Ls1により強度変調された出力光Lout を光検出器20へ出力することから、その光検出器20に検出される光( 信号) は、負帰還増幅によって波形の歪みが少なくS/N比が高められたものとなる。光導波器14の閉鎖系伝播経路内での発振がなく、安定した吸光分析が可能となる。パルス状レーザ光Lの光強度が時間経過に伴って減衰する減衰波形のS/N比が高くその波形に含まれるノイズが少なくなることから、減衰曲線の減衰に対する測定精度が十分に得られる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、負帰還増幅機能を有する半導体光増幅器を用いた吸光分析装置に関するものである。
【背景技術】
【0002】
光透過性を有する物質の吸光特性を利用して試料を分析する装置として、所謂キャビティリングダウン法を用いた光分析装置が知られている。この光分析装置では、閉鎖系に構成された伝播経路内にたとえば数十kHz程度の周波数のパルス状であって所定波長のレーザ光を環状の伝播経路内に周回させ或いはミラー間に設けられた直線状の伝播経路内で往復させ、試料を充填したセルをその閉鎖系伝播経路に介挿したとき、その光伝播経路内を伝播するパルス状レーザ光の強度が時間経過に伴って減衰する減衰波形が光検出器を用いて検出され、その減衰波形のリングダウンタイム或いは減衰率が求められ、予め設定された関係からそのリングダウンタイム或いは減衰率に基づいて試料の数密度或いは吸光率が測定される。この試料の数密度或いは吸光率に基づいて、試料中に含まれる物質を特定したり、その物質の定量をしたりすることが行われるようになっている。たとえば、特許文献1、特許文献2に記載された吸光分析装置がそれである。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2004−333337号公報
【特許文献2】特開2007−093529号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、上記パルス状レーザ光の光強度の減衰率を測定するに際しては、光検出器を用いて観測される、そのパルス状レーザ光の光強度が時間経過に伴って減衰する減衰波形にノイズが混入し易く、S/N比が低い。このため、そのような減衰波形信号からパルス状レーザ光の光強度が1/eまで減衰するまでの時間であるリングダウンタイムが短くしかも正確に得られないし、或いは、減衰率も同様に正確に得られないので、測定精度が十分に得られなかった。
【0005】
これに対して、上記特許文献2の段落0033に記載されているように、閉鎖系伝播経路内或いは外に光増幅器を介挿することによりその光伝播経路内を伝播するレーザ光の強度を高めて、光検出器により検出される信号の強度を高めることが提案されている。しかしながら、このような構成によれば、ノイズも増幅されることから信号のS/N比が十分に改善されず、しかも上記閉鎖系伝播経路内でレーザ光が発振し易く、測定が不能となるか或いは不安定となる場合もあった。
【0006】
本発明は以上の事情を背景としてなされたものであり、その目的とするところは、高い測定精度で安定して測定できる吸光分析装置を提供することにある。
【課題を解決するための手段】
【0007】
本発明者等は、以上の事情を背景として種々検討を重ねた結果、光検出器により検出される光、すなわち前記閉鎖系伝播経路内から取り出された光伝播経路内の光の一部を負帰還増幅機能を有する光増幅器を用いて増幅すると、S/N比が高く改善されると同時に、上記閉鎖系伝播経路内での発振がなく、高精度で安定した吸光分析が可能となるという事実を見いだした。本発明は係る知見に基づいて為されたものである。
【0008】
すなわち、前記目的を達成するための請求項1にかかる発明は、(a) 所定波長のパルス状レーザ光を出力するレーザ光源と、(b) 周回または往復させることによって光を繰り返し伝播させる閉鎖系伝播経路を有する光導波器と、(c) その光導波器の閉鎖系伝播経路に設けられ、前記レーザ光源とその光導波器とを光学的に結合してそのレーザ光源から出力されるパルス状レーザ光をその光導波器の閉鎖系伝播経路内に入力し、且つその閉鎖系伝播経路内を繰り返し伝播するパルス状レーザ光の一部を取り出す光カプラ装置と、(d) その光カプラ装置により前記光導波器の閉鎖系伝播経路内から取り出された前記パルス状レーザ光の一部を検出する光検出器と、(e) 試料を収容した状態で前記光導波器の閉鎖系伝播経路に設けられ、その光導波器の閉鎖系伝播経路内においてその試料を通して前記パルス状レーザ光を繰り返し伝播させる試料収容装置とを備え、前記光検出器により検出される前記パルス状レーザ光の一部の強度の減衰率に基づいて前記試料を分析する吸光分析装置であって、(f) 前記光カプラ装置から取り出された前記光導波器内を伝播するパルス状レーザ光の一部を入力光として受けて、該入力光が負帰還増幅された出力光を前記光検出器へ出力する負帰還増幅型半導体光増幅器を、前記光カプラ装置と前記光検出器との間に備えることを特徴とする。
【発明の効果】
【0009】
請求項1に係る発明の吸光分析装置によれば、前記光カプラ装置と前記光検出器との間に負帰還増幅型半導体光増幅器が備えられ、その負帰還増幅型半導体光増幅器は、前記光カプラ装置から取り出された前記光導波器内を伝播するパルス状レーザ光の一部を入力光として受けて、該入力光が負帰還増幅された出力光を前記光検出器へ出力することから、その光検出器に検出される光は、負帰還増幅によって波形の歪みが少なくS/N比が高められたものとなる。このため、上記閉鎖系伝播経路内での発振がなく、安定した吸光分析が可能となる。しかも、パルス状レーザ光の光強度が時間経過に伴って減衰する観測波形のS/N比が高くその波形に含まれるノイズが少なくなることから、そのような信号からパルス状レーザ光の光強度が減衰するまでの時間すなわちリングダウンタイムが長くしかも正確に得られるようになるので、減衰曲線の減衰に対する測定精度が十分に得られる。
【0010】
ここで、好適には、前記吸光分析装置において、前記負帰還増幅型半導体光増幅器は、前記光カプラ装置により取り出されたパルス状レーザ光の一部を第1入力光として受けるとともに、前記光カプラ装置から取り出された前記光導波器内を伝播する前記パルス状レーザ光の一部を第2入力光として受けて、負帰還増幅することにより、該第2入力光と同じ波長を有し、且つ該第1入力光の周囲光により強度変調された出力光を前記光検出器へ出力するものである。このようにすれば、光検出器に検出される光は、負帰還増幅によって波形の歪みが少なくS/N比が高められたものとなるので、上記閉鎖系伝播経路内での発振がなく、安定した吸光分析が可能となる。しかも、パルス状レーザ光の光強度が時間経過に伴って減衰する観測波形のS/N比が高くその波形に含まれるノイズが少なくなることから、そのような信号からパルス状レーザ光の光強度が減衰するまでの時間すなわちリングダウンタイムが長くしかも正確に得られるようになるので、減衰曲線の減衰に対する測定精度が十分に得られる。
【0011】
また、好適には、前記吸光分析装置において、前記負帰還増幅型半導体光増幅器は、前記所定波長のパルス状レーザ光の一部である前記第1入力光を増幅して出力すると共に、そのパルス状レーザ光の強度に対して強度反転したそのパルス状レーザ光の波長以外の第1周囲光を放射する第1半導体光増幅素子と、その第1半導体光増幅素子から出力される光から前記第1周囲光の全部または一部を選択する第1波長選択素子と、その第1波長選択素子により選択された前記第1周囲光の全部または一部と、前記光カプラ装置により前記光導波器の閉鎖系伝播経路から取り出されたパルス状レーザ光の一部である第2入力光とが入力され、その第2入力光の波長を有し、且つその第1入力光の周囲光により強度変調された出力光を出力する第2半導体光増幅素子と、前記第2半導体光増幅素子から出力側へ放射される光のうち、前記第2入力光の波長の光を透過させるが、その第2入力光の波長とは異なる波長に光を反射してその第2半導体光増幅素子へ入射させる第2負帰還増幅用波長選択性反射素子とを、含む。このようにすれば、第2半導体光増幅素子から出力側へ放射される光のうちその第2入力光の波長とは異なる波長に光が第2負帰還増幅用波長選択性反射素子により反射されることによりその第2半導体光増幅素子へ再び入射させられて負帰還増幅作用が発生させられるので、前記光検出器に検出される光( 信号光) は、負帰還増幅によってS/N比が高められたものとなる。
【0012】
また、好適には、前記吸光分析装置において、前記第2負帰還増幅用波長選択性反射素子は、前記第2半導体光増幅素子の出力側に光学的に結合された出力側光ファイバの端部に設けられ、その第2半導体光増幅素子から放出される第2周囲光の全部または一部を反射してその第2半導体光増幅素子へ再入射させる第2光ファイバグレーティング部である。このようにすれば、第2負帰還増幅用波長選択性反射素子が出力側光ファイバの端部内に設けられて小型化されるので、吸光分析装置が小型化される。
【0013】
また、好適には、前記吸光分析装置において、出力側光ファイバの前記第2光ファイバグレーティング部が設けられた前記第2半導体光増幅素子側の端部の端面には先球レンズが備えられ、その出力側光ファイバとその第2半導体光増幅素子との間は、その先球レンズを介して直接的に光学結合される。このようにすれば、光学結合の為のレンズなどの光学部品を必要としないので、結合構造が簡単且つ小型となり、吸光分析装置が小型化される。
【0014】
また、好適には、前記吸光分析装置において、前記第2光ファイバグレーティング部は、前記出力光の波長の光を透過させ、前記第2半導体光増幅素子の増幅により生じた少なくとも3nm以上の帯域の増幅光に対して、前記出力光の波長よりも短波長側および/または長波長側の帯域の全部または一部の光を反射する反射特性を有し、かつ、前記第2半導体光増幅素子に対して所定の光路長LLを隔てて近接して配置される。このようにすれば、吸光分析装置が小型化される。
【0015】
また、好適には、前記吸光分析装置において、前記所定の光路長LLは、前記第2半導体光増幅素子と第1光ファイバグレーティング部との間の光伝送路の屈折率をn、真空中の光速をc(mm/秒)、前記第2入力光のパルスの時間間隔をt(秒)としたとき、LL≦(c・t)/(20・n)である。このようにすれば、第2半導体光増幅素子の高い応答性が得られる。したがって、第1光ファイバグレーティング部により反射された第2周囲光が第2半導体光増幅素子へ遅れなく速やかに再入力されるので、効果的に信号波形の歪みが低減されるとともに、高い変調度が得られる。
【0016】
また、好適には、前記吸光分析装置において、前記負帰還増幅型半導体光増幅器は、前記第1半導体光増幅素子の入力側に設けられ、その第1半導体光増幅素子へ入力される前記第1入力光は通過させるが、その第1半導体光増幅素子から入力側へ放出される前記第1周囲光の全部または一部を反射してその第1半導体光増幅素子へ再入力させる第1負帰還増幅用波長選択性反射素子を、含む。このようにすれば、第1半導体光増幅幅素子においても負帰還作用が得られ、一層、波形の歪みが少なくS/N比が高められたものとなる。
【0017】
また、好適には、前記吸光分析装置において、前記第1負帰還増幅用波長選択性反射素子は、前記第1半導体光増幅素子の入力側に光学的に結合された入力光ファイバの端部に設けられ、その第1半導体光増幅素子から放出される前記第1周囲光の全部または一部を反射してその第1半導体光増幅素子へ再入射させる第1光ファイバグレーティング部である。このようにすれば、第1負帰還増幅用波長選択性反射素子が出力光側ファイバ39の端部内に設けられて小型化されるので、吸光分析装置が小型化される。
【0018】
また、好適には、前記吸光分析装置において、前記第1光ファイバグレーティング部が設けられた前記入力光ファイバの前記第1半導体光増幅素子側の端部の端面には先球レンズがそれぞれ備えられ、その入力光ファイバとその第1半導体光増幅素子との間は、その先球レンズを介して直接的に光学結合される。このようにすれば、光学結合の為のレンズなどを部品を必要としないので、一層、結合構造が簡単且つ小型となり、吸光分析装置が小型化される。
【0019】
また、好適には、前記吸光分析装置において、前記第1光ファイバグレーティング部は、前記第1入力光の第1波長の光を透過させ、前記第1半導体光増幅素子の増幅により生じた少なくとも3nm以上の帯域の増幅光に対して、前記第1入力光の波長よりも短波長側および/または長波長側の帯域の全部または一部の光を反射する反射特性を有し、かつ、前記第1半導体光増幅素子に対して所定の光路長LLを隔てて近接して配置される。このようにすれば、一層、吸光分析装置が小型化される。
【0020】
また、好適には、前記吸光分析装置において、前記所定の光路長LLは、前記第1半導体光増幅素子と前記第1光ファイバグレーティング部との間の光伝送路の屈折率をn、真空中の光速をc(mm/秒)、前記第1入力光のパルスの時間間隔をt(秒)としたとき、LL≦(c・t)/(20・n)である。このようにすれば、第1半導体光増幅素子の高い応答性が得られる。したがって、第1光ファイバグレーティング部により反射された第1周囲光が第1半導体光増幅素子へ遅れなく速やかに再入力されるので、効果的に信号波形の歪みが低減されるとともに、高い変調度が得られる。
【0021】
また、好適には、前記吸光分析装置において、前記前記負帰還増幅型半導体光増幅器は、前記光カプラ装置により前記光導波器の閉鎖系伝播経路から取り出されたパルス状レーザ光の一部が第2入力光として入力され、該第2入力光の波長を有する負帰還増幅された出力光を出力する第2半導体光増幅素子と、前記第2半導体光増幅素子から出力側へ放射される光のうち、前記第2入力光の波長の光を透過させるが、該第2入力光の波長とは異なる波長に光を反射して該第2半導体光増幅素子へ入射させる第2負帰還増幅用波長選択性反射素子とを、含む。このようにすれば、閉鎖系伝播経路内での発振がなく、安定した吸光分析が可能となるとともに、パルス状レーザ光の光強度が時間経過に伴って減衰する観測波形のS/N比が高くその波形に含まれるノイズが少なくなることから、そのような信号からパルス状レーザ光の光強度が減衰するまでの時間すなわちリングダウンタイムが長くしかも正確に得られるようになるので、減衰曲線の減衰に対する測定精度が十分に得られる。また、吸光分析装置が一層簡単に構成される。
【図面の簡単な説明】
【0022】
【図1】本発明の一実施例の吸光分析装置の基本的な構成例を説明する略図である。
【図2】図1のレーザ光源の構成例を説明する回路図である。
【図3】図1の第1光カプラの構成例の要部を説明する断面図である。
【図4】図1の試料収容装置の構成例の要部を説明する断面図である。
【図5】図1の負帰還増幅型半導体光増幅器の構成例の要部を説明する図である。
【図6】図5の第1半導体光増幅素子器または第2半導体光増幅素子の構成を説明する斜視図である。
【図7】図5の出力側光ファイバの端部に設けられた第2ファイバグレーティング部の構成例を説明する図である。
【図8】図5の第2光ファイバグレーティング部によって選択的に通過させられる増幅後の制御光Lc すなわち出力光Lout のスペクトルを示す図である。
【図9】図5の第2光ファイバグレーティング部によって選択的に反射される、第2周囲光Ls2のスペクトルを示す図である。
【図10】図5の第2半導体光増幅素子を用いた実験において用いられた第1波長λ1の制御光(第2入力光)Lc の波形を示す図である。
【図11】図5の第2半導体光増幅素子において図10に示す入力光が入力されたときに光ファイバグレーティング部に反射されて再入力される周囲光を示す図である。
【図12】図5の第2半導体光増幅素子において図10に示す入力光が入力されたときに光ファイバグレーティング部により透過される出力光( 実線)を、負帰還のない場合の出力光( 点線) と対比して示す図である。
【図13】図5の第2半導体光信号増幅素子のアイパターンの測定値を示す図である。
【図14】図5の第2半導体光信号増幅素子において負帰還のない場合のアイパターンの測定値を示す図である。
【図15】図1の吸光分析装置において、パルス状レーザ光が周回させられる閉鎖系伝播経路から取り出されるパルス状レーザ光の一部の減衰波形を示す模式図である。
【図16】図1の吸光分析装置において、閉鎖系伝播経路から取り出されたパルス状レーザ光の一部の減衰波形を示す、観測図である。
【図17】本発明の他の実施例( 実施例2) における負帰還増幅型半導体光増幅器の他の構成例の要部を説明する図である。
【図18】本発明の他の実施例( 実施例3) における負帰還増幅型半導体光増幅器の他の構成例の要部を説明する図である。
【図19】本発明の他の実施例( 実施例4) における負帰還増幅型半導体光増幅器の他の構成例の要部を説明する図である。
【図20】本発明の他の実施例( 実施例5) における負帰還増幅型半導体光増幅器の他の構成例の要部を説明する図である。
【図21】本発明の他の実施例( 実施例6) における負帰還増幅型半導体光増幅器の他の構成例の要部を説明する図である。
【発明を実施するための形態】
【0023】
以下、本発明の一実施例を図面を参照して説明する。尚、以下の説明に用いる図面において各部の寸法比等は必ずしも正確に描かれていない。
【実施例1】
【0024】
図1は、本発明の一実施例の吸光分析装置10の構成の要部を示す略図である。図1において、吸光分析装置10は、(a) 所定波長たとえば1551nmの第1波長λ1を有するパルス状レーザ光Lを出力するレーザ光源12と、(b) 周回させることによって光を繰り返し伝播させる環状の閉鎖系伝播経路を有する光導波器14と、(c) その光導波器14の環状の閉鎖系伝播経路に設けられ、レーザ光源12と光導波器14との間を光学的に結合してそのレーザ光源12から出力されるパルス状レーザ光Lをその光導波器14の閉鎖系伝播経路内に入力し、且つその閉鎖系伝播経路内を繰り返し伝播するパルス状レーザ光Lの一部を取り出す第1光カプラ18と、(d) 第1光カプラ18により光導波器14の閉鎖系伝播経路内から取り出されたパルス状レーザ光Lの一部を検出する、ホトダイオード、ホトトランジスタなどの半導体ホトセルから成る光検出器20と、(e) 試料22を収容した状態で光導波器14の環状の閉鎖系伝播経路に介在させられ、光導波器14の環状の閉鎖系伝播経路内において試料22を通してパルス状レーザ光Lを繰り返し伝播させる容器状の試料収容装置24と、光検出器20により検出されたパルス状レーザ光Lの一部の減衰波形の減衰状態を示すリングダウンタイムτ或いは減衰率kを算出し、そのリングダウンタイムτ或いは減衰率kに基づいて試料22の数密度n或いは吸光率Δkを算出する演算装置26と、その演算装置26において算出された減衰曲線、吸光率Δkなどを表示する表示装置28とを備えている。第1光カプラ18は、光導波器14の閉鎖系伝播経路内を周回して繰り返し伝播するパルス状レーザ光Lの一部をたとえば99:1の割合で取り出すように20dBの結合係数を備えている。
【0025】
また、上記吸光分析装置10では、パルス状レーザ光Lをレーザ光源12から第1光カプラ18へ導く光ファイバ30においてたとえば50:50程度となるように所定の結合係数( dB)で光学的に結合するように設けられ、そのパルス状レーザ光Lの一部を取り出し、光ファイバ32を介して負帰還増幅型半導体光増幅器34へ第1入力光Linとして入力させる第2光カプラ36が設けられている。
【0026】
負帰還増幅型半導体光増幅器34は、図1に示すように、第1光カプラ18および第2光カプラ36と光検出器20との間に介挿された状態で配置されている。負帰還増幅型半導体光増幅器34は、第2光カプラ36により分割されてレーザ光源12から光導波器14へ向かうパルス状レーザ光Lの一部を第1入力光Linとして受けるとともに、光ファイバ31を介して導かれた第1光カプラ18から取り出された光導波器14内を伝播するパルス状レーザ光Lの一部を第2入力光すなわち制御光Lc として受け、負帰還増幅することにより、制御光Lc と同じ波長を有し、且つその第1入力光( パルス信号光)Linの第1周囲光Ls1により強度変調された出力光Lout を光検出器20へ光ファイバ39を介して出力する。
【0027】
上記レーザ光源12は、たとえば図2にも示すように、直流電源12a と、たとえばAlGaAs系やInGaAsP系の化合物半導体が基板上にエピタキシャル成長させられることにより一対の反射層の間に発光層が介在した状態で構成されたレーザダイオードであって、その直流電源12a から供給される駆動電流に従って一定波長λ1のレーザ光を出力するレーザダイオード12b と、そのレーザダイオード12b へ直流電源12a から供給される駆動電流を開閉するための、トランジスタ、FETなどの半導体スイッチング素子から成るドライバ12c と、そのドライバ12c を所定の周波数で開閉するための開閉制御信号を出力するパルスジェネレータ12d とを備え、たとえば1551nmの第1波長λ1を有し、20乃至40nsのパルス幅と27乃至98kHzの周波数を有するパルス状レーザ光Lを出力する。
【0028】
上記第1光カプラ18および第2光カプラ36は、たとえば光ファイバから成る互いに近接配置させられた一対の光導波路から同様に構成される。たとえば第1光カプラ18は、図3に示すように、両端が光ファイバ38に接続されることで光導波器14の環状の閉鎖系伝播経路を構成する第1導波路18a と、両端が光ファイバ30および光ファイバ31に接続された第2導波路18b とが本体18c 内において固定され且つ所定距離間相互に接近させられることにより所定割合で相互に光学的に結合された状態で本体18c 内において固定されており、それら第1導波路18a および第2導波路18b との間で、光が分岐されるように構成されたものである。第1導波路18a および第2導波路18b との間の接近長さや相互間距離などに従って結合係数が決定されており、第1光カプラ18では、たとえば1%(1:99)の割合で取り出されるように結合係数が20dBに設定され、第2光カプラ36では、50%(50:50) の割合で取り出されるように結合係数が設定されている。
【0029】
上記光導波器14は、図1に示すように、光ファイバ38を1回または複数回環状に周回させることにより構成され、この光ファイバ38が、第1光カプラ18の第1導波路18a に直列接続されている。この環状の光ファイバ38により、第1光カプラ18を介して供給されたレーザ光源12からのパルス状レーザ光Lがその光ファイバ38によって導入されることによりそのパルス状レーザ光Lを同じ経路で繰り返し伝播させる環状の閉鎖系伝播経路が構成されている。
【0030】
試料収容装置24は、たとえば図4に示すように、試料22を収容した状態で光導波器14の環状の閉鎖系伝播経路に介在させられる容器24aと、この容器24a内の試料22を挟んで端面が対向する一対の光ファイバ24b とを備え、閉鎖系伝播経路を構成する光ファイバ38がその一対の光ファイバ24b に直列接続されている。これにより、光導波器14の環状の閉鎖系伝播経路内において容器24a内に保持された試料22を通してパルス状レーザ光Lが繰り返し伝播させられるようになっている。なお、上記試料収容装置24は、光導波器14の環状の閉鎖系伝播経路を構成する光ファイバ38の一部において、その側面からコアを貫通した穴を設け、その穴内に試料22が充填されるようにしたもので構成されてもよい。
【0031】
負帰還増幅型半導体光増幅器34は、光ファイバ32を介して第1波長λ1 のパルス状レーザ光Lが第1入力光Linとして入力されると、その第1入力光Linの強度Iinに応じてその第1波長λ1以外の光すなわち第1波長λ1の第1周囲光Ls1の光強度増幅特性が変調され、その第1入力光Linを増幅した光とその第1入力光Linの強度Iinに対して強度反転したその第1波長λ1以外の光すなわち第1周囲光Ls1とを出力する第1半導体光増幅素子40と、この第1半導体光増幅素子40から出力される光を受けてその光のうちの第1波長λ1以外の光すなわち第1周囲光Ls1を反射により分離するとともに、その第1周囲光Ls1を光ファイバ31を介して第2波長λ2の第2入力光である制御光Lc と合波して第2半導体光増幅素子42へ出力する波長選択素子である第3光ファイバグレーティングデバイスFGD3と、その第3光ファイバグレーティングデバイスFGD3からの周囲光Ls1および第2波長λ2の第2入力光である制御光Lc の合波光が入力されると、相互利得変調により制御光Lc を第1入力光Linの周囲光Ls1により変調し且つ増幅した出力光Lout とその制御光Lc の強度Ic に対して強度反転したその第2波長λ2以外の光すなわち第2周囲光Ls2とを出力する第2半導体光増幅素子42と、光ファイバ39に設けられ、その第2半導体光増幅素子42からの光が導入されると、その光のうちの制御光Lc が増幅された第2波長λ2の出力光Lout を透過させるが、その光のうちの第2波長λ2以外の光すなわち第2周囲光Ls2を反射する第2光ファイバグレーティング部46を有し、その反射光を上記第2半導体光増幅素子42へ再入力させるための出力用光ファイバである第2光ファイバグレーティングデバイスFGD2とを、備えた負帰還増幅型3端子光信号増幅器( 光トライオード) である。
【0032】
なお、第2波長λ2および第1波長λ1は相互にその周囲光の波長帯に含まれる波長であるか、或いは、第2波長λ2および第1波長λ1は同一波長である。たとえば、第1波長λ1が1551nmであるとき、第2波長λ2は第1周囲光Ls1の波長帯に含まれる波長、或いは同じ波長1551nmに設定される。仮に、制御光Lc の第2波長λ2が1549nmであれば、出力光Lout の波長は1549nmとなり、制御光Lc の第2波長λ2が1551nmであれば、出力光Lout の波長は1551nmとなる。
【0033】
上記第1半導体光増幅素子40および第2半導体光増幅素子42は、たとえば図6に示すチップ状の素子から互いに同様に構成されている。たとえば第2半導体光増幅素子42は、化合物半導体たとえばインジウム燐InPから構成される半導体基板42aと、その上にエピタキシャル成長させられたIII-V 族混晶半導体から成り、ホトリソグラフィーにより所定幅に形成された相対的に屈折率の高い多層膜から成る光導波路42bと、その光導波路42b内の多層膜の一部を構成するpn接合であって、バルク、多重量子井戸、歪み超格子、量子ドットのいずれかから構成された活性層42cと、光導波路42bの上面に固着された上部電極42eと、半導体基板42aの下面に固着された下部電極42fとを、備えている。上部電極42eと下部電極42fとの間に注入電流が流される状態では、所定波長λ1の第1入力光Linが入射されて上記光導波路42b内を伝播させられる過程で活性層42cを通過させられるとき、誘導放射作用による光増幅を受け、出力される。同時に、所謂相互利得変調作用により、波長λ1を中心とするその波長λ1以外の周囲波長を有してその第1入力光Linの強度変調に反比例して強度が増減する第1周囲光( 自然発生光) Ls1、および波長λ2を中心とするその波長λ2以外の周囲波長を有してその制御光( 第2入力光) Lc の強度変調に反比例して強度が増減する第2周囲光( 自然発生光) Ls2がそれぞれ発生させられて、これも出力される。
【0034】
上記活性層42cが多重井戸から構成される場合は、たとえば、半導体基板42aからエピタキシャル成長させられることにより格子整合された100nm程度の6対のInGaAsおよびInGaPにより構成され、その活性層42cの上には、組成( 屈折率)が段階的に変化させられたグリン( GRIN)構造のガイド層( 2000Å) が順次設けられる。この活性層42cのデバイス長は、たとえば600μm程度である。
【0035】
前記光ファイバ32の第1半導体光増幅素子40の入力側端部と、光ファイバ39の第2半導体光増幅素子42側の端部に設けられた第2光ファイバグレーティングデバイスFGD2とには、凸レンズとして機能する先球レンズRが端面に備えられており、光ファイバ32と第1半導体光増幅素子40の入力側端面との間、および光ファイバ39と第2半導体光増幅素子42の出力側端面との間は、それぞれ光学的に直接結合されている。すなわち、光ファイバ32と第1半導体光増幅素子40の入力側端面との間、および光ファイバ39と第2半導体光増幅素子42の出力側端面との間は、他の光学部品を介在させないで、信号光が直接入力或いは出力可能とされている。
【0036】
第2光ファイバグレーティングデバイスFGD2の第2光ファイバグレーティング部46から反射される第2周囲光Ls2を速やかに第2半導体光増幅素子42内へ再入力させてその応答性能を高めるために、上記第2半導体光増幅素子42の出力側端面と第2光ファイバグレーティング部46の端面との間の間隔すなわち光路長LLは、その間の光伝送路の屈折率をn、真空中の光速をc( mm/sec)、制御光( 第2入力光) Lc の1パルス当たりの時間間隔をt(sec)としたとき、LL≦( c・t)(20・n)を満足するように設定されている。上記第2半導体光増幅素子42と第2光ファイバグレーティングデバイスFGD2の端部および光ファイバ39の端部との間は、所定のアライメントが施された後、図示しないケースの底または壁に支持されることによりそれぞれ相対的に位置固定とされている。
【0037】
光ファイバ39は、たとえば図7に示すように、ゲルマニウムGeを添加した石英SiO2 から成る略円柱形状のコア39a と、そのコア39a よりも屈折率が低く且つそれの外周面を覆う略円筒形状の石英SiO2 であるクラッド39b とによって構成されている。上記第2光ファイバグレーティングデバイスFGD2は、そのコア39a の端部に、位相マスクなどを利用し、紫外線照射による光誘起屈折率変化による、代表的には10000層乃至20000層程度の周期的な屈折率変化が、その光ファイバのコア39a の伝播方向に1群または複数群で形成された第2光ファイバグレーティング部46を備えている。上記屈折率変化は等周期とされる場合もあるが、チャープ状に周期が順次変化させられるものであってもよい。この第2光ファイバグレーティング部46は、第2半導体光増幅素子42に負帰還増幅作用を発生させるための第2負帰還増幅用波長選択性反射素子として機能するものであり、その屈折率の周期と実効屈折率に対応した波長の光を選択的に反射する特性を有し、たとえば1551nmを中心とする第2波長λ2の光は透過させるが、第2波長λ2とは異なる少なくとも3nm以上たとえば6.5nm程度の帯域幅を有する波長の光(第2周囲光Ls2)を反射する波長選択性フィルタとして機能している。図8は、上記第2光ファイバグレーティング部46によって選択的に通過させられる、増幅後の制御光Lc(出力光Lout)のスペクトルを示し、図9は、上記第2光ファイバグレーティング部46によって選択的に反射される、第2周囲光Ls2のスペクトルを示している。
【0038】
なお、図9には、第2波長λ2の両側の波長帯を含む第2周囲光Ls2が示さ れているが、上記第2光ファイバグレーティング部46の反射特性は、その第2周囲光Ls2のうちの一部、たとえば第1波長λ1の片側の波長帯またはその一部を反射するものであってもよい。図9には、第2波長λ2が第1波長λ1と同様の1551nmである場合を示している。
【0039】
光ファイバ32も、上記光ファイバ39と同様に、コアと、そのコアよりも屈折率が低く且つそれの外周面を覆う略円筒形状の石英SiO2 であるクラッドとによって構成されており、そのコアの端部には、位相マスクなどを利用し、紫外線照射による光誘起屈折率変化による、代表的には10000層乃至20000層程度の周期的な屈折率変化が、その光ファイバのコアの伝播方向に1群または複数群で形成された第1光ファイバグレーティング部50を備える第1光ファイバグレーティングデバイスFGD1が配置されている。この第1光ファイバグレーティング部50は、この第1光ファイバグレーティング部50は、第1半導体光増幅素子40に負帰還増幅作用を発生させるための第1負帰還増幅用波長選択性反射素子として機能するものであり、その屈折率の周期と実効屈折率に対応した波長の光を選択的に反射する特性を有し、たとえば1551nmを中心とする第1波長λ1の光は透過させるが、第1波長λ1とは異なる少なくとも3nm以上たとえば6.5nm程度の帯域幅を有する波長の光(第1周囲光Ls1)を反射する波長選択性フィルタとして機能している。
【0040】
また、第1光ファイバグレーティングデバイスFGD1の第1光ファイバグレーティング部50から反射される第1周囲光Ls1を速やかに第1半導体光増幅素子40内へ再入力させてその応答性能を高めるために、上記第1半導体光増幅素子40の入力側端面と第1光ファイバグレーティング部50の端面との間の間隔すなわち光路長LLは、その間の伝送路の屈折率をn、真空中の光速をc( mm/sec)、第1入力光Linの1パルス当たりの時間間隔をt(sec)としたとき、LL<( c・t)(20・n)を満足するように設定されている。上記第1半導体光増幅素子40と第1光ファイバグレーティングデバイスFGD1の端部および光ファイバ39の端部との間は、所定のアライメントが施された後、図示しないケースの底または壁に支持されることによりそれぞれ相対的に位置固定とされている。
【0041】
上記第1光ファイバグレーティング部50および第2光ファイバグレーティング部46によって第1波長λ1の周囲波長帯の第1周囲光Ls1および第2波長λ2の周囲波長帯の第2周囲光Ls2が第1半導体光増幅素子40および第2半導体光増幅素子42へそれぞれ再入力させられることにより負帰還増幅作用が発生し、ノイズが少なく、変調度が高く、安定した出力がそれぞれ得られるようになっている。
【0042】
本発明者等による第2半導体光増幅素子42を用いた実験によれば、たとえば図10に示す第1波長λ1の制御光(第2入力光)Lc および第1周囲光Ls1が第2半導体光増幅素子42に入力されると、第2半導体光増幅素子42においては、その第1波長λ1の制御光Lc が増幅されるとともに、それに強度反転した波長λ1以外の第2周囲光Ls2が発生させられて、それぞれが合波された光が出力される。これらの光は、第2光ファイバグレーティングデバイスFGD2へ出力されるが、それに備えられている第2光ファイバグレーティング部46によって、上記の光のうちの制御光Lc の増幅光である第1波長λ1の出力光Lout が通過させられると同時に、第1波長λ1以外の波長の第2周囲光Ls2が反射されて第2半導体光増幅素子42内に再入力される。この再入力された第2周囲光Ls2は、相互利得変調によって第1波長λ1の出力光Lout と強度が反転させられていることから、第2半導体光増幅素子42の第1波長λ1の制御光(第2入力光)Lc に対するそのゲイン( 増幅率)が変調させられる。すなわち、再入力された第2周囲光Ls2は、制御光Lc に対して負帰還光として機能する。図11は、図10に示す第1波長λ1の制御光Lc が第2半導体光増幅素子42に入力されるとき、それに同期して変化する第2光ファイバグレーティング部46の反射光すなわち第2半導体光増幅素子42に再入力される第2周囲光Ls2を示している。
【0043】
図12は、上記実験において、第2半導体光増幅素子42に負帰還光である第2周囲光Ls2を入力させない場合に第2光ファイバグレーティングデバイスF GD2から出力された出力光Lout を点線に示し、負帰還光( 第2周囲光Ls2) を第2半導体光増幅素子42に入力させた場合に第2光ファイバグレーティングデバイスFGD2から出力された出力光Lout を実線に示している。図12の実線を点線と対比すると明らかなように、第2光ファイバグレーティングデバイスFGD2から出力される出力光( 信号光) Lout の波形に歪みがなく、非線型歪みが低減されていることから、上記負帰還光(第2周囲光Ls2)が入力させられることによって光増幅での負帰還効果が得られることにより、利得が安定するとともに、非線型歪みが低減されていることが明らかである。また、第2光ファイバグレーティングデバイスFGD2から出力される出力光の極小値( 信号の基線) が点線に示す場合よりも低い値とされていることから、上記負帰還光(第2周囲光Ls2)が入力させられることによって光増幅での負帰還効果が得られることにより、出力される出力光Lout の変調度が高められるとともに、低雑音化されてS/N比が高められている。
【0044】
また、図13は、上記実験において第2半導体光増幅素子42に負帰還光である第2周囲光Ls2を入力させた場合に第2光ファイバグレーティングデバイスF GD2から出力された出力光Lout を、アイパターン測定した結果( オシロスコープに表示されたパターン) を示し、図14は、上記実験において第2半導体光増幅素子42に負帰還光( 第2周囲光Ls2) を入力させない場合の第2光ファイバグレーティングデバイスFGD2から出力された出力光Lout を、アイパターン測定した結果( オシロスコープに表示されたパターン) を示している。上記アイパターン測定には、テストパターンPEBS31、マーク率1/2、標準マスクSYM16/OC48(2.48832GHz)が用いられた。図13から明らかなように、第2半導体光増幅素子42に負帰還光( 第2周囲光Ls2) を入力させた場合に第2光ファイバグレーティングデバイスFGD2から出力された出力光Lout の信号は、大幅に安定化されている。
【0045】
図5に戻って、第3ファイバグレーティングデバイスFGD3は、光ファイバ31に接続される2本の光ファイバ52および54と、それらの光ファイバ31側の端部が溶融延伸された溶融延伸部に設けられた第3光ファイバグレーティング部56とを備え、光ファイバ52へ入力した第1半導体光増幅素子40の出力光のうち第1波長λ1の第1入力光Linの増幅光は透過させるが、第1波長λ1以外の波長の光である第1周囲光Ls1を反射し、光ファイバ54から第2半導体光増幅素子42へ入力させる。同時に、第3ファイバグレーティングデバイスFGD3は、光ファイバ31を介して伝送された、第1光カプラ18から取り出された光導波器14内を伝播するパルス状レーザ光Lの一部を透過させ、第2入力光すなわち制御光Ic として第2半導体光増幅素子42へ入力させる。すなわち、第3ファイバグレーティングデバイスFGD3は、波長選択素子として機能し、第1半導体光増幅素子40の出力光を受けてその出力光のうちの第1波長以外の光である第1周囲光Ls1を反射により分離するとともに、その第1周囲光Ls1を光ファイバ31を介して第2波長λ2の第2入力光である制御光Lc と合波して第2半導体光増幅素子42へ出力する。
【0046】
上記2本の光ファイバ52および54の端面にも、凸レンズとして機能する先球レンズRがそれぞれ備えられており、第1半導体光増幅素子40の出力光がその端面から光ファイバ52へ直接入力されるとともに、光ファイバ54から出力される光が第2半導体光増幅素子42の端面へ直接入力されるようになっている。すなわち、前記光ファイバ52の端面と第1半導体光増幅素子40の端面との間、第2半導体光増幅素子42の端面と光ファイバ54との間も、他の光学部品を用いることなく、直接結合されている。
【0047】
上記第3ファイバグレーティングデバイスFGD3の溶融延伸部は、コアが所定長にわたって相互に溶融延伸させられてY型に分岐する所謂ファイバ型カプラを構成しており、第3ファイバグレーティングデバイスFGD3は、その溶融延伸部のコアにおいて、前述の第2光ファイバグレーティングデバイスFGD2と同様に、位相マスクなどを利用し、紫外線照射による光誘起屈折率変化による、代表的には10000層乃至20000層程度の周期的な屈折率変化が上記コアの伝播方向に1群または複数群で形成された第3光ファイバグレーティング部56が設けられることにより、第1波長λ1の光は透過させるが、その第1波長λ1以外の光すなわち第1波長λ1を含まない第1周囲光Ls1を反射するように構成されている。
【0048】
上記の負帰還増幅型半導体光増幅器34では、出力光Lout は、第1波長λ1の第1入力光Linが単に増幅されるのではなく、第2波長λ2の制御光( 第2入力光) Lc の第2周囲光Ls2により変調されて増幅された信号であるが、その第2波長λ2の出力光Lout を第2光ファイバグレーティング部46を通過させて伝送すると同時に、第2波長λ2以外の第2周囲光Ls2を反射して第2半導体光 増幅器42に再入力させるので、強度反転を示す第2周囲光Ls2がフィードバ ックさせられることにより第2半導体光増幅素子42の利得を制御光( 第2入力光) Lc に応じて変調して負帰還光増幅効果が得られ、出力光Lout が効果的に信号波形の歪みが低減されるとともに、低雑音で高い変調度が得られ、誤り率( ビットエラー) が2桁程度低くなるという効果が得られる。また、制御光により変調された第1波長λ1の出力光Lout を出力する小型の3端子の光信号増幅器( 光トライオード) が得られる。
【0049】
演算装置26は、所謂マイクロコンピュータから構成されており、予め記憶されたプログラムに従って光検出器20により検出された負帰還増幅型半導体光増幅器34の出力光Lout を処理し、リングダウン分光法を用いて試料22の成分等を特定する。すなわち、演算装置26は、試料22を試料収容装置24内に未だ収容しないときにパルス状レーザ光Lが出力されたときに光検出器20から得られるパルス群の減衰波形を算出するとともに、その減衰波形からそのリングダウンタイムτ0 を予め求め、次いで、試料22を試料収容装置24内に未だ収容しないときにパルス状レーザ光Lが出力されたときに光検出器20から得られるパルス群の減衰波形を算出するとともに、その減衰波形からそのリングダウンタイムτを算出し、たとえば(4) 式に示す予め記憶された関係から実際のそれらリングダウンタイムτ0 およびτに基づいて試料22の数密度nを算出して試料22を特定する。
【0050】
本実施例に用いられる分光分析測定の原理および上記(4) 式の導出方法を以下に説明する。光導波器14において環状の閉鎖系伝播経路を構成する光ファイバ38内を周回させられるパルス状のレーザ光Lの一部は、周回する毎に第1光カプラ18から所定の割合たとえば1/100の取出割合で取り出されるので、パルス状レーザ光Lが出力される毎にたとえば図15に示すように上記取り出された光すなわちパルス群の減衰波形が観測される。この波形は、時間経過に伴って減衰し、その減衰率は、周回させられるパルス状の第1入力光Lの一部が透過する試料22の物質状態に応じて変化する。上記波形は、その初期値の強度をI0 とすると、次式(1) の時間関数I (t)で表わされるものである。
I (t)=I0 exp−(1/τ0 ) t ・・・(1)
ここで、(1/τ0 ) は減衰率である。τ0 は強度が1/eとなるまでの時間すなわち時定数であり、基準リングダウンタイムとも称される。第1光カプラ18における光の取出割合をR、光速をc、キャビティ長( 周回長) をLとすると、τ0 は次式(2) で示される。
τ0 =L/c(1−R) ・・・(2)
次いで、試料をある吸光物質としたときのリングダウンタイムτ、その試料の物質の吸収断面積をσ、物質の数密度をnとすると、(1) 式は(3) 式に書き換えられる。(2) 式から(4) 式が得られる。
I (t)=I0 exp−(t/τ0 −σnct) ・・・(3)
n=1/σc( 1/τ−1/τ0 ) ・・・(4)
これにより、吸収断面積σが既知である水等の媒質の振動回転遷移を対象とし、τ0 とτとを測定で求めることにより、(4) 式を用いて水の数密度nを算出することができる。
【0051】
以上のように構成された本実施例の吸光分析装置10において、光導波器14において環状の閉鎖系伝播経路を構成する光ファイバ38内を周回させられるパルス状の第1レーザLの一部が、周回する毎に第1光カプラ18から所定の割合たとえば1/100の取出割合で制御光Lc として取り出され、負帰還増幅型半導体光増幅器34においてそれを用いて第1入力光Linが変調されて負帰還増幅された出力光Lout が光検出器20によって検出された信号強度( パワー)をオシロスコープにて観測すると、図16の実線に示すような減衰波形が得られる。この減衰波形ではオシロスコープの周波数特性が十分に高くないためか、図15に示されるようなパルス状には表示されないが、それらパルスの包絡線が表示される。演算装置26は、その実線で示される減衰曲線の初期値時点とその初期値の1/eとなる時点との間の時間を計測することでリングダウンタイムτを測定し、(4) 式から試料22の数密度nを算出し、表示装置28に表示する。
【0052】
ここで、図16の1点鎖線で示す太い減衰曲線は、負帰還増幅型半導体光増幅器34が用いられない場合に光検出器20によって検出された減衰波形を示している。この場合には、S/Nが低く不安定であり、しかもリングダウンタイムτN が大幅に短いため、本実施例ほど十分な測定精度が得られない。
【0053】
上述のように、本実施例の吸光分析装置10によれば、第1光カプラ18と光検出器20との間に負帰還増幅型半導体光増幅器34が備えられ、その負帰還増幅型半導体光増幅器34は、第2光カプラ36により分岐された波長λ1のパルス状レーザ光Lの一部を第1入力光Linとして受けるとともに、第1光カプラ18から取り出された光導波器14内を繰り返し伝播するパルス状レーザ光Lの一部を制御光( 第2入力光) Lc として受けて、その第1入力光Linを負帰還増幅することにより、その制御光Lc と同じ波長λ2を有し、且つ第1入力光Linの第1周囲光Ls1により強度変調された出力光Lout を光検出器20へ出力することから、その光検出器20に検出される光( 信号) は、負帰還増幅によって波形の歪みが少なくS/N比が高められたものとなる。このため、光導波器14の閉鎖系伝播経路内での発振がなく、安定した吸光分析が可能となる。しかも、パルス状レーザ光Lの光強度が時間経過に伴って減衰する観測波形のS/N比が高くその波形に含まれるノイズが少なくなることから、そのような信号からパルス状レーザ光Lの光強度が減衰するまでの時間すなわちリングダウンタイムτが長くしかも正確に得られるようになるので、減衰曲線の減衰に対する測定精度が十分に得られる。
【0054】
また、本実施例の吸光分析装置10によれば、負帰還増幅型半導体光増幅器34は、所定波長λ1のパルス状レーザ光Lの一部である第1入力光Linを増幅して出力すると共に、そのパルス状レーザ光Lの強度に対して強度反転したそのパルス状レーザ光Lの波長λ1 以外の第1周囲光Ls1を放出する第1半導体光増幅素子40と、その第1半導体光増幅素子40から出力される光から第1周囲光Ls1の全部または一部を選択する第3光ファイバグレーティング部( 第1波長選択素子) 56と、その第3光ファイバグレーティング部56により選択された第1周囲光Ls1の全部または一部と、第1カプラ18により光導波器14の閉鎖系伝播経路から取り出されたパルス状レーザ光Lの一部である制御光( 第2入力光) Lc とが入力され、その制御光Lc の波長λ2 を有し、且つ第1入力光L1の第1周囲光Ls1により強度変調された出力光Lout を出力する第2半導体光増幅素子42と、その第2半導体光増幅素子42から出力側へ放射される光のうち、制御光Lc の波長λ2 の光を透過させるが、制御光Lc の波長λ2 とは異なる波長の第2周囲光Ls2を反射して第2半導体光増幅素子42へ入射させる第2光ファイバグレーティング部( 第2負帰還増幅用波長選択性反射素子) 46とを、含むことから、第2半導体光増幅素子42から出力側へ放射される光のうち制御光Lc の波長λ2 とは異なる波長の第2周囲光Ls2が第2光ファイバグレーティング部46により反射されることによりその第2半導体光増幅素子42へ再び入射させられて負帰還増幅作用が発生させられるので、光検出器20に検出される光( 信号) は、負帰還増幅によってS/N比が高められたものとなる。
【0055】
また、本実施例の吸光分析装置10によれば、第2光ファイバグレーティング部( 第2負帰還増幅用波長選択性反射素子) 46は、第2半導体光増幅素子42の出力側に光学的に結合された出力側光ファイバ39の端部に設けられ、第2半導体光増幅素子42から放出される第2周囲光Ls2の全部または一部を反射してその第2半導体光増幅素子42へ再入射させるように構成されていることから、第2負帰還増幅用波長選択性反射素子46が出力側光ファイバ39の端部内に設けられて小型化されるので、吸光分析装置10が小型化される。
【0056】
また、本実施例の吸光分析装置10によれば、出力側光ファイバ39の第2光ファイバグレーティング部46が設けられた第2半導体光増幅素子42側の端部の端面には先球レンズRが備えられ、その出力側光ファイバ39と第2半導体光増幅素子42との間は、先球レンズRを介して直接的に光学結合されていることから、光学結合の為のレンズなどの光学部品を必要としないので、結合構造が簡単且つ小型となり、吸光分析装置10が小型化される。
【0057】
また、本実施例の吸光分析装置10によれば、第2光ファイバグレーティング部46は、出力光Lout の波長λ2の光を透過させ、第2半導体光増幅素子42の増幅により生じた少なくとも3nm以上の帯域の増幅光に対して、出力光Lout の波長よりも短波長側および/または長波長側の帯域の全部または一部の光を反射する反射特性を有し、かつ、第2半導体光増幅素子42に対して所定の光路長LLを隔てて近接して配置されていることから、一層、吸光分析装置が小型化される。
【0058】
また、本実施例の吸光分析装置10によれば、前記所定の光路長LLは、第2半導体光増幅素子42と第2光ファイバグレーティング部46との間の光伝送路の屈折率をn、真空中の光速をc(mm/秒)、制御光Lc(出力光Lout ) のパルスの時間間隔をt(秒)としたとき、LL≦(c・t)/(20・n)であることから、第2半導体光増幅素子42の高い応答性が得られる。したがって、第1光ファイバグレーティング部46により反射された第2周囲光Ls2が第2半導体光増幅素子42へ遅れなく速やかに再入力されるので、効果的に信号波形の歪みが低減されるとともに、高い変調度が得られる。
【0059】
また、本実施例の吸光分析装置10によれば、負帰還増幅型半導体光増幅器34は、第1半導体光増幅素子40の入力側に設けられ、その第1半導体光増幅素子40へ入力される第1入力光Linは通過させるが、その第1半導体光増幅素子40から入力側へ放出される第1周囲光Ls1の全部または一部を反射してその第1半導体光増幅素子40へ再入力させる第1光ファイバグレーティング部50(第1負帰還増幅用波長選択性反射素子)を、含むことから、第1半導体光増幅素子40においても負帰還作用が得られ、一層、波形の歪みが少なくS/N比が高められたものとなる。
【0060】
また、本実施例の吸光分析装置10によれば、第1光ファイバグレーティング部50(第1負帰還増幅用波長選択性反射素子)は、第1半導体光増幅素子40の入力側に光学的に結合された入力側光ファイバ32の端部に設けられ、その第1半導体光増幅素子40から入力側へ放出される第1周囲光Ls1の全部または一部を反射してその第1半導体光増幅素子40へ再入射させることから、その第1光ファイバグレーティング部50が入力側光ファイバ32の端部内に設けられて小型化されるので、吸光分析装置10が小型化される。
【0061】
また、本実施例の吸光分析装置10によれば、第1光ファイバグレーティング部50が設けられた入力側光ファイバ32の第1半導体光増幅素子40側の端部の端面には先球レンズRがそれぞれ備えられ、その入力側光ファイバ32とその第1半導体光増幅素子40との間は、その先球レンズRを介して直接的に光学結合されていることから、光学結合の為のレンズなどを部品を必要としないので、一層、結合構造が簡単且つ小型となり、吸光分析装置10が小型化される。
【0062】
また、本実施例の吸光分析装置10によれば、第1光ファイバグレーティング部50は、第1入力光Linの第1波長λ1の光を透過させ、第1半導体光増幅素子40の増幅により生じた少なくとも3nm以上の帯域の増幅光に対して、第1入力光Linの波長λ1よりも短波長側および/または長波長側の帯域の全部または一部の光を反射する反射特性を有し、かつ、第1半導体光増幅素子40に対して所定の光路長LLを隔てて近接して配置されていることから、一層、吸光分析装置10が小型化される。
【0063】
また、本実施例の吸光分析装置10によれば、所定の光路長LLは、第1半導体光増幅素子40と第1光ファイバグレーティング部50との間の光伝送路の屈折率をn、真空中の光速をc(mm/秒)、前記第1入力光Linのパルスの時間間隔をt(秒)としたとき、LL≦(c・t)/(20・n)であることから、第1半導体光増幅素子40の高い応答性が得られる。したがって、第1光ファイバグレーティング部50により反射された第1周囲光Ls1が第1半導体光増幅素子40へ遅れなく速やかに再入力されるので、効果的に信号波形の歪みが低減されるとともに、高い変調度が得られる。
【実施例2】
【0064】
次に、本発明の他の実施例を説明する。なお、以下の説明において実施例相互に共通する部分には同一の符号を付して説明を省略する。
【0065】
前述の負帰還増幅型半導体光増幅器34は、以下に示すものであってもよい。たとえば、図17に示す負帰還増幅型半導体光増幅器60は、実施例1の負帰還増幅型半導体光増幅器34に比較して、第3ファイバグレーティングデバイスFGD3において制御光Lc の入力位置が変更されている点において相違し、他は同様に構成されている。
【0066】
図17の第3ファイバグレーティングデバイスFGD3において、一端部が溶融延伸された溶融延伸部に設けられた2本の光ファイバ52、54のうち、光ファイバ54から分岐させられた分岐光ファイバ62が設けられている。この分岐光ファイバ62の分岐点では、コアの溶融延伸部が形成されることによりY字形の分岐が構成されている。この分岐光ファイバ62から制御光Lc が入力されることで、同様の機能が得られている。したがって、この負帰還増幅型半導体光増幅器60を備える吸光分析装置10によれば、前述の実施例と同様の作用効果が得られる。
【実施例3】
【0067】
図18に示す負帰還増幅型半導体光増幅器64は、実施例1の負帰還増幅型半導体光増幅器34と同様の機能を備えたものであるが、第3光ファイバグレーティングデバイスFGD3に替えて、アドドロップフィルタ66が設けられている点、そのアドドロップフィルタ66に設けられた第1入力光ファイバ68と第1半導体光増幅素子40との間およびアドドロップフィルタ66に設けられた出力光ファイバ72と第2半導体光増幅素子42との間が、それら第1入力光ファイバ68および出力光ファイバ72の先端面に形成された凸レンズとして機能する先球レンズRを介して直接的に結合されている点、および、第2半導体光増幅素子42および第1半導体光増幅素子40が共通する1チップから構成されている点で相違する。
【0068】
このアドドロップフィルタ64には、第1半導体光増幅素子40の出力が入力される第1入力光ファイバ68と、制御光Lc が入力される第2入力光ファイバ70と、第2半導体光増幅素子42へ出力するための出力光ファイバ72とが設けられている。アドドロップフィルタ66は、第1入力光ファイバ68から入力した光のうち第2波長λ1以外の第1周囲光Ls1を出力光ファイバ72へ反射するとともに、第2入力光ファイバ70から入力した制御光Lc を出力光ファイバ72へ透過する。したがって、本実施例の負帰還増幅型半導体光増幅器64によれば、実施例1と同様の作用効果が得られる。
【実施例4】
【0069】
図19に示す負帰還増幅型半導体光増幅器74は、図16の実施例2の負帰還増幅型半導体光増幅器60と同様の機能を備えたものであるが、反射膜78( 反射手段) が第1半導体光増幅素子40の入力側端面に固設されている点、第3光ファイバグレーティングデバイスFGD3が光ファイバ32にも接続されて4端子として用いられる点で相違する。第1半導体光増幅素子40は反射膜78が備えられることにより、高変調度などの特性を有する反射型半導体光増幅器として機能する。
【0070】
本実施例の第3光ファイバグレーティングデバイスFGD3は、2本の光ファイバ52、54の端部が溶融延伸された溶融延伸部に設けられた第3光ファイバグレーティング部56と、第1波長λ1の第1入力光Linが入力されるように光ファイバ32に接続された第3入力部76とを備えている。
【0071】
負帰還増幅型半導体光増幅器74において、第3光ファイバグレーティングデバイスFGD3の第3入力部76に第1波長λ1の第1入力光Linが入力されると、その第1入力光Linは第3光ファイバグレーティング部56を透過して第1半導体光増幅素子40へ入射される。この第1半導体光増幅素子40では、その第1波長λ1の第1入力光Linが増幅されるとともにそれと強度位相が反転した第1波長λ1を含まない第1周囲光Ls1が発生させられ、第1周囲光Ls1は両側へ出力されるが、反射膜78側へ向かった第1周囲光Ls1はその反射膜78により反射され、共に第3光ファイバグレーティングデバイスFGD3の光ファイバ52に入射される。第3光ファイバグレーティング部56は光ファイバ52から入力した光のうち第1波長λ1以外の第1周囲光Ls1を光ファイバ54へ反射する一方で、分岐ファイバ62からは第2入力光として機能する第2波長λ2の制御光Lc が入力されて両者が合波される。そして、合波された第1波長λ1以外の第1周囲光Ls1と第2波長λ2の制御光Lc とが、第2半導体光増幅素子42へ入力される。したがって、本実施例の負帰還増幅型半導体光増幅器74によれば、図17に示す実施例2の負帰還増幅型半導体光増幅器60と同様の作用効果が得られるのに加えて、第1半導体光増幅素子40が反射型半導体光増幅器であるため、一層変調度およびS/N比が高められる利点がある。
【実施例5】
【0072】
図20に示す実施例の負帰還増幅型半導体光増幅器80は、上記負帰還増幅型半導体光増幅器74に比較して、第1半導体光増幅素子40の端面に固着された反射膜78に替えて、たとえば図5の第1光ファイバグレーティング部50を備えた入力側光ファイバ32が設けられている点、第2半導体光増幅素子42と第1半導体光増幅素子40とが共通の1チップから構成されている点で相違し、その他は同様に構成されている。本実施例において、第1半導体光増幅素子40内で発生させられる第1周囲光Ls1は両側へ出力されるが、入力側光ファイバ32側へ向かった第1周囲光Ls1はその第1光ファイバグレーティング部50により反射され、共に第3光ファイバグレーティングデバイスFGD3の光ファイバ52に入射され、図19に示す負帰還増幅型半導体光増幅器74と同様の作用効果が得られる。また、本実施例では、第2半導体光増幅素子42と第1半導体光増幅素子40とが1チップ化されているため、一層小型となる利点がある。また、本実施例において、第1入力光Linは、入力側光ファイバ32から入力されてもよいし、第3光ファイバグレーティングデバイスFGD3の第3入力部76から入力されてもよい。本実施例では、上記第1光ファイバグレーティング部50を備えた入力側光ファイバ32は、第1周囲光Ls1の反射手段として機能している。
【実施例6】
【0073】
図21に示す実施例の負帰還増幅型半導体光増幅器82は、上記負帰還増幅型半導体光増幅器34、60、74、80に比較して、第1半導体光増幅素子40、第1光ファイバグレーティング部50、第3光ファイバグレーティング部56が除去され、第2半導体光増幅素子42と第2光ファイバグレーティング部46とから構成された1段増幅である点で相違している。本実施例では、第2半導体光増幅素子42において第1波長λ1の制御光Lc が増幅されるとき、その制御光Lc の波長λ1の周囲波長の第2周囲光Ls2が第2光ファイバグレーティング部46から反射されて第2半導体光増幅素子42に入力されることで負帰還増幅が行われるので、制御光Lc が増幅されたS/N比が高く安定した出力光Lout が第2光ファイバグレーティング部46を通して出力されるので、前述の実施例と同様に、光導波器14の閉鎖系伝播経路内での発振がなく、安定した吸光分析が可能となる。しかも、パルス状レーザ光Lの光強度が時間経過に伴って減衰する観測波形のS/N比が高くその波形に含まれるノイズが少なくなることから、そのような信号からパルス状レーザ光Lの光強度が減衰するまでの時間すなわちリングダウンタイムτが長くしかも正確に得られるようになるので、減衰曲線の減衰に対する測定精度が十分に得られる。また、本実施例によれば、の負帰還増幅型半導体光増幅器82は、第1半導体光増幅素子40、第1光ファイバグレーティング部50、第3光ファイバグレーティング部56を備えておらず、また、吸光分析装置10において、光ファイバ32および第2光カプラ36が不要とされるので、吸光分析装置10が一層簡単に構成される利点がある。
【0074】
以上、本発明の一実施例を図面に基づいて説明したが、本発明はその他の態様においても適用される。
【0075】
たとえば、前述の図1の実施例において、たとえばEDFAから構成された光信号の増幅のための光信号増幅器や、ノイズ除去のためのフィルタは、たとえば破線の四角で示す位置などにおいて、必要に応じて設けられ得る。
【0076】
また、前述の図1の実施例において、第1光カプラ18は、パルス状レーザ光Lの一部を光導波器14へ所定の割合で導入し、また光導波器14内で周回するパルス状レーザ光Lの一部を所定の割合で導出するものであったが、導入用と導出用との2つ分割されてもよい。
【0077】
また、前述の図1の実施例において、光導波器14は、環状に巻回された光ファイバ38で構成された環状の閉鎖系伝播経路を有するものであったが、たとえば一対のミラー間で同じ経路で往復するように構成された閉鎖系伝播経路を有するものであってもよい。この場合には、一対のミラーの一方の反射率を99%とすることにより、1%(1:99)の割合で、閉鎖系伝播経路を往復するパルス状レーザ光Lの一部を導出できる。
【0078】
また、前述の負帰還増幅型半導体光増幅器34、60、64、74、80、82の構成は、必要に応じて種々変更されてもよい。
【0079】
また、前述の図1の実施例において、演算装置26は、減衰曲線のリングダウンタイムτを求めることで、試料22の物質或いは物性を特定していたが、減衰曲線の減衰率kが、試料22のないときの基準減衰率k0 と吸光率Δkとの和( =k0 +Δk) であることを利用して、予め求められたら基準減衰率k0 (=1/τ0 ) と実際に測定された減衰率kとから試料22の吸光率Δkを算出するものであってもよい。
【0080】
また、前述の実施例における負帰還増幅型半導体光増幅器34、60、64、80において、第1半導体光増幅素子40に負帰還増幅させるための第1光ファイバグレーティング部50は必ずしも設けられていなくてもよい。少なくとも第2半導体光増幅素子42が負帰還増幅を行うものであればよい。
【0081】
その他一々例示はしないが、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
【符号の説明】
【0082】
10:吸光分析装置
14:光導波器
18:第1光カプラ( 光カプラ装置)
20:光検出器
22:試料
24:試料収容装置
32:入力側光ファイバ
34、60、64、74、80:負帰還増幅型半導体光増幅器
39:出力側光ファイバ
40:第1半導体光増幅素子
42:第2半導体光増幅素子
46:第2光ファイバグレーティング部
( 第2負帰還増幅用波長選択性反射素子)
50:第1光ファイバグレーティング部
( 第1負帰還増幅用波長選択性反射素子)
56:第3光ファイバグレーティング部( 第1波長選択素子)
Lin:第1入力光
Lc :制御光( 第2入力光)
Lout :出力光
LL:光路長
R:先球レンズ

【特許請求の範囲】
【請求項1】
所定波長のパルス状レーザ光を出力するレーザ光源と、周回または往復させることによって光を繰り返し伝播させる閉鎖系伝播経路を有する光導波器と、該光導波器の閉鎖系伝播経路に設けられ、前記レーザ光源と該光導波器とを光学的に結合して該レーザ光源から出力されるパルス状レーザ光を該光導波器の閉鎖系伝播経路内に入力し、且つ該閉鎖系伝播経路内を繰り返し伝播するパルス状レーザ光の一部を取り出す光カプラ装置と、該光カプラ装置により前記光導波器の閉鎖系伝播経路内から取り出された前記パルス状レーザ光の一部を検出する光検出器と、試料を収容した状態で前記光導波器の閉鎖系伝播経路に設けられ、該光導波器の閉鎖系伝播経路内において該試料を通して前記パルス状レーザ光を繰り返し伝播させる試料収容装置とを備え、前記光検出器により検出される前記パルス状レーザ光の一部の強度の減衰率に基づいて前記試料を分析する吸光分析装置であって、
前記光カプラ装置から取り出された前記光導波器内を伝播するパルス状レーザ光の一部を入力光として受けて、該入力光が負帰還増幅された出力光を前記光検出器へ出力する負帰還増幅型半導体光増幅器を、前記光カプラ装置と前記光検出器との間に備えることを特徴とする吸光分析装置。
【請求項2】
前記負帰還増幅型半導体光増幅器は、
前記所定波長のパルス状レーザ光の一部である前記第1入力光を増幅して出力すると共に、該パルス状レーザ光の強度に対して強度反転した該パルス状レーザ光の波長以外の第1周囲光を放射する第1半導体光増幅素子と、
該第1半導体光増幅素子から出力される光から前記第1周囲光の全部または一部を選択する第1波長選択素子と、
該第1波長選択素子により選択された前記第1周囲光の全部または一部と、前記光カプラ装置により前記光導波器の閉鎖系伝播経路から取り出されたパルス状レーザ光の一部である第2入力光とが入力され、該第2入力光の波長を有し、且つ該第1入力光の周囲光により強度変調された出力光を出力する第2半導体光増幅素子と、
前記第2半導体光増幅素子から出力側へ放射される光のうち、前記第2入力光の波長の光を透過させるが、該第2入力光の波長とは異なる波長に光を反射して該第2半導体光増幅素子へ入射させる第2負帰還増幅用波長選択性反射素子と
を、含むことを特徴とする請求項1の吸光分析装置。
【請求項3】
前記第2負帰還増幅用波長選択性反射素子は、前記第2半導体光増幅素子の出力側に光学的に結合された出力側光ファイバの端部に設けられ、該第2半導体光増幅素子から放出される第2周囲光の全部または一部を反射して該第2半導体光増幅素子へ再入射させる第2光ファイバグレーティング部である
ことを特徴とする請求項2の吸光分析装置。
【請求項4】
前記出力側光ファイバの前記第2光ファイバグレーティング部が設けられた前記第2半導体光増幅素子側の端部の端面には先球レンズが備えられ、該出力側光ファイバと該第2半導体光増幅素子との間は、該先球レンズを介して直接的に光学結合されていることを特徴とする請求項3の吸光分析装置。
【請求項5】
前記第2光ファイバグレーティング部は、前記出力光の波長の光を透過させ、前記第2半導体光増幅素子の増幅により生じた少なくとも3nm以上の帯域の増幅光に対して、前記出力光の波長よりも短波長側および/または長波長側の帯域の全部または一部の光を反射する反射特性を有し、かつ、前記第2半導体光増幅素子に対して所定の光路長LLを隔てて近接して配置されていることを特徴とする請求項3または4に記載の吸光分析装置。
【請求項6】
前記所定の光路長LLは、前記第2半導体光増幅素子と前記第1光ファイバグレーティング部との間の光伝送路の屈折率をn、真空中の光速をc(mm/秒)、前記第2入力光のパルスの時間間隔をt(秒)としたとき、
LL≦(c・t)/(20・n)
であることを特徴とする請求項5に記載の吸光分析装置。
【請求項7】
前記負帰還増幅型半導体光増幅器は、
前記第1半導体光増幅素子の入力側に設けられ、該第1半導体光増幅素子へ入力される前記第1入力光は通過させるが、該第1半導体光増幅素子から入力側へ放出される前記第1周囲光の全部または一部を反射して該第1半導体光増幅素子へ再入力させる第1負帰還増幅用波長選択性反射素子を、含むことを特徴とする請求項2乃至6のいずれか1の吸光分析装置。
【請求項8】
前記第1負帰還増幅用波長選択性反射素子は、前記第1半導体光増幅素子の入力側に光学的に結合された入力光ファイバの端部に設けられ、該第1半導体光増幅素子から放出される前記第1周囲光の全部または一部を反射して該第1半導体光増幅素子へ再入射させる第1光ファイバグレーティング部であることを特徴とする請求項7の吸光分析装置。
【請求項9】
前記第1光ファイバグレーティング部が設けられた前記入力光ファイバの前記第1半導体光増幅素子側の端部の端面には先球レンズがそれぞれ備えられ、該入力光ファイバと該第1半導体光増幅素子との間は、該先球レンズを介して直接的に光学結合されていることを特徴とする請求項8の吸光分析装置。
【請求項10】
前記第1光ファイバグレーティング部は、前記第1入力光の第1波長の光を透過させ、前記第1半導体光増幅素子の増幅により生じた少なくとも3nm以上の帯域の増幅光に対して、前記第1入力光の波長よりも短波長側および/または長波長側の帯域の全部または一部の光を反射する反射特性を有し、かつ、前記第1半導体光増幅素子に対して所定の光路長LLを隔てて近接して配置されていることを特徴とする請求項8または9に記載の吸光分析装置。
【請求項11】
前記所定の光路長LLは、前記第1半導体光増幅素子と前記第1光ファイバグレーティング部との間の光伝送路の屈折率をn、真空中の光速をc(mm/秒)、前記第1入力光のパルスの時間間隔をt(秒)としたとき、
LL≦(c・t)/(20・n)
であることを特徴とする請求項10に記載の吸光分析装置。
【請求項12】
前記負帰還増幅型半導体光増幅器は、
前記光カプラ装置により前記光導波器の閉鎖系伝播経路から取り出されたパルス状レーザ光の一部が第2入力光として入力され、該第2入力光の波長を有する負帰還増幅された出力光を出力する第2半導体光増幅素子と、
前記第2半導体光増幅素子から出力側へ放射される光のうち、前記第2入力光の波長の光を透過させるが、該第2入力光の波長とは異なる波長に光を反射して該第2半導体光増幅素子へ入射させる第2負帰還増幅用波長選択性反射素子と
を、含むことを特徴とする請求項1の吸光分析装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate


【公開番号】特開2010−185726(P2010−185726A)
【公開日】平成22年8月26日(2010.8.26)
【国際特許分類】
【出願番号】特願2009−29121(P2009−29121)
【出願日】平成21年2月10日(2009.2.10)
【出願人】(000108742)タツタ電線株式会社 (76)
【出願人】(000125347)学校法人近畿大学 (389)
【Fターム(参考)】